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In addition to the boosted static solution there are two other classes of stationary stringlike solutions of
the vacuum Einstein equation in (4� 1) dimensions. Each class is characterized by three parameters of
mass, tension, and momentum flow along the fifth coordinate. We analyze the metric properties of one of
the two classes, which was previously assumed to be naked singular, and show that the solution spectrum
contains black string and wormhole in addition to the known naked singularity as the momentum flow to
mass ratio increases. Interestingly, there does not exist new zero momentum solution in these cases.
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I. INTRODUCTION

After the discovery of the Schwarzschild black hole
solution [1] in general relativity, there has been an enor-
mous increase of interest in black objects such as black
hole [2,3], black string, and black p-brane [4]. A close
connection appears between the black hole and string
theory after the discovery that the excited string state can
be regarded as an extremal black string solution of general
relativity [5]. In the presence of the extremal black string, it
would be interesting to ask the presence of its nonextremal
solution in connection with the excited string state.
However, Schwarzschild black string solution in �4�
1�-dimensional spacetime is unstable with respect to linear
perturbation of metric due to the Gregory-Laflamme insta-
bility [6–10]. Therefore, we cannot use the Schwarzschild
black string as a kind of ‘‘stable’’ outcome. In this sense, it
is interesting to study the full geometrical analysis of the
stringlike vacuum solution of the Einstein equation.

The static stringlike solution in �4� 1� dimensions has
been studied extensively [11–13]. It was shown that the
spherically symmetric solution of the vacuum Einstein
equation is characterized by two parameters, the mass M
and the tension � along the direction of the fifth coordinate.
The metric of the static spherically symmetric vacuum
black string solution in �4� 1� dimensions in Ref. [13] is
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The parameters K and � are related to the mass M and
tension ��� aM� by
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where G5 is the five-dimensional gravitational constant.
The double Wick rotation t! iz, z! it of Eq. (1) leads to
a new solution with �! ��. Only the solution with � �
0 is invariant under the discrete transformation. Not all
physical properties of the solution are yet understood and
are under investigation [14]. Solutions with � � 1=

���
3
p

and
� � �1=

���
3
p

denote the Schwarzschild black string and the
Kaluza-Klein bubble solution [15], respectively. Except for
the two cases, the solution is naked singular. The area of
the naked singularity vanishes, which suggests that the
solution will be unstable under the metric perturbation.
Since there is no known stable stringlike vacuum solution,
it raises a question: ‘‘What is the final state of the gravita-
tional collapse of a neutral cylindrical object in �4� 1�
dimensions?’’

On the other hand, the charged black string is known to
be stable in the extremal limit [10,16]. Therefore, the
conserved quantities such as the angular momentum and
the electric charge tend to stabilize the black string system
in their extremal limit. In the case of linear momentum P
along the string direction usually is known not to affect the
stability of the stringlike solution [17]. However, if there is
a solution in which the conserved linear momentum is not
directly linked to the boost symmetry (there exists such a
solution e.g. in Ref. [18]), the solution may be stable under
the perturbation of the metric in some cases. Especially,
Chodos and Detweiler classified the stationary stringlike
vacuum solution with spherical symmetry in �4� 1� di-
mensions into three classes, the usual boosted solution
(class I) of the static one (1), extraordinary one (class II),
and wormhole (class III). The class III wormhole solution
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is well analyzed [18,19] and generalized [20]; however, the
class II is simply mentioned to be naked singular. We study
the stationary stringlike solution of class II and investigate
the properties of the solution. We show that the solution
describes a black string in a wide range of parameters
contrary to the static case and is entropically stable.

In Sec. II, starting from the usual boosted solution
(class I), we rederive class II and class III then analyze
class II in detail. The conserved quantities are written in
terms of metric parameters and it is shown that the mo-
mentum can vanish only when the tension to mass ration is
one. In Sec. III, we observe the Kretschmann invariant and
the boost symmetry of class II and show that the mass to
tension ratio can be fixed to one with the boost symmetry.
In Sec. IV, we study the causal structure of the solution to
show that the solution is a black string for certain parame-
ter range. We investigate their geometric properties in
Sec. V and summarize the results in Sec. VI. At the end
of the article, we add two appendices which deal with the
boost symmetry and the causal structure.

II. DEVELOPMENT OF NEW CLASS OF
SOLUTIONS

In this section, we construct three classes of stationary
solutions, characterized by three parameter families, by
generalizing the static solution (1). One of the classes is
that of the boosted static solution; however, the other two
are not directly related to the static one. Even though the
original static solution is naked singular, its generalizations
contain solutions free from the naked singularity.

A simplest stationary solution can be built by boosting
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the static one (1) with the velocity v � tanh� along the
fifth z-coordinate. The boosted metric, dropping the primes
after the substitution of the coordinates transformation (3)
to Eq. (1), is
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For simplicity, we use the notation

 D��� �
1� K=�
1� K=�

; (5)

and the boost is parameterized by the coefficients c �
cosh2� and s � sinh2�. The parameters K, �, and � are
related with the physical quantities M, �, and P [21].

