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We compare waveforms obtained by numerically evolving nonspinning binary black holes to post-
Newtonian (PN) template families currently used in the search for gravitational waves by ground-based
detectors. We find that the time-domain 3.5PN template family, which includes the inspiral phase, has
fitting factors (FFs) � 0:96 for binary systems with total mass M � 10–20M�. The time-domain 3.5PN
effective-one-body template family, which includes the inspiral, merger, and ring-down phases, gives
satisfactory signal-matching performance with FFs � 0:96 for binary systems with total mass M �
10–120M�. If we introduce a cutoff frequency properly adjusted to the final black-hole ring-down
frequency, we find that the frequency-domain stationary-phase-approximated template family at 3.5PN
order has FFs � 0:96 for binary systems with total mass M � 10–20M�. However, to obtain high
matching performances for larger binary masses, we need to either extend this family to unphysical
regions of the parameter space or introduce a 4PN order coefficient in the frequency-domain gravitational
wave (GW) phase. Finally, we find that the phenomenological Buonanno-Chen-Vallisneri family has FFs
� 0:97 with total mass M � 10–120M�. The main analyses use the noise-spectral density of LIGO, but
several tests are extended to VIRGO and advanced LIGO noise-spectral densities.
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I. INTRODUCTION

The search for gravitational waves (GWs) from coales-
cing binary systems with laser interferometer GW detec-
tors [1–5] is based on the matched-filtering technique,
which requires accurate knowledge of the waveform of
the incoming signal. In the last couple of years there
have been several breakthroughs in numerical relativity
(NR) [6–8], and now independent groups are able to
simulate the inspiral, merger, and ring-down phases of
generic black hole (BH) merger scenarios, including differ-
ent spin orientations and mass ratios [9]. However, the high
computational cost of running such simulations makes it
difficult to generate sufficiently long inspiral waveforms
that cover the parameter space of astrophysical interest.

References [10,11] found good agreement between ana-
lytic (based on the post-Newtonian (PN) expansion) and
numerical waveforms emitted during the inspiral, merger,
and ring-down phases of equal-mass, nonspinning binary
BHs. Notably, the best agreement is obtained with 3PN or
3.5PN adiabatic waveforms [12] (henceforth denoted as
Taylor PN waveforms) and 3.5PN effective-one-body
(EOB) waveforms [13–19]. In addition to the inspiral
phase the latter waveforms include the merger and ring-
down phases. Those comparisons suggested that it should
be possible to design hybrid numerical/analytic templates,
or even purely analytic templates with the full numerics
used to guide the patching together of the inspiral and ring-
down waveforms. This is an important avenue to template

construction as eventually thousands of waveform tem-
plates may be needed to extract the signal from the noise,
an impossible demand for NR alone. Once available, those
templates could be used by ground-based laser interfer-
ometer GW detectors, such as LIGO, VIRGO, GEO, and
TAMA, and in the future by the laser interferometer space
antenna (LISA) for detecting GWs emitted by solar mass
and supermassive binary BHs, respectively.

This paper presents a first attempt at investigating the
closeness of the template families currently used in GW
inspiral searches to waveforms generated by NR simula-
tions. Based on this investigation, we shall propose adjust-
ments to the templates so that they include merger and
ring-down phases. In contrast, Ref. [20] examined the use
of numerical waveforms in inspiral searches, and com-
pared numerical waveforms to the ring-down templates
currently used in burst searches. Similar to the methodol-
ogy presented here, fitting factors (FFs) [see Eq. (2) below]
are used in Ref. [20] to quantify the accuracy of numerical
waveforms for the purpose of detection, as well as the
overlap of burst templates with the waveforms.
Reference [20] found that by computing FFs between
numerical waveforms from different resolution simulations
of a given event, one can recast the numerical error as a
maximum FF that the numerical waveform can resolve. In
other words, any other template or putative signal con-
volved with the highest resolution numerical simulation
that gives a FF equal to or larger than this maximum FF is,
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for the purpose of detection, indistinguishable from the
numerical waveform. We will explore this aspect of the
problem briefly. The primary conclusions we will draw
from the analysis do not crucially depend on the exactness
of the numerical waveforms. What counts here is that the
templates can capture the dominant spectral characteristics
of the true waveform.

For our analysis we shall focus on two nonspinning
equal-mass binary simulation waveforms which differ in
length, initial conditions, and the evolution codes used to
compute them: Cook-Pfeiffer quasiequilibrium initial data
built on Refs. [21–25] evolved with Pretorius’ generalized-
harmonic code [6], and Brandt-Brügmann puncture data
[26] evolved using the Goddard group’s moving-puncture
code [8]. We also consider two nonspinning unequal-mass
binary simulations with mass ratios m2=m1 � 1:5 and
m2=m1 � 2 produced by the Goddard group.

The paper is organized as follows. In Sec. II we discuss
the phase differences between PN inspiraling templates. In
Sec. III we build hybrid waveforms by stitching together
PN and NR waveforms. We try to understand how many
NR cycles are needed to obtain good agreement between
NR and PN waveforms, to offer a guide for how long PN
waveforms can be used as accurate templates. In Sec. IV
we compute the FFs between several PN-template families
and NR waveforms. We first focus on low-mass binary
systems with total mass M � 10–30M�, then high-mass
binary systems with total mass M � 30–120M�. Finally,
Sec. V contains our main conclusions. In the appendix we
comment on how different representations of the energy-
balance equations give GW frequencies closer to or farther
from the NR ones.

II. PHASE DIFFERENCES IN POST-NEWTONIAN
INSPIRALING MODELS

Starting from Ref. [27], which pointed out the impor-
tance of predicting GW phasing with the highest possible
accuracy when building GW templates, many subsequent
studies [14,18,19,28–32] (those references are restricted to
the nonspinning case) focused on this issue and thoroughly
tested the accuracy of those templates, proposing improved
representations of them. These questions were motivated
by the observation that comparable-mass binary systems
with total mass higher than 30M� merge in-band with the
highest signal-to-noise ratio (SNR) for LIGO detectors. It
follows that the corresponding templates demand an im-
proved analysis.

In the absence of NR results and under the urgency of
providing templates to search for comparable-mass binary
BHs, the analytic PN community pushed PN calculations
to higher PN orders, notably 3.5PN order [12], and also
proposed ways of resumming the PN expansion, either for
conservative dynamics (the EOB approach [13,16,17]),
radiation-reaction effects (the Padé resummation [19]),
or both [14,18]. Those results lead to several con-

clusions: (i) 3PN terms improve the comparison between
analytic and (numerical) quasiequilibrium predictions
[22,25,33,34]; (ii) Taylor expanded and resummed PN
predictions for equal-mass binary systems are much closer
at 3.5PN order than at previous PN orders, indicating a
convergence between the different schemes [18,28,30];
(iii) the two-body motion is quasicircular until the end of
a rather blurred plunge [14], (iv) the transition to ring-
down can be described by an extremely short merger phase
[14,18]. Today, with the NR results we are in a position to
sharpen the above conclusions, and to start to assess the
closeness of analytic templates to numerical waveforms.

Henceforth, we restrict the analysis to the three time-
domain physical template families which are closest to NR
results [10,11]: the adiabatic Taylor PN model (Tpn) [see,
e.g., Eqs. (1), (10), and (11)–(13) in Ref. [35]] computed at
3PN and 3.5PN order, and the nonadiabatic EOB model
(Epn) [see e.g., Eqs. (3.41)–(3.44) in Ref. [14]] computed
at 3.5PN order. We shall denote our models as Tpn(n) and
Epn(n), n being the PN order. The Tpn model is obtained
by solving a particular representation of the balance equa-
tion. In the appendix we briefly discuss how time-domain
PN models based on different representations of the
energy-balance equation would compare with NR results.

The waveforms we use are always derived in the so-
called restricted approximation which uses the amplitude
at Newtonian order and the phase at the highest PN order
available. They are computed by solving PN dynamical
equations providing the instantaneous frequency !�t� and
phase ��t� � �0 �

R
t
t0
!�t0�dt0, thus

 h�t� �A!�t�2=3 cos�2��t��; (1)

where t0 and�0 are the initial time and phase, respectively,
and A is a constant amplitude, irrelevant to our discus-
sion. The inclusion of higher-order PN corrections to the
amplitude can be rather important for certain unequal-mass
binary systems, and will be the subject of a future study.