An interesting observation here is that the metric (4) is
still satisfied with the Einstein equation for complex num-
ber coefficients c and s with

 c� s � 1: (6)

With this observation, we may find two additional sets of
real metric solutions by appropriately choosing complex
parameters c, s, �, and K. We call the two ‘‘class II’’ and
‘‘class III’’:
 

class I: c � cosh2�; s � sinh2�; �; �; K 2 R;

class II: c � 1
2� iq; s � �1

2� iq; � � �i ��;

j ��j � 1; q; ��;K 2 R;

class III: c � 1
2� iq; s � �1

2� iq; � � �i ��;

j ��j � 1; K � iQ; q; ��;Q 2 R: (7)

These solutions were, in fact, noticed by Chodos and
Detweiler [18]. The class III was identified as a regular
wormhole solution [18] and is generalized to n� p di-
mensions [19,20].

We concentrate on the class II in this paper. Even though
this class was briefly mentioned to be naked singular [18],
we find that there is a nontrivial region of parameters which
present solutions free from the naked singularity. After
setting

 tan� �
�����������������

1� ��2
p ;

the metric takes the form
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The double Wick rotation t! iz and z! it is equivalent
to the parameter change q! �q. The space inversion z!
�z corresponds to�! ��with q! �q. The coordinate
change �! �� is equivalent to the parameter change
K ! �K. The metric is invariant under the change of
parameters K ! �K, cos�! � cos� � cos�����,
and q! �q. This symmetry allows one to restrict the
range of K being a nonnegative number; therefore, we
restrict our attentions to the metric with � � 0.
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Asymptotically to O�K=��, the metric behaves as

 gtt ’ �1�
�

1���
3
p

cos�
� 2q tan�

�
4K
�
;

gzz ’ 1�
�

1���
3
p

sec�
� 2q tan�

�
4K
�
;

gtz ’ �1� 4q2�1=2 tan�
4K
�
;

G ’ 1�
8���

3
p

cos�

K
�
:

(9)

Comparing this with the asymptotic form of metric around
a stationary matter source given in Ref. [21],
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we determine the mass, tension, and momentum flow in
terms of the parameters in the metric:
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Note that for � � 0, the momentum flow P cannot vanish.

The tension to mass ratio, a �
��
3
p
�2q sin���

3
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, depends only on

q sin�. The � � 0 solution corresponds to the static solu-
tion (1) with a � 1. For q � 0, it also gives a � 1.
However, it does not correspond to the static solution if
� � 0. If we require the positiveness of the mass M � 0
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Since the asymptotic parameters are real numbers, the
range of momentum to mass ratio P=M is restricted to be
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Note that the difference between the upper bound and the
lower bound of the inequality (13) is positive definite
except a � �1, in which case P � M.

The transformation �! �� with q! �q is equiva-
lent to P! �P. This parameter transformation is equiva-
lent to the usual symmetry transformation z! �z. In
Appendix A, we show that the parameter q is an
observer-dependent quantity, which varies with the motion
of an asymptotic observer. For an appropriate observer, we
may fix the value q to zero with a � 1. As a result, K cos�
should be a nonnegative quantity forM to be a nonnegative
number in Eq. (11). This condition and K � 0 restrict the
range of the parameter � to

 �
�
2
� � �

�
2
: (14)

The �! �=2 limit should be taken carefully, otherwise
the mass, tension, and momentum flow would be ill
defined.

III. METRIC FROM THE POINT OF VIEW OF
COMOVING OBSERVER

In this section, we analyze the geometry of the new
stationary solution with metric (8). We study the
Kretschmann invariant, the coordinates (boost) transfor-
mations, and then, show that the parameter q can be fixed
to zero without loss of generality.

Note that the coordinates (8) are ill defined at � � K
surface. Therefore, we should inspect the singular property
of the surface by observing the Kretschmann invariant and
the geodesic motions. The Kretschmann invariant of the
metric (8) is given by
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At cos� � 2=3, the square bracket can be factorized to be
�9��=K � 1�2��=K � 1�2. The Kretschmann invariant
vanishes at � � K in this case. For cos�> 1=

���
3
p

and
cos� � 2=3, the surface � � K is a curvature singularity
since the Kretschmann invariant diverges there. On the
other hand, for cos� � 1=

���
3
p

the divergence of the
Kretschmann invariant at � � K surface disappears be-
cause the exponent of ��� K� becomes a nonnegative
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number. Therefore, for cos� � 1=
���
3
p

or cos� � 2=3, the
curvature singularity at � � K disappears.

Note also that the curvature square is independent of q,
which suggests the possibility q being a gauge artifact. To
check this, we consider the boost transform along the
z-coordinates in Appendix A and show that q can be
nullified by the motion of an asymptotic observer.

The stationary metric (8) with q � 0 is not static for
� � 0. This implies that the momentum flow P is not
driven by the boost transform. Instead, it is related to the
parameter �. Note also that setting �! �� is equivalent
to the coordinate change z!�z accompanied by q!
�q. For q � 0, therefore, the sign of tan� determines the
direction of momentum flow P. We may set q � 0 and fix
the tension to mass ratio a to one. In this sense, the boost
transformation is related to the mass to tension ratio rather
than the momentum along the extra dimension, which is a
unique feature of the present class II compared to the
class I.

For simplicity, later in this paper, we set q � 0 without
loss of generality. The metric with nonzero q can be
obtained by boosting the q � 0 solution. In addition,
from now on, we consider only the case �> 0 since the
metric with negative � can be obtained by flipping the
z-coordinate. The metric with q � 0 now becomes
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where the argument � of the cosine and sine functions
stands for

 ���� � tan� logD���; (17)

which monotonically increases from zero to infinity as �
decreases from infinity to K. The relation (17) between �
and � can be inverted for nonzero �:

 � � coth
�

�

2 tan�

�
K: (18)

The timelike 1-form field !0 � D��1=
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cos���sin�dt� cos�dz� lives in a Minkowski-
like metric. The 1-forms rotate as � increases with respect
to the coordinates 1-forms �dt; dz�.

As in Fig. 1, the metric component gtt � �gzz changes
sign in surfaces given by

 �n � coth�	n�K; n � 0; 1; 2;    ;
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The sign of gtt is negative definite only in the region,

 R� � fEj�>�0; or �2n <�<�2n�1; n� 1;2;   g;

(20)

and is positive definite in the region

 R� � fEj�2n�1 < �< �2n; n � 0; 1; 2;   g; (21)

where E � �t; �; 
;�; z� denotes an event in this space-
time. Therefore, at an event E 2R�, the coordinate t
becomes spacelike and z becomes timelike. The asymp-
totic region with � � �0 is in R�. The repeated sign
change of gtt is also supported by the rotational property
of the 1-form basis �!0; !4�. Note that indefinitely many
�n are accumulated around � � K. This makes the analy-
sis of the properties of the � � K surface not easy at the
present form of the metric. This defect will be resolved in
the next section.

The component jgtzj does not vanish at the surface � �
�n where gtt � 0 � gzz. We investigate the properties of
the surface by series expanding the metric around � � �n
and analyzing the radial null geodesics around there.
Ignoring the angular coordinates, the metric around � �
�n takes the form

 ds2 ’ 2���nD��2=
��
3
p

cos����n�dtdz�G��n�d�2: (22)

For even (odd) n, the direction with increasing t� z (t� z)
becomes a timelike direction. The metric governing the
motion along this timelike direction can be obtained by
replacing ���ndtdz! �d�t2 � d�z2. After the rescalings���

2
p
D��1=

��
3
p

cos����n��t! �t and
�������������
G��n�

p
�! �, we get a

Minkowski-like metric in the space of ��t; ��. Therefore,
the geodesic on this two-dimensional space ��t; �� is a
straight line which is free to move along the radial direc-
tion. The only surface where this transformation is ill
defined is the surface � � K since the coordinates trans-
formation can be singular. Therefore, the surface � � �n
has no physical significance.

1.5 2 2.5 3 3.5

-0.1

-0.05

0.05

0.1

0.15
gzz

ρ
K

FIG. 1. gzz � �gtt as a function of �. Here we use tan� � 1
and K � 1. Indefinitely many roots of gtt � 0 are accumulated
near � � K.
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The unique feature of the present metric, which says that
the boost symmetry cannot be used to remove the momen-
tum flow P, can be understood as follows: In an event E 2
R�, the roles of mass and momentum are swapped. The
mass M and the momentum flow P, which is related to the
translational invariance of t and z, exchange their roles
since the Killing coordinates t and z exchange their roles as
a time and a space. The boost along the z direction may
change the position of the surface � � �n but cannot alter
the fact that there exists such ‘‘role changing surface.’’ In
this sense, as far as we consider the solution class II, the
boost cannot make the momentum vanish.

IV. CAUSAL STRUCTURE

In this section, we investigate the causal structure of the
stationary metric (16) by studying spatial distance to � �

K surface and radial null geodesic motions. Since gtt
indefinitely oscillates as �! K, the metric itself (16) is
inconvenient to analyze its causal structure. So, we intro-
duce a series of coordinates transformations which changes
the metric into a better form. Then, we check the null
geodesic motion of the metric to understand the causal
structure. As a result, we show that the metric describes a
wormhole, a black string, and a naked singularity for
parameter ranges cos� � 1=

���
3
p

, 1=
���
3
p

< cos� �
���
3
p
=2,

and cos�>
���
3
p
=2, respectively.

A. Spatial distance to � � K

It is interesting to obtain the spatial distance from � �
K � � to ��>K � �� for constant t, z, and angular coor-
dinates, where we assume �� K being a small number.
The spatial distance is
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As �! 0, the distance l diverges for cos� � 1=
���
3
p

and
takes a nonvanishing finite value for cos�> 1=

���
3
p

. The
behavior of the spatial distance for cos� � 1=

���
3
p

shows an
interesting difference from that for the usual black hole
whose event horizon is in a finite distance from outside
observers. This difference is important to understanding
the nature of the � � K surface.

B. Geodesics motions around � � K

Since the coordinate �t; z� is inappropriate for analyzing
the geometry near � � K, we introduce a coordinates
transformation, which makes the causal structure of the
metric become apparent. The coordinates rotation of �t; z�,
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leads the metric (16) into the form
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The function B������, which governs the near-horizon
behavior of the geodesics motion, is
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As in Fig. 2, for cos�<
���
3
p
=2 the function B has a nonzero

minimum at � � �c,
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For cos�>
���
3
p
=2, B������ monotonically decreases to

zero as �! 1��! K�. For cos� �
���
3
p
=2, B������

monotonically decreases to a finite value 4
���
6
p
K as ��!