When measuring the differences between waveforms we
weight them by the power spectral-density (PSD) of the
detector, and compute the widely used fitting factor (FF)
(i.e., the ambiguity function or normalized overlap), or
equivalently the mismatch defined as 1-FF. Following the
standard formalism of matched-filtering [see, e.g.,
Refs. [19,30,36]], we define the FF as the overlap
hh1�t�; h2�t�i between the waveforms h1�t� and h2�t�:
 

hh1�t�;h2�t�i	4Re
Z 1

0

~h1�f�~h


2�f�

Sh�f�
df;

FF	 max
t0;�0;�i

hh1;h2�t0;�0;�
i�i�����������������������������������������������������������������������

hh1;h1ihh2�t0;�0;�
i�;h2�t0;�0;�

i�i
p ;

(2)

where ~hi�f� is the Fourier transform of hi�t�, and Sh�f� is
the detector’s PSD. Thus, the FF is the normalized overlap
between a target waveform h1�t� and a set of template
waveforms h2�t0; �0; �i� maximized over the initial time
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t0, initial phase�0, and other parameters �i. Sometimes we
are interested in FFs that are optimized only over t0 and�0;
we shall denote these as FF0. For data analysis purposes,
the FF has more direct meaning than the phase evolution of
the waveforms, since it takes into account the PSDs and is
proportional to the SNR of the filtered signal. Since the
event rate is proportional to the cube of the SNR, and thus
to the cube of the FF, a FF � 0:97 corresponds to a loss of
event rates of�10%. A template waveform is considered a
satisfactory representation of the target waveform when
the FF is larger than 0.97.

When comparing two families of waveforms, the FF is
optimized over the initial phase of the template waveform,
and we also need to specify the initial phase of the target
waveform. Since there is no preferred initial phase of the
target, two options are usually adopted: (i) the initial phase
maximizes the FF or (ii) it minimizes the FF. The resulting
FFs are referred to as the best and minimax FFs [29]. All
FFs we present in this paper are minimax FFs. Although
the FF of two waveform families is generally asymmetric
under interchange of the template family [30], the best and
the minimax FF0s are symmetric (see Appendix B of
Ref. [29] for details). Henceforth, when comparing two
waveform families using FF0, we do not need to specify
which family is the target.

We shall consider three interferometric GW detectors:
LIGO, advanced LIGO, and VIRGO. The latter two have
better low-frequency sensitivity and broader bandwidth.
For LIGO, we use the analytic fit to the LIGO design
PSD given in Ref. [28]; for advanced LIGO we use the
broadband configuration PSD given in Ref. [37]; for
VIRGO we use the PSD given in Ref. [28].

In Fig. 1, we show the FF0s as functions of the accumu-
lated difference in the number of GW cycles between
waveforms generated with different inspiraling PN models
and for binary systems with different component masses.
We first generate two waveforms by evolving two PN
models, say, ‘‘PN1’’ and ‘‘PN2’’ which start at the same
GW frequency fGW � 30 Hz and have the same initial
phase. The two waveforms are terminated at the same
ending frequency fGW � fend up to a maximum fend;max �

min�fend;PN1
; fend;PN2

�, where fend;PN is the frequency at
which the PN inspiraling model ends. (For Tpn models
this is the frequency at which the PN energy has a mini-
mum; for Epn models it is the EOB light-ring frequency.)
Then, we compute the difference in phase and number of
GW cycles accumulated until the ending frequency

 �NGW �
��
�
�

1

�
��PN1

�fend� ��PN2
�fend��: (3)

By varying fend (up to fend;max) �NGW changes, though not
necessarily monotonically. Although there seems to be a
loose correlation between the FF0s and �NGW, it is hard to
quantify it as a one-to-one correspondence. For example, a
phase difference of about half a GW cycle (�NGW ’ 0:5) is

usually thought to be significant. However, here we find
relatively high FF0s between 0.97 and >0:99, depending
on the masses of the binary and the specific PN model used.
This happens because the FF between two waveforms is
not determined by the total phase difference accumulated,
but rather by how the phase difference accumulates across
the detector’s most sensitive frequency band. The relation
between FFs and phase differences is also blurred by the
maximization over the initial time and phase: shifting the
phase by half a cycle from the most sensitive band to a less
sensitive band can increase the matching significantly. We
conclude that with LIGO’s PSD, after maximizing only on
initial phase and time, Epn(3.5) and Tpn(3.5) templates are
close to each other for comparable-mass binary systems
M � 6–30M� with FF0 * 0:97, but they can be different
for mass ratios m2=m1 ’ 0:3 with FF0 as low as ’ 0:8.
Tpn(3) and Tpn(3.5) templates have FF0 * 0:97 for the
binary masses considered. Note that for m2=m1 � 1
[ ’ 0:3] binary systems, Tpn(3.5) is closer to Epn(3.5)
[Tpn(3)] than to Tpn(3) [Epn(3.5)]. Note also that when
maximizing on binary masses the FFs can increase signifi-
cantly, for instance, for a �15� 3�M� binary, the FF be-
tween Tpn(3.5) and Epn(3.5) waveforms becomes >0:995,
whereas FF0 ’ 0:8.

III. BUILDING AND COMPARING HYBRID
WAVEFORMS

Recent comparisons [10,11] between analytic and nu-
merical inspiraling waveforms of nonspinning, equal-mass
binary systems have shown that numerical waveforms are
in good agreement with Epn(3.5), Tpn(3), and Tpn(3.5)
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FIG. 1 (color online). We show FF0s between waveforms
generated from the three PN models Tpn(3), Tpn(3.5), and
Epn(3.5) versus �NGW [see Eq. (3)]. The FF0s are evaluated
with LIGO’s PSD. Note that for Tpn(3.5) and Epn(3.5) and a
�15� 3�M� binary, the lowest FF0 is 0.78 and the difference in
the number of GW cycles �NGW ’ 2. In the limit �NGW ! 0,
the FF0 goes to unity.
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waveforms. Those results were assessed using eight and 16
numerical inspiral GW cycles. Can we conclude from these
analyses that Epn(3.5), Tpn(3.5), and Tpn(3) can safely be
used to build a template bank for detecting inspiraling GW
signals? A way to address this question is to compute the
mismatch between hybrid waveforms built by attaching
either Epn or Tpn waveforms to the same numerical wave-
form, and varying the time when the attachment is made.
This is equivalent to varying the number of numerical GW
cycles n in the hybrid template. The larger n the smaller the
mismatch, as we are using the same numerical segment in
both waveforms. For a desired maximum mismatch, say
3%, we can then find the smallest number n of numerical
cycles that is required in the hybrid waveform. This num-
ber will, of course, depend on the binary mass and the PSD
of each detector.

A. Hybrid waveforms

We build hybrid waveforms by connecting PN wave-
forms to NR waveforms at a chosen point in the late
inspiral stage. As mentioned before, we use NR waveforms
generated with Pretorius’ [10] code and the Goddard
group’s [38] code. Pretorius’ waveform is from an equal-
mass binary with total mass M, and equal, corotating spins
(a � 0:06). The simulation lasts ’ 671M, and the wave-
form has ’ 8 cycles before the formation of the common
apparent horizon. The Goddard waveform refers to an
equal-mass nonspinning binary. The simulation lasts about
’ 1516M, and the waveform has ’ 16 cycles before
merger.

Since we will present results from these two waveforms
it is useful to first compare them by computing the FF0.
Although the binary parameters considered by Pretorius
and Goddard are slightly different, we expect the wave-
forms, especially around the merger stage, to be fairly
close. Comparisons between (shorter) waveforms com-
puted with moving punctures and generalized-harmonic
gauge were reported in Ref. [39], where the authors dis-
cussed the different initial conditions, wave extraction
techniques, and compared the phase, amplitude, and fre-
quency evolutions. Since the two simulations use different
initial conditions and last for different amounts of time we
cut the longer Goddard waveform at roughly the frequency
where the Pretorius waveform starts. In this way we com-
pare waveforms that have the same length between the
initial time and the time at which the wave amplitude
reaches its maximum. In Fig. 2, we show the FF0 as
function of the total binary mass. Despite differences in
the two simulations the FF0s are rather high. The wave-
forms differ more significantly at lower frequencies.
Indeed, as the total mass decreases the FF0s also decrease
as these early parts of the waveform contribute more to the
signal power given LIGO’s PSD.

Any waveform extracted from a numerical simulation
will inherit truncation errors, affecting both the wave-

form’s amplitude and phase [10,20,38]. To check whether
those differences would change the results of the compari-
sons between NR and PN waveforms, we plot in Fig. 2 the
FF0s versus total binary mass between two Goddard wave-
forms generated from a high and a medium-resolution run
[38]. The FF0s are extremely high (> 0:995).