K�. This behavior of B, in fact, governs the geodesic
motion at �� K.

0.5 1 1.5 2 2.5 3

5

10

15

20

25

30B (   )

cos = 3 2

cos  < 3 2

cos > 3 2

µ

µ

µ

FIG. 2 (color online). B���. As �! K, the behavior of B���
is divided into three classes. It diverges ( cos�<

���
3
p
=2), goes to

zero ( cos�>
���
3
p
=2), or takes a finite value ( cos� �

���
3
p
=2). On

the other hand, the limiting behavior as �! 1 are the same.
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The metric (25) is dependent on t0 and z0 explicitly.
Therefore, the coordinates rotation (24) hides the beautiful
symmetry of the translational invariances along the fifth
coordinate and time. Notably, the lines t0 � �z0 (�,
, �
being fixed) describe lightlike geodesics. If one views only
the � � constant surface, the spacetime is just described
by the space R2 � S2 where R2 has the Minkowski
signature.

In addition, the spacelike vector � @@��
a
�tz�, where the index

�tz� implies the vector is defined in the unprimed coordi-
nates, is related to the vectors in the primed coordinates by

 

�
@
@�

�
a

�tz�
�

�
@
@�

�
a

�t0z0�
�
d�

d�

�
t0
@
@z0
� z0

@
@t0

�
a
: (28)

Even though the vector � @@��
a
�tz� is spacelike always, its

primed coordinates form � @@��
a
�t0z0� can be timelike for a

certain region of spacetime satisfying z02 > t02 � 2B2.
The metric component g0�� is positive for z02 < t02 �

2B2��� and is negative for z02 > t02 � 2B2���, where the
surface z02 � t02 � 2B2 is denoted by a (red) thick hyper-
bola in Fig. 3. In the region of spacetime satisfying z02 >
t02 � 2B2��� the vector � @@��

� becomes timelike and there is
a frame dragging along the z0 coordinate due to the pres-
ence of the dz0d� term. Therefore, we should include the
dynamics along the z0 coordinate to analyze the geometry
there and the analysis of the geodesic equation with this
metric is not easy. In this sense, this metric (25) is not
appropriate for understanding the full structure of the
spacetime since the motion along z0 coordinates are mixed
up with that of along �. For the region z02 < t02 � 2B2���,

both of the vectors � @@z0�
� and � @@��

� are spacelike. As �!
K, the entire spacetime satisfies this inequality z02 < t02 �
2B2��� for cos�<

���
3
p
=2 since B2�K� diverges.

In the present section, we discuss the geometry only in
the region satisfying t0 � jz0j (region F in Fig. 3), in which
the geodesic motion is transparent. We present the analysis
for other regions in Appendix B. To visualize the near
horizon geometry in F , we perform coordinates transform,

 y � t0z0; � � �t02 � z02�=2; (29)

and get the transformed metric
 

ds2 � D��2=
��
3
p

cos��
�
�d�2 � �dy� 2

����������������
�2 � y2

p
d��2

2
����������������
�2 � y2

p
� 2B2���d�2

�
�G���d�2

�2�; (30)

where t02 � z02 � 2
����������������
�2 � y2

p
. Note that this metric is ap-

plicable only on the one quarter of the spacetime satisfying
t0 > jz0j, which boundary will be given by � � jyj. The
eventual coordinates transformation from �t; z;�� to
��; y;��, using complex parametrization, z� it � rei	,
is given by

 � �
r2

2
; y �

r2

2
sin2�	���; (31)

where the region F is mapped to

 F �

�
E � �t; �; 
;�; z�j���� �

�
4
<	<���� �

3�
4

�
:

In the asymptotic region, � � 0. Therefore, the region F
corresponds to the region t � jzj asymptotically. The re-
gion rotates as � decreases keeping the timelikeness with
respect to the origin �t; z� � �0; 0�. For the new metric (30),
the coordinate � is a time and the coordinate y is a space.

Let us study the near horizon geometry by investigating
the geodesic motion of the metric (30). To study the
geodesic motion in the radial � coordinate, we need the
formula

 _� � �
K

2 tan�
�2

K2

�
1�

K2

�2

�
_�; (32)

where _� implies the derivative of � with respect to �. From
Eq. (30), we obtain the radial null geodesics equation,

 

�
_y� 2

����������������
�2 � y2

q
_�
�

2
� 4

����������������
�2 � y2

q
B2��� _�2 � 1: (33)

The geodesic Eq. (33) restricts the range of _� to

 �
1

2��2 � y2�1=4B
� _� �

1

2��2 � y2�1=4B
; (34)

where the equalities hold when _y � 2
����������������
�2 � y2

p
_�. The

limiting behavior of the function lim�!1B��� is charac-
terized by the sign of cos��

���
3
p
=2. For cos�>

���
3
p
=2, B

vanishes and the maximum value of _� in the limit diverges.
For cos�<

���
3
p
=2, B diverges and the velocity _� in the

limit vanishes.

FIG. 3 (color online). The thick (red) curve denotes the z02 �
t02 � 2B2��� surface. The thick (blue) orthogonal lines denote
lightcones bifurcating from the origin. For a given radial coor-
dinate �, the axes �t0; z0� rotates with the angle � with respect to
�t; z�. The lightcone is designed with respect to these primed
coordinates. We are mainly interested in the regions inside the
red hyperbola containing the origin �t0; z0� � �0; 0� in the present
section.
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This limiting behavior of the velocity, in fact, determines
the nature of the surface � � K. To show this, we rewrite
Eq. (34) in terms of the velocity _� and then integrate the
equation to get the escaping time from the � � K surface.
Using Eq. (32), the velocity _� is restricted to

 �
�1� K

��
�1��

��
3
p
= cos���1� K

��
�1��

��
3
p
= cos�����

2
p
��2 � y2�1=4

� _�

�
�1� K

��
�1��

��
3
p
= cos���1� K

��
�1��

��
3
p
= cos�����

2
p
��2 � y2�1=4

;

The maximal velocity of radial null geodesics around ��
K is determined by �

���
3
p
= cos�� 1�, the exponent of �1�

K=��. Since this exponent is positive definite, the allowed
velocity, _�, is restricted to zero at � � K, which is a typical
feature of the horizon.

We next integrate out the geodesic equation to calculate
how much time it takes a light to escape from � � K � �
to �. For radially outgoing geodesics, the maximal radial

velocity is achieved for _y � 2
����������������
�2 � y2

p
_�. In this case, _� /

��1=2��� K��
��
3
p
= cos���1. Integrating the equation, we get

the escaping time

 �� / ��� K�4��2
��
3
p
= cos�� for cos� �

���
3
p

2
; (35)

and for cos� �
��
3
p

2 , we have

 �� / log���: (36)

The escaping time �� diverges for cos� �
���
3
p
=2; there-

fore, no information can get out of the surface � � K with
� > jyj. Similarly, for P in Fig. 3, no radial null geodesics
can get out of the � � K surface if cos� �

���
3
p
=2. On the

other hand, the surface � � K is naked singular if cos�>���
3
p
=2 since the Kretschmann invariant diverges there [see

Eq. (15)] and the time getting out of the surface is finite
(35).

The causal structure for the regions R and L are studied
in the Appendix B. The radial null geodesics in the region
jz0j2 < t02 � 2B2 at � � K cannot escape the surface. For
�>�=6, the value B�K� diverges and, therefore, all
events at the surface � � K are satisfied with the inequality
jz0j2 < t02 � 2B2. Therefore, all geodesics starting from the
surface cannot escape the surface in a finite time.

The unit oneform denoting the advances of time is !t �

D��1=
��
3
p

cos���dt0 � z0d�� as one sees in Eq. (25). For a
region with jz0j>

�������������������
t02 � 2B2
p

, the vector � @@��
a
�t0z0� becomes

timelike and the situation becomes nontrivial. Especially,

the surface � � K with z0 <�
���������������������������
t02 � 2B2�K�

p
becomes a

naked singularity. For cos� �
���
3
p
=2, B�K� takes a finite

value. Therefore, the singularity at � � K will be seen by
the outside observer through the trajectory in the region
z0 <�

�������������������
t02 � 2B2
p

. However, the information on the sur-
face � � K with t0 > z0 still cannot escape. In this sense,

the solution with cos� �
���
3
p
=2 is a mixture of naked

singularity and black string.
Summarizing the results in this section, the surface � �

K forms an event horizon for the parameter range 1=
���
3
p

<
cos�<

���
3
p
=2. For cos� �

���
3
p
=2, the surface � � K with

t0 > z0 (z0 <�
�������������������
t02 � 2B2
p

) forms an event horizon (a
naked singularity). Therefore, this solution is a kind of
interwinding solution of naked singularity and black string.
If one compactifies the fifth coordinate so that it contains
only the regions satisfying jz0j � B, the solution becomes
black string. For cos�>

���
3
p
=2, the surface � � K is a

naked singularity. For cos� � 1=
���
3
p

, the surface � � K
becomes a spatial infinity. As we will show in the next
section, the region �� K becomes another asymptotic
region of space connected with the asymptotic region �!
1 through a wormhole throat. In this sense, the solution
with cos� � 1=

���
3
p

describes a wormhole geometry. A
solution of similar wormhole geometry was found by
Clément [19], which in fact corresponds to the general-
ization of class III.

V. GEOMETRIC PROPERTIES OF THE SOLUTION

In this section, we study the geometrical properties of
the solution such as the volume of S2 sphere for a given �,
t, and z, and the proper length corresponding to the fifth
coordinate distance. We concentrate on qualitative behav-
iors of the quantities and we use the coordinates system
(16) in which the Killing symmetries of z and t are evident
except for the calculation of the distance along the fifth
coordinate.