Based on the comparisons between high and medium-
resolution waveforms, we can estimate the FFs between
high-resolution and exact waveforms. If we have several
simulations with different resolutions, specified by the
mesh-spacings xi, and xi are sufficiently small, we can
assume that the waveforms hi are given by

 hi � h0 � xni hd; (4)

where n is the convergence factor of the waveform, h0 is
the exact waveform generated from the infinite resolution
run (x0 ! 0), and hd is the leading order truncation error
contribution to the waveform and is independent of the
mesh spacing xi. We find that the mismatch between the
waveforms hi and hj, 1� FFij, scales as

 1� FFij / �xni � x
n
j �

2: (5)

In the Goddard simulations, the high and medium-
resolution runs have mesh-spacing ratio xh=xm � 5=6,
and the waveform convergence rate is n � 4 [38]. The
FF between the high-resolution and exact waveforms hh
and h0 is given by

 FF 0h � 1� 0:87�1� FFhm�; (6)

where FFhm is the FF between the high and medium-
resolution waveforms hh and hm. That is to say, the mis-

30 40 50 60 70 80 90 100
Total mass of the binary (      )

0.980

0.985

0.990

0.995

1.000

FF
0

Goddard high and medium resolutions
Pretorius and Goddard waveforms

FIG. 2 (color online). FF0 between NR waveforms as a func-
tion of the binary total mass M. The solid curve is generated for
waveforms from Pretorius and the Goddard group. The longer
Goddard waveform is shortened such that both waveforms last
’ 671M and contain ’ 8 cycles. The dashed curve is generated
for waveforms from the high-resolution and medium-resolution
simulations of the Goddard group. All FFs are evaluated using
LIGO’s PSD.
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match between hh and h0 is slightly smaller than that
between hh and hm, where the latter can be derived from
the FFs shown in Fig. 2. Henceforth, we shall always use
high-resolution waveforms. A similar calculation for
Pretorius’ waveform gives FF0h � 1� 0:64�1� FFhm�,
though here xh=xm � 2=3 and n � 2. See Fig. 6 of
Ref. [20] for a plot of FFhm calculated from the evolution
of the Cook-Pfeiffer initial data1; there FF0 ranges from

 0:97 for M=Ms � 30 to 
 0:99 for M=Ms � 100. In
other words, the mismatch between Goddard’s and
Pretorius’ waveform shown in Fig. 2 is less than the
estimated mismatch from numerical error in the latter
waveform.

We build hybrid waveforms by stitching together the PN
and NR waveforms computed for binary systems with the
same parameters. At the point where we connect the two
waveforms, we tune the initial time t0 so that the frequency
of the PN waveform is almost the same as the frequency of
the NR waveform (there is a subtlety trying to match
exactly the frequencies that is discussed at the end of this
section). The initial phase �0 is then chosen so that the
strain of the hybrid waveform is continuous at the connect-
ing point.

In Fig. 3, we show two examples of hybrid waveforms of
an equal-mass binary. We stitch the waveforms at points
where effects due to the initial-data transient pulse are
negligible. We find an amplitude difference on the order
of �10% between the Goddard waveform and the re-
stricted PN waveform. This difference is also present in
Pretorius’ waveform, but it is somewhat compensated for
by amplitude modulations caused by eccentricity in the
initial data. In Ref. [38] it was shown that PN waveforms
with 2.5PN amplitude corrections give better agreement
(see e.g., Fig. 12 in Ref. [38]). However, the maximum
amplitude errors in the waveforms are also on the order of
10% [10,38]. Since neither 2PN nor other lower PN order
corrections to the amplitudes are closer to the 2.5PN order,
we cannot conclude that 2.5PN amplitude corrections best
approximate the numerical waves. Thus, we decide to use
two sets of hybrid waveforms: one constructed with re-
stricted PN waveforms, and the other with restricted PN
waveforms rescaled by a single amplitude factor, which
eliminates amplitude differences with the NR waveforms.
We shall see that the difference between these two cases is
small for the purpose of our tests.

The amplitude difference between PN and NR wave-
forms is computed at the same connecting-point GW fre-
quency. There is another effect which causes a jump in the
hybrid-waveform amplitude. This is a small frequency
difference between PN and NR waveforms at the connect-

ing point. All our NR waveforms contain small eccentric-
ities [10,38]. As a consequence, the frequency evolution
!�t� oscillates. To reduce this effect we follow what is
done in Ref. [38] and fit the frequency to a monotonic
quartic function. When building the hybrid waveform, we
adjust the PN frequency to match the quartic fitted fre-
quency (instead of the oscillatory, numerical frequency) at
the connecting point. Since the restricted PN amplitude is
proportional to !2=3�t� [see Eq. (1)], this slight difference
between !s at the connecting point creates another differ-
ence between the NR and PN amplitudes. Nevertheless,
this difference is usually smaller (for Goddard’s waveform)
or comparable (for Pretorius’) to the amplitude difference
discussed above.

B. Distribution of signal power in gravitational
waveforms

To better understand the results of the FFs between
hybrid waveforms, we want to compute how many signifi-
cant GW cycles are in the LIGO frequency band. By
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FIG. 3 (color online). We show two examples of hybrid wave-
forms, starting from 40 Hz. The PN waveforms are generated
with the Tpn(3.5) model, and the NR waveforms in the upper and
lower panels are generated from Pretorius’ and Goddard’s simu-
lations, respectively. We mark with a dot the point where we
connect the PN and NR waveforms.

1The plot in Ref. [20] is for ‘‘d � 16’’ corotating Cook-
Pfeiffer initial data, whereas the results presented here are
from ‘‘d � 19’’ initial data. However, the resolutions used for
both sets were the same, and thus the mismatches should be
similar, in particular, in the higher-mass range.
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significant GW cycles we mean the cycles that contribute
most to the signal power, or to the SNR of the filtered
signal. Since GW frequencies are scaled by the total binary
mass, the answer to this question depends on both the PSD
and the total mass of a binary.

In Fig. 4, we show the effect of the LIGO PSD on the
distribution of signal power for several waves emitted by
coalescing binary systems with different total masses. In
each panel, we plot a hybrid waveform (a Tpn waveform
stitched to the Goddard waveform) in both its original form
and its ‘‘whitened’’ form [40]. The whitened waveform is
generated by Fourier-transforming the original waveform
into the frequency domain, rescaling it by a factor of
1=

������������
Sh�f�

p
, and then inverse-Fourier-transforming it back

to the time domain. The reference time t � 0 is the peak in
the amplitude of the unwhitened waveform. The amplitude
of a segment of the whitened waveform indicates the
relative contribution of that segment to the signal power
and takes into account LIGO’s PSD. Both waveforms are
plotted with arbitrary amplitudes, and the unwhitened one
always has the larger amplitude. The absolute amplitude of
a waveform, or equivalently the distance of the binary, is
not relevant in these figures unless the redshift z becomes
significant. In this case the mass of the binary is the red-

shifted mass �1� z�M. Vertical lines in each figure divide
a waveform into segments, where each segment contributes
10% of the total signal power. In each plot, except for the
10M�-binary one, we show all 9 vertical lines that divide
the waveforms into 10 segments. In the 10M�-binary plot
we omit the early part of the inspiral phase that accounts
for 50% of the signal power, as it would be too long to
show.

The absolute time scale of a waveform increases linearly
with total mass M; equivalently the waveform is shifted
toward lower frequency bands. For an M � 10M� binary,
the long inspiral stage generates GWs with frequencies
spanning the most sensitive part of the LIGO band, around
150 Hz, while for an M � 100M� binary, only the merger
signal contributes in this band. Thus, for low-mass binary
systems, most of the contribution to the signal power
comes from the long inspiral stage of the waveform, while
for high-mass binary systems most of the contribution
comes from the late inspiral, merger, and ring-down stages.
Understanding quantitatively the distribution of signal
power will let us deduce how many, and which, GW cycles
are significant for the purpose of data analysis. We need
accurate waveforms from either PN models or NR simu-
lations for at least those significant cycles.
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FIG. 4 (color online). Distribution of GW signal power. In each panel, we plot a hybrid waveform (a Tpn waveform stitched to the
Goddard waveform) in both its original form (blue, lighter curve) and its whitened form (red, darker curve) [40]. We show waveforms
from six binary systems with total masses 10M�, 20M�, 30M�, 40M�, 60M�, and 100M�. The vertical lines divide the waveforms into
segments, where each segment contributes 10% of the total signal power.
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From Fig. 4 we conclude that:
(i) For an M � 10M� binary, the last 25 inspiral cycles,

plus the merger and ring-down stages of the wave-
form contribute only 50% of the signal power, and
we need 80 cycles (not shown in the figure) of
accurate inspiral waveforms to recover 90% of the
signal power. For an M � 20M� binary, the last 23
cycles, plus the merger and ring-down stages of the
waveform contribute >90% of the signal power, and
current NR simulations can produce waveforms of
such length;

(ii) For an M � 30M� binary, the last 11 inspiral
cycles, plus the merger and ring-down stages of
the waveform contribute >90% of the signal power,
which means that, for binary systems with total
masses higher than 30M�, current NR simulations,
e.g., the 16 cycles obtained in Ref. [38], can provide
long enough waveforms for a matched-filter search
of binary coalescence, as also found in Ref. [20];

(iii) For an M � 100M� binary, >90% of the signal
power comes from the last inspiral cycle, merger,
and ring-down stages of the waveform, with two
cycles dominating the signal power. It is thus pos-
sible to identify this waveform as a ‘‘burst’’ signal.

Similar analyses can be also done for advanced LIGO and
VIRGO.