A. Area of S2 sphere

The behavior of the area for the S2 sphere in z �
constant spacelike surface is

 A2��� � 4��
����
G
p

��2

� 4��2

�
1�

K
�

�
2��4=

��
3
p

cos��
�
1�

K
�

�
2��4=

��
3
p

cos��
:

(37)

Note that 2� 4=�
���
3
p

cos��, the exponent of �1� K=��, is
always negative definite. As � approaches to K from
infinity, the area decreases to its minimum value at

 � � �m��� �

 
2���

3
p

cos�
�

�����������������������������������
2���

3
p

cos�

�
2
� 1

s !
K

�
���
3
p
K; (38)

then bounces up to infinity instead of decreasing down to
zero monotonically. �m��� is an increasing function of
��� 0� and diverges as �! �=2. At � � K, the surface
area A2�K� diverges for all values of �.

Considering the two facts that the infinite distance to
� � K surface (23), and the infinite area of the S2 sphere,
we may identify that there is infinite large volume of space
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near � � K surface for cos� � 1=
���
3
p

. Since the curvature
square and curvature tensors vanish for cos�< 1=

���
3
p

, the
spacetime becomes another asymptotically flat region con-
nected with the region �! 1 through the wormhole throat
at � � �m. Therefore, the geometry around � � �m be-
comes a kind of wormhole throat for cos� � 1=

���
3
p

.
For the case of cos�> 1=

���
3
p

, even though the S2 area of
� � K surface is divergent, the distance to the surface is
finite. In addition the curvature tensor does not vanish.
Thus, we cannot interpret the � � K surface as an asymp-
totic region.

B. Proper length for unit fifth coordinate distance

The spatial geometry along the fifth coordinate may be
understood by considering the proper length along the fifth
coordinates with � � constant and the angular coordinates
being fixed. Because of the high oscillatory nature of the
metric component gzz in Eq. (16) around the horizon, we
cannot use it to measure the proper distance along the
direction. Instead, we measure the proper distance corre-
sponding to unit z0 coordinates from Eq. (25). Since the
coordinates z and z0 are the same asymptotically and the
order of gzz is the same as that of gz0z0 up to oscillatory
nature, we use the second quantity to measure the proper
distance:

 L��� /
Z z0�1

z0

���������
gz0z0
p

dz0 � D��1=
��
3
p

cos��: (39)

The distance monotonically increases from zero to unity as
� increases from K to infinity. Therefore, any nonzero
coordinate distance along the fifth coordinate takes zero
proper distance at the horizon.

C. Horizon area

The physical spacelike area of the � � constant surface
per unit length of z0 are given by the product of the S2 area
and the proper length along the fifth coordinate:
 

A��� � A2���L���

/ 4��2

�
1�

K
�

�
2��

��
3
p
= cos��

�
1�

K
�

�
2��

��
3
p
= cos��

’

�
1�

K
�

�
2��

��
3
p
= cos��

; (40)

where the second line denotes its behavior around � ’ K.
At � � 1, this area diverges because of the �2 term. For
cos�<

���
3
p
=2, as � approaches to K from infinity, the area

decreases to its minimum value at

 � � �min���

�

 
2���

3
p

cos�
�

�����������������������������������������������������������
2���

3
p

cos�

�
2
� 1�

2���
3
p

cos�

s !
K;

(41)

then bounces up to infinity instead of decreasing down to
zero monotonically. �min��� is an increasing function of �
with �min��=6� � K.

For cos�>
���
3
p
=2, the area A��� is a monotonically

increasing function of � � K and vanishes at � � K. For
cos� �

���
3
p
=2, the area A��� is a monotonically increasing

function of � � K and takes a nonzero finite value at � �
K.

If we interpret this area as the entropy of the black string,
the entropy of the black string diverges (vanishes) for
cos�>

���
3
p
=2�cos�<

���
3
p
=2�. A finite entropy of the black

string is given for cos� �
���
3
p
=2.

VI. SUMMARY AND DISCUSSION

By using the analytic continuation procedure of coeffi-
cients after boosting static solution, we have shown that
there are three classes of stationary stringlike solutions of
the Einstein equation in �4� 1� dimensions. The class I is
what we usually expect to exist, the solution obtained from
boosting the static one. The class III is a kind of wormhole-
like solution known in Ref. [18], which we do not discuss
in this paper. We are mainly interested in the class II, which
intertwines the two classes I and III because it shows
continuous spectrum of naked singularity, black string,
and wormhole solutions in parameter space. The class II
is characterized by three parameters �K;�; q� related to the
mass M, tension �, and the momentum flow P along the
fifth coordinate, where q varies under the boost of observ-
ers. Restricting ourselves to the q � 0 case, we analyzed
the causal structure of the metric to show that it describes a
black string for the range of parameter 1=

���
3
p

< cos� ����
3
p
=2 and a wormhole for cos� � 1=

���
3
p

. The momentum
to mass ratio of the solution is restricted by the value of the
tension to mass ratio according to Eq. (13). Interestingly,
the solution with zero momentum does not exist in this
class except for the case of cos� � 1.

We briefly summarize the geometric properties of the
solution in Table I. For cos� � 1=

���
3
p

, the surface � � K
is located at spatial infinity and a wormhole throat is
located at � � �m > K given in Eq. (41). For cos� ����

3
p
=2, the horizon area of the black string is finite.

However, the extension of the geometry to behind the
horizon may be impossible since the Kretschmann invari-
ant diverges at the horizon. For cos� � 2=3, the horizon is
nonsingular and is in a finite distance from the outside
observers. Therefore, this metric may have hidden space-
time behind the horizon, which will be obtained by using
Kruskal-like extension. For cos� � 1=

���
3
p

, the
Kretschmann invariant takes finite value at � � K and
the � � K surface area diverges. In addition, the distance
to the horizon diverges. Therefore, the spacetime is com-
posed of two regions of infinite volume connected by a
wormhole throat located at �m � �2�

���
3
p
�K in Eq. (41).
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The parameter cos� decreases as the conserved momen-
tum increases. For cos� �

��
3
p

2 �
1��
3
p �, using Eq. (11), the

momentum satisfies Pc �
1

2
��
3
p M (Pw �

��
2
p

3 M). The sub-

script c �w� denotes the critical momentum value which
divides the parameter space into regions with naked singu-
larity and black string (black string and wormhole). For
small momentum jPj<Pc, the solution is naked singular.
For momentum with Pc � jPj<Pw, the solution becomes
a black string. For large momentum flow jPj � Pw, the
solution describes a wormhole geometry. In conclusion, the
metric describes a naked singularity, a black string, and a
wormhole as the momentum along the z coordinate
increases.

Most of the present black string solutions have divergent
horizon area. Interpreting the area as an entropy of the
black string, this implies that the black string solution
would be entropically stable. This result may shed a new
light on the stability problem of the black string solution.

Since any stable configuration of nonrotating, spheri-
cally symmetric, vacuum black string is not known yet, it
was a big issue to know the final fate of cylindrically
collapsing matters in higher dimensions. The present so-
lution might be a candidate of the final state since it is at
least entropically stable. To ensure this it is important to
understand the full stability (thermodynamic and metric-
perturbational) of the metric.

One important question unanswered yet is how can we
construct a solution with a compact extra dimension.
Simple compactification of the z coordinate leads to the
formation of closed timelike curves near the horizon be-
cause the Killing vector � @@z�

a becomes timelike around the
horizon. Since we live in four-dimensional spacetime now,
it is necessary to obtain a four-dimensional interpretation
of the metric using an appropriate compactification
method. We leave this subject to future work.
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APPENDIX A: GAUGE TRANSFORM

We study the stationary solution (8), class II, seen by a
moving observer with velocity v � tanh along the z
direction. The coordinates transformation is given by

 

t0

z0

� �
�

cosh sinh
sinh cosh

� �
t
z

� �
; (A1)

where we ignore the angular and the radial directions for
simplicity. From the point of view of this observer, the
metric (8) takes the form
 

ds2
 � f	gtt � 2 tanhgtz � tanh2gzz
dt

02

� 	gzz � 2 tanhgtz � tanh2gtt
dz
02

� 2	� tanh�gtt � gzz�

� �1� tanh2�gtz
dt
0dz0gcosh2: (A2)

The components of the metric (A2) is

 g0tt � �D
��2=

��
3
p

cos���cos2�� 2q sin2��;

g0zz � D��2=
��
3
p

cos���cos2�� 2q sin2��;

g0tz � D��2=
��
3
p

cos�� sin2�	�1� 4q2�1=2 cosh2

� 2q sinh2
;

(A3)

where q � q cosh2� �1=4� q2�1=2 sinh2. If we de-
termine  so that q � 0, the square bracket in the third
line of Eq. (A3) becomes one and the transformed metric
g0�� becomes the metric (8) with q � 0. In this sense, the
metric (A2) is equivalent to the metric (8) with q � 0 up to
the boost symmetry of the coordinate.

APPENDIX B: GEODESIC MOTIONS IN
REGION R

In this appendix, we study the null geodesic motion in
the region R and L in Fig. 3. In the regions ‘‘R’’ and
‘‘L,’’ where jz0j � jt0j (the events in this region are con-
nected with a spacelike geodesic with the origin), we use

TABLE I. Geometric properties of the solution.

cos� 1�
��
3
p

2 � 2
3 � 1��

3
p �0

j PM j 0� 1
2
��
3
p �

��
5
p

3
��
3
p �

��
2
p

3 �1

Distance to � � K finite finite finite finite finite 1 1

Kretschman invariant 1 1 1 0 1 finite 0
Nature of � � K naked singularity horizon horizon horizon horizon i0 i0
area of S2 1 1 1 1 1 1 1

Length for unit z 0 0 0 0 0 0 0
Area of � � K 0 finite 1 1 1 1 1

spacetime nature naked singularity black string wormhole
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the coordinates transformation, � � �t0z0 and y �
��t02 � z02�=2, where we use positive (negative) sign for
R (L) to keep the directions of timelike and spacelike
coordinates and get the metric

 ds2
s;� � D��2=

��
3
p

cos�� dy
2 � �d�� 2

����������������
y2 � �2

p
d��2

2
����������������
y2 � �2

p
�G����d�2 � d�2

�2��; (B1)

where z02 � t02 � 2
����������������
y2 � �2

p
. Coordinates’ singularity

happens along the lightlike surface � � �y; however,
they do not give rise to any singular behavior of the geo-
desics. At an event E 2R, dragging of coordinates frame
happens along the � coordinate.