C. Comparing hybrid waveforms

We shall now compute FF0s between hybrid waveforms.
We fix the total mass of the equal-mass binary in each
comparison, i.e., we do not optimize over mass parameters,
but only on phase and time. We use the mismatch, defined
as 1� FF0, to measure the difference between waveforms
and we compute them for LIGO, advanced LIGO, and
VIRGO. Note that by using FF0, we test the closeness

among hybrid waveforms that are generated from binary
systems with the same physical parameters; in other words,
we test whether the waveforms are accurate enough for the
purpose of parameter estimation, rather than for the sole
purpose of detecting GWs. In the language of Ref. [19] we
are studying the faithfulness of the PN templates.2

Since at late inspiral stages PN waveforms are partly
replaced by NR waveforms, differences between hybrid
waveforms from two PN models are smaller than those
between pure PN waveforms. In general, the more NR
cycles we use to generate hybrid waveforms, the less the
difference is expected to be between these hybrid wave-
forms. This is evident in Figs. 5 and 6 where we show
mismatches between hybrid waveforms for binary systems
with different total masses as a function of the number of
NR cycles n. Specifically, the mismatches are taken be-
tween two hybrid waveforms generated from the same NR
waveform (from the Goddard group, taking the last n
cycles, plus merger and ring-down) and two different PN
waveforms generated with the same masses.

The mismatches are lower for binary systems with
higher total masses, since most of their signal power is
concentrated in the late cycles close to merger (see Fig. 4).
Comparing results between LIGO, advanced LIGO, and
VIRGO, we see that for the same waveforms the mis-
matches are lowest when evaluated with the LIGO PSD,
and highest when evaluated with the VIRGO PSD. This is
due to the much broader bandwidth of VIRGO, especially
at low frequency: the absolute sensitivity is not relevant;
only the shape of the PSD matters. In VIRGO, the inspiral
part of a hybrid waveform has higher weighting in its
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FIG. 5 (color online). We show the mismatch between hybrid waveforms as a function of the number of NR waveform cycles used to
generate the hybrid waveforms. The LIGO PSD is used to evaluate the mismatches. In the left panel, we compare the Epn(3.5) and
Tpn(3.5) models. In the right panel, we compare the Tpn(3) and Tpn(3.5) models. From top to bottom, the four curves correspond to
four equal-mass binary systems, with total masses 10M�, 20M�, 30M�, and 40M�. The dots show mismatches taken between hybrid
waveforms that are generated with different methods. In the left panel, we adjust the amplitude of restricted PN waveforms, such that
they connect smoothly in amplitude to NR waveforms. In the right panel, to set the frequency of PN waveforms at the joining point, we
use the original orbital frequency, instead of the quartic fitted one. (See Sec. III A for the discussion on amplitude scaling and
frequency fitting).

2Following Ref. [19], faithful templates are templates that
have large overlaps, say * 96:5%, with the expected signal
maximizing only over the initial phase and time of arrival. By
contrast when the maximization is done also on the binary
masses, the templates are called effectual.
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contribution to the signal power. As already observed at the
end of Sec. II, we can see also that the difference between
the Epn(3.5) and Tpn(3.5) models is smaller than that
between the Tpn(3) and Tpn(3.5) models.

Figures 5 and 6 show good agreement among hybrid
waveforms. In Sec. IV, as a further confirmation of what
was found in Refs. [10,11], we shall see that PN waveforms
from Tpn and Epn models have good agreement with the
inspiral phase of the NR waveforms. Therefore, we argue
that hybrid waveforms are likely to have high accuracy. In
fact, for the late evolution of a compact binary, where NR
waveforms are available, the PN waveforms are close to
the NR waveforms, while for the early evolution of the
binary, where we expect the PN approximations to work
better, the PN waveforms (from Tpn and Epn models) are
close to each other. Based on these observations, we draw
the following conclusions for LIGO, advanced LIGO, and
VIRGO data analysis:

(i) For binary systems with total mass higher than
30M�, the current NR simulations of equal-mass
binary systems (16 cycles) are long enough to reduce
mismatches between hybrid waveforms generated
from the three PN models to below 0.5%. Since these
FFs are achieved without optimizing the binary pa-
rameters, we conclude that for these high-mass bi-
nary systems, the small difference between hybrid
waveforms indicates low systematic error in parame-
ter estimation, i.e., hybrid waveforms are faithful
[19].

(ii) For binary systems with total mass around
10–20M�, 16 cycles of NR waveforms can reduce
the mismatch to below 3%, which is usually set as
the maximum tolerance for data analysis purpose
(corresponding to �10% loss in event rate). By a
crude extrapolation of our results, we estimate that
with 30 NR waveform cycles, the mismatch might
be reduced to below 1%.

(iii) For binary systems with total mass lower than
10M�, the difference between the Tpn(3) and

Tpn(3.5) models is substantial for Advanced
LIGO and VIRGO. Their mismatch can be >4%
and>6%, respectively (not shown in the figure). In
this mass range, pursuing more NR waveform
cycles in the late inspiral phase does not help
much, since the signal power is accumulated slowly
over hundreds of GW cycles across the detector
band. Nevertheless, here we give mismatches for
FF0s which are not optimized over binary masses.
For the purpose of detection only, optimization
over binary parameters leads to low enough mis-
matches (see also the end of Sec. II). In the lan-
guage of Ref. [19] hybrid waveforms for total mass
lower than 10M� are effectual but not faithful.

IV. MATCHING NUMERICAL WAVEFORMS WITH
POST-NEWTONIAN TEMPLATES

In this section, we compare the complete inspiral,
merger, and ring-down waveforms of coalescing compact
binary systems generated from NR simulations with their
best-match PN-template waveforms. We also compare hy-
brid waveforms with PN-template waveforms for lower
total masses, focusing on the late inspiral phase provided
by the NR waveforms. We test seven families of PN
templates that either have been used in searches for GWs
in LIGO (see e.g., Refs. [41,42]), or are promising candi-
dates for ongoing and future searches with ground-based
detectors. We evaluate the performance of PN templates by
computing the FFs maximized on phase, time, and binary
parameters. As we shall see, for the hybrid waveforms of
binary systems with total mass M � 30M�, both the time-
domain families Tpn(3.5) and Epn(3.5), which includes a
superposition of three ring-down modes, perform well,
confirming what was found in Refs. [10,11]. The standard
stationary-phase-approximated (SPA) template family in
the frequency domain has high FFs only for binary systems
with M< 20M�. After investigating in detail the GW
phase in frequency domain, and having understood why
it happens (see Sec. IV B 2), we introduce two modified
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FIG. 6 (color online). Mismatch between hybrid waveforms as a function of the number of NR waveform cycles used to generate the
hybrid waveforms. Following the settings of Fig. 5, we show comparisons between Epn(3.5) and Tpn(3.5), and Tpn(3) and Tpn(3.5)
models in the left and the right panels, respectively. The solid and dashed sets of curves are generated using the PSDs of advanced
LIGO and VIRGO. In each set, from top to bottom, the three curves correspond to three equal-mass binary systems, with total masses
20M�, 30M�, and 40M�.
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SPA template families (defined in Sec. IV B 2) for binary
systems with total mass M � 30M�. Overall, for
masses M � 30M�, the Epn(3.5) template family in the
time domain and the two modified SPA template families
in the frequency domain exhibit the best-match
performances.

A. Numerical waveforms and post-Newtonian
templates

For binary systems with total mass M � 30M�, the last
8–16 cycles contribute more than 80%–90% of the signal
power, thus in this case we use only the NR waveforms. By
contrast, for binary systems with total mass 10 � M �
30M�, for which the merger and ring-down phases of the
waveforms contribute only �1%–10%, we use the hybrid
waveforms, generated by stitching Tpn waveforms to the
Goddard NR waveforms.

We want to emphasize that FFs computed for different
target numerical waveforms cannot directly be compared
with each other. For instance, the Goddard waveform is
longer than the Pretorius waveform, and the FFs are some-
times slightly lower using the Goddard waveform. This is a
completely artificial effect, due to the fact that it is much
easier to tune the template parameters and obtain a large FF
with a shorter target waveform than a longer one.