The eventual coordinates transformation from �t; z;�� to
��; y;�� is, using complex parametrization z� it � rei	,
given by

 � � �
r2

2
sin2�	���; y � �

r2

2
; for R=L;

(B2)

where

 R �

�
Ejj	��j �

�
4

�
;

L �

�
Ejj	��� �j �

�
4

�
:

(B3)

The coordinates’ transformation of the two coordinates
�t; z;�� and ��; y;�� are plotted in Fig. 4. In the asymptotic
region, � � 0. Therefore, the region R corresponds to the
region jtj< z. The region rotates counterclockwise as

���� decreases (increases) keeping the spacelike property
of the region R with respect to the origin.

Since the lightcone, t0 � �z0, is a coordinates singular-
ity, we add the metric along the lightcone:

 ds2
l � e��2�=

��
3
p

sin��	�dT � 2B2d�
d��G���d�2
�2�;

(B4)

where T � t02. The null geodesic satisfies

 

d�

dT
� 0;

d�

dT
� �

1

2B2 : (B5)

The maximal velocity of the outgoing null geodesic to the
radial direction comes from the second equation of (B5)
with positive sign. This velocity vanishes for cos� �

��
3
p

2 at
� � K. This is a kind of indication of horizon of the � � K
surface for cos� �

��
3
p

2 .
Now we study the near horizon geometry in R by

investigating the geodesic motion of the metric (B1) with
positive sign. The radial null geodesic of the metric (B1)
satisfies

 _y 2 �

�
1� 2

����������������
y2 � �2

q
_�
�

2
� 4

����������������
y2 � �2

q
B2 _�2 � 0:

(B6)

Solving Eq. (B6), the radial velocity is given by

 

_� �
1

2�B2 �
����������������
y2 � �2

p
�

�

2641�

������������������������������������������������������������
1�
�1� _y2��B2 �

����������������
y2 � �2

p
�����������������

y2 � �2
p

vuut
375:

The spacetime is divided into two different regions accord-

ing to the sign of B2 �
����������������
y2 � �2

p
.

Let us call the two regions by R1 and R2:

 R 1 � fE 2Rjy2 < �2 � B4g;

R2 � fE 2Rjy2 � �2 � B4g:
(B7)

In the region R1, with 0< �y2 � �2�1=4 <B, the radial
velocity is restricted to

 �

�
B

�y2 � �2�1=4
� 1

�
�1
� 2�y2 � �2�1=2 _�

�

�
B

�y2 � �2�1=4
� 1

�
�1
; (B8)

where the equality holds for _y � 0. Using Eq. (32), the
velocity _� is restricted to

FIG. 4 (color online). Relation of three coordinates �t; z�,
�t0; z0�, and ��; y�. The thin (red) curve is the constant y surface
and the thick (green) curve denotes the constant � spacelike
surface. The thick (blue) lines denote lightcones bifurcating from
the origin. For a given radial coordinate �, the axes �t0; z0� rotates
by the angle � with respect to �t; z�. The lightcone is designed
with respect to these primed coordinates.
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(B9)

Therefore, the maximal velocity of the radial null geo-
desics at �! K satisfies

 _� / ��� K�; for cos� �

���
3
p

2
;

_� / ��� K��
��
3
p
= cos���1; for 0 � cos�<

���
3
p

2
:

(B10)

Integrating out the geodesic equation to calculate how
much time it takes light to escape from � � K � � to �,
by assuming y� �, we get

 �� / ��� K�2��
��
3
p
= cos�� for 0 � cos�<

���
3
p

2
; (B11)

and for cos� �
��
3
p

2 , we have

 �� / log���; for cos� �

���
3
p

2
: (B12)

This value diverges for all values of �. Therefore, the
information at the surface � � K cannot go out of the
surface through the region y2 < �2 � B4. Note also that
B��� diverges for cos�<

���
3
p
=2 which implies that all

events at the surface � � K satisfies the inequality y2 <

�2 � B4. In this sense the surface � � K forms an event
horizon for cos�<

���
3
p
=2.

Now we investigate the geodesic motion in R2. For
y2 � �2 � B4, the velocity of radial null geodesics is re-
stricted to

 2�y2 � �2�1=2 _� � �
�

1�
B

�y2 � �2�1=4

�
�1
;

2�y2 � �2�1=2 _� � �
�

1�
B

�y2 � �2�1=4

�
�1
;

(B13)

where the equality holds for _y � 0. Interestingly, the radial
velocity is allowed to diverge for both directions.
Therefore, every information at � � K can be transferred
to the outside of the surface almost instantaneously here,
which implies that the singularity at � � K can be seen by
outside observers. This phenomenon happens because the
radial coordinates � become a timelike coordinate in R2

and the coordinate � still remains as timelike. In fact, this is
exactly the opposite procedure of the formation of the
ergo-region, where the time coordinate becomes spacelike
and the space coordinates remain as spacelike. In the
present metric, there is no ergo-region, in which static
motion is impossible, since the velocity range includes
the zero radial velocity.

Finally, we summarize the geodesic motion along the
lightlike line t0 � z0 at which surface the metric (B1) and
(30) are ill defined. Along the line, the velocity of radial
null geodesics are calculated in Eq. (B5). By integrating
the equation, we get similar escaping time to that in
Eq. (35).
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