We consider seven PN-template families. The two time-
domain families introduced in Sec. II are:

(i) Tpn(3.5) [30,35]: The inspiral Taylor model.
(ii) Epn(3.5) [10,13,14,16,19]: The EOB model which

includes a superposition of three quasinormal
modes (QNMs) of the final BH. These are labeled
by three integers �l; m; n� [43]: the least damped

QNM (2, 2, 0) and two overtones (2, 2, 1) and (2,
2, 2). The ring-down waveform is given as:
 

hQNM�t� �
X2

n�0

Ane��t�tend�=�22n

� cos�!22n�t� tend� ��n�; (7)

where !lmn and �lmn are the frequency and decay
time of the QNM �l;m; n�, determined by the mass
Mf and spin af of the final BH. The quantities An
and�n in Eq. (7) are the amplitude and phase of the
QNM �2; 2; n�. They are obtained by imposing the
continuity of h� and h�, and their first and second
time derivatives, at the time of matching tmatch.
Besides the mass parameters, our Epn model con-
tains three other physical parameters: �t, �M, and �J.
The parameter �t takes into account possible differ-
ences between the time tend at which the EOB
models end and the time tmatch at which the match-
ing to ring-down is done. More explicitly, we set
tmatch � �1� �t�tend, and if �t > 0, we extrapolate
the EOB evolution, and set an upper limit for the �t
search where the extrapolation fails. The parameters
�M and �J describe possible differences between the
values of the mass Mend 	 Eend and angular mo-
mentum âend 	 Jend=M2

end at the end of the EOB
inspiral and the final BH mass and angular momen-
tum. (The end of the EOB inspiral occurs around the
EOB light-ring.) The differences are due to the fact
that the system has yet to release energy and angular
momentum during the merger and ring-down phase
before settling down to the stationary BH solution.
If the total binary mass and angular momentum at

TABLE I. FFs between hybrid waveforms [Tpn(3.5) waveform stitched to the Goddard waveform] and PN templates. In the first row,
the two numbers in parentheses are the percentages of the signal-power contribution from the 16 inspiraling NR cycles and the NR
merger/ring-down cycles. (The separation between inspiral and merger/ring-down is obtained using the EOB approach as a guide, i.e.,
we match the Epn(3.5) model and use the EOB light-ring position as the beginning of the merger phase.) In the PN-template rows, the
first number in each block is the FF, and the numbers in parentheses are template parameters that achieve this FF. The last number in
each block of the Tpn(3.5) and Epn(3.5) models is the ending orbital frequency of the best-match template. For the Epn model, the
ending frequency is computed at the point of matching with the ring-down phase, around the EOB light-ring.

�5� 5�M� �10� 10�M� �15� 15�M�

Signal power (%) (30, 0.2) (80, 2) (85, 10)
hhNR�hybr; hTpn�3:5�i 0.9875 0.9527 0.8975
(M=M�, �) (10.18, 0.2422) (19.97, 0.2500) (29.60, 0.2499)
M!orb 0.1262 0.1287 0.1287

hhNR�hybr; hEpn�3:5�i 0.9836 0.9522 0.9618
(M=M�, �) (10.15, 0.2435) (19.90, 0.2500) (29.49,0.2488)
(�t, �M, �J)(%) (� 0:02, 12.19, 30.87) (� 0:02, 75.03, 95.00) (0.05, 2.38, 92.06)
M!orb 0.1346 0.1345 0.1345

hhNR�hybr; hSPAc�3:5�i 0.9690 0.9290 0.8355
(M=M�, �) (10.16, 0.2432) (19.93, 0.2498) (29.08, 0.2500)
(fcut=Hz) 1566.8 263.9 529.6
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the end of the EOB inspiral areMend and Jend, we set
the total mass and angular momentum of the final
stationary BH to be Mf � �1� �M�Mend and Jf �
�1� �J�Jend, and use af 	 Jf=Mf to compute !lmn

and �lmn. We consider the current Epn model with
three parameters �t, �M, and �J, as a first attempt to
build a physical EOB model for matching coher-
ently the inspiral, merger, and ring-down phases.
Since the �-parameters are related to physical quan-
tities, e.g., the loss of energy during ring-down, they
are functions of the initial physical parameters of
the binary, such as masses, spins, etc. In the near
future we expect to be able to fix the �-values by

comparing NR and (improved) EOB waveforms for
a large range of binary parameters.

We also consider five frequency-domain models, in
which two (modified SPA models) are introduced later in
Sec. IV B 2, and three are introduced here:

(i) SPAc�3:5� [32]: SPAc PN model with an appropriate
cutoff frequency fcut [30,35];

(ii) BCV [30]: BCV model with an amplitude correc-
tion term (1� �f2=3) and an appropriate cutoff
frequency fcut.

(iii) BCVimpr [30]: Improved BCV model with an am-
plitude correction term (1� �f1=2) and an appro-
priate cutoff frequency fcut. We include this

TABLE II. FFs between NR waveforms and PN templates which include merger and ring-down phases. The upper table uses
Pretorius’ waveform, and the lower table uses Goddard’s high-resolution long waveform. The first number in each block is the FF, and
numbers in parentheses are template parameters that achieve this FF.

�15� 15�M� �20� 20�M� �30� 30�M� �50� 50�M�

hhNR�Pretorius; hEpn�3:5�i 0.9616 0.9599 0.9602 0.9787
(M=M�, �) (27.93, 0.2384) (35.77, 0.2426) (52.27, 0.2370) (96.60, 0.2386)
(�t, �M, �J)(%) (� 0:08, 0.63, 99.70) (� 0:03, 0.48, 94.38) (� 0:12, 0.00, 64.14) (0.04, 0.01, 73.01)

hhNR�Pretorius; hSPAext
c �3:5�i 0.9712 0.9802 0.9821 0.9722

(M=M�, �) (19.14, 0.8037) (24.92, 0.9097) (36.75, 0.9933) (58.06, 0.9986)
(fcut=Hz) (589.6) (476.9) (318.9) (195.9)

hhNR�Pretorius; hSPAY
c �4�i 0.9736 0.9824 0.9874 0.9851

(M=M�, �) (29.08, 0.2460) (38.63, 0.2461) (57.58, 0.2441) (96.55, 0.2457)
(fcut=Hz) (666.5) (501.2) (332.5) (199.4)

hhNR�Pretorius; hBCVi 0.9726 0.9807 0.9788 0.9662
( 0=104,  1=102) (2.101, 1.655) (1.178, 1.744) (0.342, 2.385) (� 0:092, 3.129)
(102�; fcut=Hz) (� 1:081, 605.5) (� 0:834, 461.7) (0.162, 320.4) (1.438, 204.3)

hhNR�Pretorius; hBCVimpr i 0.9727 0.9807 0.9820 0.9803
( 0=104,  1=102) (2.377, 0.930) (1.167, 1.762) (0.431, 2.077) (� 0:109, 3.158)
(102�, fcut=Hz) (� 3:398, 571.9) (� 2:648, 458.3) (� 1:196, 319.1) (� 3:233, 196.0)

�15� 15�M� �20� 20�M� �30� 30�M� �50� 50�M�

hhNR�Goddard; hEpn�3:5�i 0.9805 0.9720 0.9692 0.9671
(M=M�, �) (29.25, 0.2435) (38.27, 0.2422) (56.66, 0.2381) (83.52, 0.2233)
(�t, �M, �J)(%) (0.05, 0.03, 99.90) (0.05, 0.27, 99.17) (0.09, 0.01, 54.56) (0.10, 1.71, 79.75)

hhNR�Goddard; hSPAext
c �3:5�i 0.9794 0.9785 0.9778 0.9693

(M=M�, �) (21.41, 0.5708) (27.27, 0.6695) (37.67, 0.9911) (60.90, 0.9947)
(fcut=Hz) (552.7) (444.4) (318.5) (191.7)

hhNR�Goddard; hSPAY
c �4�i 0.9898 0.9905 0.9885 0.9835

(M=M�, �) (30.28, 0.2456) (40.23, 0.2477) (60.54, 0.2455) (100.00, 0.2462)
(fcut=Hz) (674.6) (506.6) (330.5) (195.0)

hhNR�Goddard; hBCVi 0.9707 0.9710 0.9722 0.9692
( 0=104,  1=102) (3.056, �1:385) (1.650, �0:091) (0.561, 1.404) (� 0:113, 3.113)
(102�, fcut=Hz) (0.805, 458.3) (0.559, 412.6) (0.218, 309.2) (1.063, 198.7)

hhNR�Goddard; hBCVimpr i 0.9763 0.9768 0.9782 0.9803
( 0=104,  1=102) (2.867, �0:600) (1.514, 0.448) (0.555, 1.425) (� 0:165, 3.373)
(102�, fcut=Hz) (0.193, 578.0) (� 1:797, 441.1) (� 4:472, 308.1) (� 4:467, 193.4)
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improved BCV model because Ref. [10] found a
deviation of the Fourier-transform amplitude from
the Newtonian prediction f�7=6 during the merger
and ring-down phases (see Fig. 22 of Ref. [10]).
Here we shall assume n � �2=3 in the fn power
law to get the (1� �f1=2) form of the amplitude
correction. While it was found [10] that the value of
n is close to �2=3 for the l � 2, m � 2 waveform,
this value varies slightly if other multiple moments
are included and if binary systems with different
mass ratios are considered. Finally, the � parameter
is expected to be negative, but in our actual search
it can take both positive and negative values.

B. Discussion of fitting-factor results

In Table I, we list the FFs for hybrid target waveforms
and three PN-template families: Tpn(3.5), Epn(3.5), and
SPAc�3:5�, together with the template parameters at which
the best match is obtained. As shown in the first row, in this
relatively low-mass range, i.e. 10M� <M< 30M�, the
merger/ring-down phases of the waveforms contribute
only a small fraction of the total signal power, while the
last 16 inspiraling cycles of the NR waveform contribute a
significant fraction. Therefore, confirming recent claims by
Refs. [10,11], we can conclude that the PN-template fam-
ilies Tpn(3.5) and Epn(3.5) have good agreement with the
inspiraling NR waveforms. The Tpn(3.5) model gives a
low FF forM � 30M� because for these higher masses the
merger/ring-down phases, which the Tpn model does not
include, start contributing to the signal power. Note that
both time-domain templates give fairly good estimates of
the mass parameters. The SPAc�3:5� template family gives
FFs that drop substantially when the total binary mass
increases from 10M� to 30M�, indicating that this tem-
plate family can only match the early, less relativistic
inspiral phase of the hybrid waveforms. Nevertheless, it
turns out that by slightly modifying the SPA waveform we
can match the NR waveforms with high FFs (see
Sec. IV B 2).

In Table II, we list the FFs for full NR waveforms and
five PN-template families: Epn(3.5), SPAext

c �3:5�,
SPAY

c �4�, BCV, and BCVimpr, together with the template
parameters at which the best match is obtained. The
SPAext

c �3:5� and SPAY
c �4� families are modified versions

of the SPA family, defined in Sec. IV B 2.
We shall investigate these results in more detail in the

following sections.

1. Effective-one-body template performances

The Epn model is the only available time-domain model
that explicitly includes ring-down waveforms. It achieves
high FFs � 0:96 for all target waveforms, confirming the
necessity of including ring-down modes and proving that
the inclusion of three QNMs with three tuning parameters

�t, �M, and �J is sufficient for detection. As we see in
Table II, the values of the tuning parameters �M and �J,
where the FFs are achieved, are different from their physi-
cal values. For reference, the Goddard numerical simula-
tion predictsMf ’ 0:95M and âf 	 Jf=M2

f ’ 0:7 [38], and
Epn(3.5) predicts Mend � 0:967 and âend 	 Jend=M2

end �
0:796, so the two tuning parameters should be �M ’ 1:75%
and �J ’ 11%. In our search, e.g., forM � 30M�, �J tends
to be tuned to its lowest possible value and �t tends to take
its highest possible value, indicating that pushing the end
of the Epn(3.5) inspiral to a later time gives higher FFs.

Since the parameters �M and �J depend on the QNM
frequency and decay time, we show in Fig. 7 how!lmn and
�lmn vary as functions of af [43] for the three modes used
in the Epn(3.5) model. The frequencies !lmn of the three
modes are not really different, and grow monotonically
with increasing af. The decay times �lmn, although differ-
ent for the three modes, also grow monotonically with
increasing af. Thus, the huge loss of angular momentum
�J, or equivalently the small final BH spin required in the
Epn(3.5) model to achieve high FFs, indicates that low
ring-down frequencies and/or short decay times are needed
for this model to match the numerical merger and ring-
down waveforms.

In Fig. 8, we show Goddard NR and Epn(3.5) wave-
forms, as well as their frequency evolutions, for two equal-
mass binary systems with total masses 30M� and 100M�.
In the low-mass case, i.e., M � 30M�, since the inspiral
part contributes most of the SNR, the Epn(3.5) model fits
the frequency and phase evolution of the NR inspiral well,
with the drawback that at the joining point the EOB
frequency is substantially higher than that of the NR wave-
form. Then, in order to fit the early ring-down waveform
which has higher amplitude, the tuning parameters have to
take values in Table II such that the ring-down frequency is
small enough to get close to the NR frequency during early
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FIG. 7 (color online). Frequencies and decay times versus final
BH spin of the least damped QNM 220, and two overtones 221
and 222. The scales of the frequency and the decay time are
listed on the left and right sides of the plot, respectively.
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ring-down stage, as indicated in Fig. 8. The late ring-down
waveform does not contribute much to the SNR, and thus it
is not too surprising that waveform optimizing the FF does
not adequately represent this part of the NR waveform. In
the higher-mass case, M � 100M�, the Epn(3.5) model
gives a much better, though not perfect, match to the
merger and ring-down phases of the NR waveform, at the
expense of misrepresenting the early inspiral part. Again,
this is not unexpected considering that in this mass range
the merger and ring-down waveforms dominate the con-
tribution to the SNR.

Comparing the two cases discussed above, we can see
that with the current procedure of matching the inspiral and

ring-down waveforms in the EOB approach it is not pos-
sible to obtain a perfect match with the entire NR wave-
form. However, due to the limited detector sensitivity
bandwidth, the FFs are high enough for detection. The
large systematic error in estimating the physical parame-
ters will be overcome by improving the EOB matching
procedure during the inspiral part, and also by fixing the
�-parameters to physical values obtained by comparison
with numerical simulations.

Finally, in Figs. 9 and 10 we show the frequency-domain
amplitude and phase of the NR and EOB waveforms. Quite
interestingly, we notice that the inclusion of three ring-
down modes reproduce rather well the bump in the NR
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FIG. 8 (color online). Frequency evolution of waveforms from the Epn(3.5) model, and the NR simulations of the Goddard group. In
the left and right panels, we show frequency evolutions for two equal-mass binary systems with total mass 30M� and 100M�. In each
panel, there are two nearly monotonic curves and two oscillatory curves, where the former are frequency evolutions and the latter are
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FIG. 9 (color online). For M � 30M� equal-mass binary sys-
tems, we compare the phase and amplitude of the frequency-
domain waveforms from the SPAc models and NR simulation
(Goddard group). We also show the amplitude of the waveform
from the Epn(3.5) model.
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frequency-domain waveforms from the SPAc models and NR
simulation (Goddard group). We also show the amplitude of the
waveform from the Epn(3.5) model.
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frequency-domain amplitude. The EOB frequency-domain
phase also matches the NR one very well.

2. Stationary-phase-approximated template
performances

Figures 9 and 10 also show the frequency-domain phases
and amplitudes for the best-match SPAc�3:5� waveforms.
We see that at high frequency the NR and SPAc�3:5� phases
rise with different slopes.3 Based on this observation we
introduce two modified SPA models:

(i) SPAext
c �3:5�: SPAc PN model with unphysical values

of � and an appropriate cutoff frequency fcut. The
range of the symmetric mass ratio � �
m1m2=�m1 �m2�

2 is extended from its physical
range 0� 0:25 to the unphysical range 0� 1.

(ii) SPAY
c �4�: SPAc PN model with an ad hoc 4PN order

term in the phase, and an appropriate cutoff fre-
quency fcut. The phase of the SPA model is known
up to the 3.5PN order (see, e.g., Eq. (3.3) of
Ref. [32]):

  �f� � 2�ft0 ��0 �
�
4
�

3

128�v5

XN
k�0

�kvk;

(8)

where v � ��Mf�1=3. The PN coefficients �ks, k �
0; . . . ; N, (with N � 7 at 3.5PN order) are given by
Eqs. (3.4a), (3.4h) of Ref. [32]. We add the follow-
ing term at 4PN order:

 �8 � Y logv; (9)

where Y is a parameter which we fix by imposing
high matching performances with NR waveforms.
Note that a constant term in �8 only adds a 4PN
order term that is linear in f, which can be absorbed
into the 2�ft0 term. Thus, to obtain a nontrivial
effect, we need to introduce a logarithmic term. The
coefficient Y could in principle depend on �. We
determine Y by optimizing the FFs of equal and
unequal masses. We find that in the equal-mass case
Y does not depend significantly on the binary total
mass and is given by Y � 3923. The latter is also
close to the best-match value obtained for unequal
masses. More specifically, it is within 4.5% for
binary systems of mass ratio m2=m1 � 2. To further
explore the dependence of Y on �, we need a larger
sample of waveforms for unequal-mass binary sys-
tems.4 As seen in Table II, the two modified SPAc
template families have FF> 0:97 (except for one

0.9693) for all target waveforms, even though no
explicit merger or ring-down phases are included in
the waveform. The SPAY

c �4� model provides also a
really good estimation of parameters.

In Fig. 11 we plot Goddard NR and SPAY
c �4� waveforms

for two equal-mass binary systems with total masses M �
30M� and M � 100M�. We can clearly see tail-like ring-
down waveforms at the end of the SPAY

c �4� waveforms,
which result from the inverse Fourier transform of
frequency-domain waveforms that have been cut at f �
fcut. This well-known feature is called the Gibbs phenome-
non. At first glance, it may appear surprising that the often
inconvenient Gibbs phenomenon [40] can provide reason-
able ring-down waveforms in the time domain. However,
by looking at the spectra of these waveforms in the fre-
quency domain (see the amplitudes in Figs. 9 and 10), we
see that the SPAY

c �4� cuts off at the frequency fcut (ob-
tained from the optimized FF) where the NR spectra also
start to drop. Thus, even though the frequency-domain
SPAc waveforms are discontinuous, while the frequency-
domain NR waveforms are continuous (being combina-
tions of Lorentzians), the SPAc time-domain waveforms
contain tails with frequencies and decay rates similar to the
NR ring-down modes. We expect that the values of the
cutoff frequency fcut at which the FFs are maximized are
well determined by the highest frequency of the NR wave-
forms, i.e. by the frequency of the fundamental QNM. In
the next section, we shall show quantitative results to
confirm this guess.

3. Buonanno-Chen-Vallisneri template performances

In Table II we see that the BCV and BCVimpr families
give almost the same FFs for relatively low-mass binary
systems (M � 30, 40M�), while the BCVimpr family gives
slightly better FFs for higher-mass binary systems (M �
60, 100M�). For higher-mass binary systems, we find that
the � parameter takes negative values with reasonable
magnitude. This is because the amplitude of the NR wave-
forms in the frequency domain deviates from the f�7=6

power law only near the merger, which lasts for about one
GW cycle. This merger cycle is important only when the
total mass of the binary is high enough (see Fig. 4). [See
also Ref. [45] where similar tests have been done.]

The BCVand BCVimpr template families give FFs nearly

as high as those given by the SPAY
c �4� family, but the latter

has the advantage of being parametrized directly in terms
of the physical binary parameters, and it gives fairly small
systematic errors.

C. Frequency-domain templates for inspiral, merger,
and ring-down

In this section, we extend our comparisons between the
SPAc families and NR waveforms to higher total-mass
binary systems (40M� to 120M�) and to unequal-mass

3By looking in detail at the PN terms in the SPAc�3:5� phase,
we find that the difference in slope is largely due to the
logarithmic term at 2.5PN order.

4Note that the auxiliary phase introduced in Eq. (239) of
Ref. [44] also gives rise to a term in the SPA phase of the
kind f logv, except an order of magnitude smaller than Y.
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binary systems with mass ratios m2=m1 � 1:5 and 2. The
numerical simulations for unequal-mass binary systems
are from the Goddard group. They last for ’ 373M and
’ 430M, respectively, and the NR waveforms have ’ 4
cycles before the merger.

In Figs. 12 and 13 we show the FFs for SPAext
c �3:5� and

SPAY
c �4� templates, and the values of fcut that achieved

these FFs.5 For all mass combinations (except for M �
40M� for artificial reasons) the FFs of SPAc�3:5� templates
are higher than 0.96, and the FFs of SPAY

c �4� templates are
higher than 0.97, confirming that both families of templates
can be used to search for GWs from coalescing binary
systems with equal masses as large as 120M� and mass
ratios m2=m1 � 2 and 1.5. Figure 13 shows that all the fcut

values from our searches are within 10% larger than the
frequency of the fundamental QNM!220 of an equal-mass
binary. We have checked that if we fix fcut �
1:07!220=2�, the FFs drop by less than 1%.

In Fig. 14, we show the same information as in Fig. 7,
except that here we draw !lnm and �lnm as functions of the
mass ratio � of a nonspinning binary. We compute the spin
of the final BH in units of the mass of the final BH using the
quadratic fit given by Eq. (3.17a) of Ref. [46]:

 

af
Mf
’ 3:352�� 2:461�2: (10)

As Fig. 14 shows, !220 does not change much, confirming
the insensitivity of the fcut on �.

However, in real searches we might request that the
template family have some deviations from the waveforms
predicted by NR. For example, a conservative template
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FIG. 11 (color online). Binary coalescence waveforms from the SPAY
c �4� model, and the NR simulations of the Goddard group. In

the left and right panels we show waveforms for two equal-mass binary systems with total mass 30M� and 100M�. The solid lines
show the waveforms from the NR simulation, and the dashed lines give the best-matching waveforms from the SPAY

c �4� model.
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5Note that because of the short NR waveforms for unequal-
mass binary systems, we need to search over the starting fre-
quency of templates with a coarse grid, and this causes some
oscillations in our results. The oscillations are artificial and will
be smoothed out in real searches. For instance, the drop of FFs at
40M� for unequal-mass binary systems happens because the NR
waveforms are too short and begin right in the most sensitive
band of LIGO.
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bank might cover a region of fcut ranging from the
Schwarzschild innermost stable circular orbit (ISCO) fre-
quency, or the innermost circular orbit (ICO) frequency
determined by the 3PN conservative dynamics, up to a
value slightly higher than the frequency of the fundamental
QNM. The number of templates required to cover the fcut

dimension depends on the binary masses. We find that to
cover the fcut dimension from the 3PN ICO frequency to
the fundamental QNM frequency with an SPAext

c �3:5� tem-
plate bank, imposing a mismatch <0:03 between neigh-
boring templates, we need only two (� 20) templates if
M � 30M� (M � 100M�) and � � 0:25. In the latter
case, the match between templates is more sensitive to
fcut since most signal power comes from the last two
cycles, sweeping through a large frequency range, right
in LIGO’s most sensitive band. The number of templates
directly affects the computational power needed, and the
false-alarm rate. Further investigations are needed in order
to determine the most efficient way to search over the fcut

dimension.
For the purpose of parameter estimation, Fig. 15 shows

that the SPAY
c �4� templates are rather faithful, giving rea-

sonable estimates of the chirp mass: systematic errors less
than about 8% in absolute value for binary systems with
M � 40M� up to M � 120M�. A difference of ’ 8% may
seem large, but the SPAY

c �4� templates are not exactly
physical, and more importantly, for large-mass binary sys-
tems, most of the information on the chirp mass comes only
from the last cycle of inspiral. We notice that when the total
binary mass is higher than 120M�, the FFs are relatively
high (from 0.93 to 0.97), and the estimates of the chirp
mass are still good (within 10%). However, for binary
systems with such high total masses, the ring-down wave-
form dominates the SNR, and the SPAY

c �4� template family
becomes purely phenomenological. A direct ring-down
search might be more efficient.

All results for unequal-mass binary systems are obtained
using the C22 component of �4 [10], which is the leading
order quadrupole term contributing to the GW radiation.
For unequal-mass binary systems, higher-order multipoles
can also be important, and we need to test the performance
of the template family directly using �4. For �4 extracted
in the direction perpendicular to the binary orbit, we veri-
fied that higher-order multipoles do not appreciably change
the FFs.

A natural way of improving the SPAc models would be
to replace the discontinuous frequency cut with a linear
combination of Lorentzians. We show here a first attempt
at doing so. The Lorentzian L is obtained as a Fourier
transform of a damped sinusoid, e.g., for the fundamental
QNM we have
 Z 1
�1

ei2�ft�e�i!220t�jtj=�220�dt �
2=�220

1=�2
220 � �2�f�!220�

2

	 2L�220�f� (11)

and the (inverse) Fourier transform of Eq. (7) reads

 

X
n

~hQNM�f� � An�L
�
22n�f�e

i�n �L�22n�f�e
�i�n�: (12)

Restricting to positive frequencies we only keep the
L�22n�f� terms. In the frequency domain we attach the
fundamental mode continuously to the SPAY

c �4�waveform
at the ring-down frequency !220 by tuning the amplitude
and phase A0 and �0. We denote this model SPAL1 (note
that we also need to introduce the mass parameter of the
final BH as a scale for !220 and �220). Similarly, we define
the SPAL3 model where all three QNMs are combined.
With the three amplitudes and phases as parameters, this
model is similar to the spin-BCV template family [35] and
we can optimize automatically over the 6 parameters. As
an example, we compute the FFs between the SPAL1�4� or
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SPAL3�4� and the NR waveform of an equal mass M �
100M� binary. Using the LIGO PSD, we obtain 0.9703 and
0.9817, respectively. Those FFs are comparable to the FFs
obtained with the simpler SPAc model, shown in Fig. 12. It
is known that adding more parameters increases the FFs
but also increases the false-alarm probability. By further
investigation and comparison with NR waveforms our goal
is to express the phase and amplitude parameters of the
Lorentzian in terms of the physical binary parameters,
relating them to the amplitudes and phases of the QNMs
and the physics of the merger. Those parameters are some-
what similar to the �-parameters introduced above for the
EOB model when modeling the merger and ring-down
phases.

We wish to emphasize that the results we presented in
this section are preliminary, in the sense that we considered
only a few mass combinations and the NR waveforms of
unequal-mass binary systems are quite short. Nevertheless,
these results are interesting enough to propose a systematic
study of the efficiency of these template families through
Monte Carlo simulations in real data.

V. CONCLUSIONS

In this paper we compared NR and analytic waveforms
emitted by nonspinning binary systems, trying to under-
stand the performance of PN-template families developed
during the last ten years and currently used for the search
for GWs with ground-based detectors, suggesting possible
improvements.

We first computed FF0s (maximized only on time and
phase) between PN-template families which best-match
NR waveforms [10,11], i.e., Tpn(3), Tpn(3.5), and
Epn(3.5). We showed how the drop in FF0s is not simply
determined by the accumulated phase difference between
waveforms, but also depends on the detector’s PSD and the
binary mass. Thus, waveforms which differ even by one
GW cycle can have FF0 � 0:97, depending on the binary
masses (see Fig. 1).

We then showed that the NR waveforms from the high-
resolution and medium-resolution simulations of the
Goddard group are close to each other (FF0 around 0.99,
see Fig. 2). We also estimated that the FF0 between high-
resolution and exact NR waveforms is even higher, based
on the numerical convergence rates of the Goddard
simulations.

Second, by stitching PN waveforms to NR waveforms
we built hybrid waveforms, and computed FF0s (maxi-
mized only on time and phase) between hybrid waveforms
constructed with different PN models, notably Tpn(3),
Tpn(3.5), and Epn(3.5) models. We found that for
LIGO’s detectors and equal-mass binary systems with total
mass M> 30M�, the last 11 GW cycles plus merger and
ring-down phases contribute >90% of the signal power.
This information can be used to set the length of NR
simulations.

The FF0s between hybrid waveforms are summarized in
Figs. 5 and 6. We found that for LIGO’s detectors and
binary systems with total mass higher than 10M�, the
current NR simulations for equal-mass binary systems
are long enough to reduce the differences between hybrid
waveforms built with the PN models Tpn(3), Tpn(3.5), and
Epn(3.5) to the level of <3% mismatch. For GW detectors
with broader bandwidth like advanced LIGO and VIRGO,
longer NR simulations will be needed if the total binary
masses M< 10M�. With the current available length of
numerical simulations, it is hard to estimate from the FFs
between hybrid waveforms how long the simulations
should be. Nevertheless, from our study of the distribution
of signal power, we estimate that for M< 10M� binary
systems, at least �80 NR inspiraling cycles before merger
are needed.

Finally, we evaluated FFs (maximized on binary masses,
initial time, and phase) between full NR (or hybrid wave-
forms, depending on the total binary mass) and several
time and frequency-domain PN-template families. For
time-domain PN templates and binary masses 10M� <
M< 20M�, for which the merger/ring-down phases do
not contribute significantly to the total detector signal
power, we confirm results obtained in Refs. [10,11], nota-
bly that Tpn(3.5) and Epn(3.5) models have high FFs with
good parameter estimation, i.e., they are faithful. We found
that the frequency-domain SPA family has high FFs only
for binary systems with M< 20M�, for which most of the
signal power comes from the early stages of inspiral.
Furthermore, we found that it is possible to improve the
SPA family by either extending it to unphysical regions of
the parameter space (as done with BCV templates) or by
introducing an ad hoc 4PN-order constant coefficient in the
phase. Both modified SPA families achieve high FFs for
high-mass binary systems with total masses 30M� <M<
120M�.

For time-domain PN templates and binary masses M *

30M�, we found that if a superposition of ring-down
modes is attached to the inspiral waveform, as naturally
done in the EOB model, the FFs can increase from�0:8 to
>0:9. We tested the current Epn(3.5) template family
obtained by attaching to the inspiral waveform three
QNMs [10] around the EOB light-ring. In order to properly
take into account the energy and angular-momentum re-
leased during the merger/ring-down phases we introduced
[10] two physical parameters, �M and �J, whose depen-
dence on the binary masses and spins will be determined
by future comparisons between EOB and NR waveforms
computed for different mass ratios and spins. We found
high FFs * 0:96. Because of small differences between
EOB and NR waveforms during the final cycles of the
evolution, the best matches are reached at the cost of large
systematic error in the merger—ring-down binary parame-
ters. Thus, the Epn(3.5) template family can be used for
detection, but for parameter estimation it needs to be
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improved when matching to the ring-down, and also during
the inspiral phase. The refinements can be achieved (i) by
introducing deviations from circular motion, (ii) adding
higher-order PN terms in the EOB dynamics, (iii) using in
the EOB radiation-reaction equations a GW energy flux
closer than the NR flux, (iv) designing a better match to
ring-down modes, etc. The goal would be to achieve de-
phasing between EOB and NR waveforms of less than a
few percent in the comparable-mass case, as obtained in
Ref. [47] in the extreme mass-ratio limit. Indeed, with
more accurate numerical simulations, especially those us-
ing spectral methods [48], it will be possible to improve the
inspiraling templates by introducing higher-order PN terms
in the analytic waveforms computed by direct comparison
with NR waveforms.

Frequency-domain PN templates with an appropriate
cutoff frequency fcut provide high FFs (> 0:97), even for
large masses. This is due to oscillating tails (Gibbs phe-
nomenon) produced when cutting the signal in the fre-
quency domain. We tested the SPAext

c �3:5� and the
SPAY

c �4� template families for total masses up to 120M�,
and three mass ratios m2=m1 � 1, 1.5, and 2. We always
get FFs >0:96, even when using a fixed cutoff frequency,
fcut � 1:07!220=2�. Because of its high efficiency, faith-
fulness, i.e., low systematic error in parameter estimation,
and simple implementation, the SPAY

c �4� template family
(or variants of it which include Lorentzians) is, together
with the EOB model, a good candidate for searching
coherently for GWs from binary systems with total masses
up to 120M�.

In Fig. 16, we show the sky averaged SNRs of a single
LIGO and enhanced or mid LIGO [49] detector, for an
equal-mass binary at 100 Mpc. The SNR peaks at the total

binary mass M ’ 150M� and shows the importance of
pushing current searches for coalescing binary systems to
M> 100M�. In the mass range 30M� <M< 120M�, the
SNR drops only slightly if we filter the GW signal with
SPAext

c �3:5� or Epn(3.5) instead of using NR waveforms.
The difference between Epn(3.5) and SPAext

c �3:5� is almost
indistinguishable. When M> 120M�, although the
SPAext

c �3:5� and Epn(3.5) template families give fairly
good SNRs, it is maybe not a good choice to use them as
the number of cycles reduces to a few. The key problem in
detecting such GWs is how to veto triggers from non-
Gaussian, nonstationary noise, instead of matching the
effectively short signal. This is a general problem in
searches for short signals in ground-based detectors.
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APPENDIX: COMMENT ON WAVEFORMS
OBTAINED FROM THE ENERGY-BALANCE

EQUATION

In adiabatic PN models, like the Tpn model used in this
paper, waveforms are computed under the assumption that
the binary evolves through an adiabatic sequence of qua-
sicircular orbits. More specifically, one sets _r � 0 and
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ted and dashed curves are calculated from the unexpanded and
expanded energy-balance equations. The continuous curve refers
to the really long Goddard NR simulation.

DATA-ANALYSIS DRIVEN COMPARISON OF ANALYTIC . . . PHYSICAL REVIEW D 77, 024014 (2008)

024014-17



computes the orbital frequency ! from the energy-balance
equation dE�!�=dt � F �!�, where E�!� is the total en-
ergy of the binary system and F �!� is the GW energy flux.
Both E�!� and F �!� are computed for circular orbits and
expressed as a Taylor expansion in !. The adiabatic evo-
lution ends in principle at the innermost circular orbit
(ICO) [34], or minimum energy circular orbit (MECO)
[35], where �dE=d!� � 0.

By rewriting the energy-balance equation, !�t� can be
integrated directly as

 _!�t� �
F �!�

dE�!�=d!
: (A1)

The right-hand side of Eq. (A1) can be expressed as an
expansion in powers of !. The expanded version is widely
used in generating adiabatic PN waveforms [28,30,35,50],
it is used to generate the so-called Tpn template family. It
turns out that Tpn(3) and Tpn(3.5) are quite close to the NR

inspiraling waveforms [10,11]. We wonder whether using
the energy balance in the form of Eq. (A1), i.e., without
expanding it, might give PN waveforms closer to or farther
from NR waveforms. In principle the adiabatic sequence of
circular orbits described by Eq. (A1) ends at the ICO, so
the adiabatic model should work better until the ICO and
start deviating (with ! going to infinity) from the exact
result beyond it.

In Fig. 17 we show the NR orbital frequency !�t�
together with the PN orbital frequency obtained by solving
the unexpanded and expanded form of the energy-balance
equation. The frequency evolution in these two cases is
rather different, with the orbital-frequency computed from
the expanded energy-balance equation agreeing much bet-
ter with the NR one. When many, extremely accurate, GW
cycles from NR will be available, it will be worthwhile to
check whether this result is still true.
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62, 084011 (2000).

[17] T. Damour, Phys. Rev. D 64, 124013 (2001).
[18] A. Buonanno, Y. Chen, and T. Damour, Phys. Rev. D 74,

104005 (2006).
[19] T. Damour, B. R. Iyer, and B. S. Sathyaprakash, Phys. Rev.

D 57, 885 (1998).
[20] T. Baumgarte, P. Brady, J. D. E. Creighton, L. Lehner,

F. Pretorius, and R. DeVoe, arXiv:gr-qc/0612100.
[21] J. W. York, Jr., Phys. Rev. Lett. 82, 1350 (1999).
[22] E. Gourgoulhon, P. Grandclément, and S. Bonazzola,

Phys. Rev. D 65, 044020 (2002).
[23] P. Grandclément, E. Gourgoulhon, and S. Bonazzola,

Phys. Rev. D 65, 044021 (2002).
[24] H. P. Pfeiffer, L. E. Kidder, M. S. Scheel, and S. A.

Teukolsky, Comput. Phys. Commun. 152, 253 (2003).
[25] G. B. Cook and H. P. Pfeiffer, Phys. Rev. D 70, 104016

(2004); M. Caudill, G. B. Cook, J. D. Grigsby, and H.
Pfeiffer, Phys. Rev. D 74, 064011 (2006).
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