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Tensor-vector-scalar (TeVeS) theory, a relativistic theory of gravity, was designed to provide a basis for
the modified Newtonian dynamics. Since TeVeS differs from general relativity (e.g., it has two metrics, an
Einstein metric and a physical metric), black hole solutions of it would be valuable for a number of
endeavors ranging from astrophysical modeling to investigations into the interrelation between gravity
and thermodynamics. Giannios has recently found a TeVeS analogue of the Schwarzschild black hole
solution. We proceed further with the program by analytically solving the TeVeS equations for a static
spherically symmetric and asymptotically flat system of electromagnetic and gravity fields. We show that
one solution is provided by the Reissner-Nordstrom metric as physical metric, the TeVeS vector field
pointing in the time direction, and a TeVeS scalar field positive everywhere (the last feature protects from
superluminal propagation of disturbances in the fields). We work out black hole thermodynamics in TeVeS
using the physical metric; black hole entropy, temperature, and electric potential turn out to be identical to
those in general relativity. We find it inconsistent to base thermodynamics on the Einstein metric. In light
of this, we reconsider the Dubovsky-Sibiryakov scenario for violating the second law of thermodynamics

in theories with Lorentz symmetry violation.
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I. INTRODUCTION

There are significant discrepancies between the visible
masses of galaxies and clusters of galaxies and their
masses as inferred from Newtonian dynamics. In particu-
lar, the accelerations of stars and gas in the outskirts of
galaxies or those of galaxies in clusters are much too large,
and the disk rotation curves of spiral galaxies, which are
naively expected to drop as r~'/2 away from galaxy cen-
ters, tend to remain flat to the last optically or radio
measured point. These discrepancies are also manifest in
the gravitational lensing by galaxies and clusters. It is
commonly assumed that these problems stem from the
existence in the said systems of large amounts of ‘“‘dark
matter.” For instance, galaxies are assumed to be en-
shrouded in roundish halos of dark matter that dominate
the gravitational fields far from the galaxy centers.

But the putative dark matter has yet to be identified or
detected directly. Furthermore, dark matter models of gal-
axies require much fine-tuning of the dark halo parameters
to fit the data, and there are some sharp problems out-
standing such as the observationally inferred absence of
cusps in the dark matter density at galaxy centers, cusps
which are predicted by dark matter cosmogony. Thus many
have wondered if dark matter is the whole story. An alter-
native, if less orthodox, approach is formalized in the
modified Newtonian dynamics (MOND) paradigm [1],
which proposes that Newtonian gravity progressively fails
as accelerations drop below a characteristic scale ag =
10719 m/s?, which is typical of galaxy outskirts. MOND
assumes that, for accelerations of order a, or well below it,
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the Newtonian relation a = —V®y is replaced by
allal/ag)a = =Voy, (D)

where the function fi(x) smoothly interpolates between
fi(x) = x at x < 1 and the Newtonian expectation fi(x) =
1 at x > 1. This relation, with a suitable standard choice of
m(x) in the intermediate range, has proved successful not
only in rationalizing the asymptotical flatness of galaxy
rotation curves where acceleration scales are much below
ag, but also in explaining detailed shapes of rotation curves
in the inner parts in terms of the directly seen mass, and in
giving a precise account of the observed Tully-Fisher law
which correlates luminosity of a disk galaxy with its
asymptotic rotational velocity [2].

The pristine MOND paradigm does not fulfill the usual
conservation laws, does not make it clear if the departure
from Newtonian physics is in the gravity or in the inertia
side of the equation F = ma, and does not teach us how to
handle gravitational lensing or cosmology in the weak
acceleration regimes. All these things are done by tensor-
vector-scalar (TeVeS) theory [3], a covariant field theory of
gravity which has MOND as its low velocity, weak accel-
erations limit, while its nonrelativistic strong acceleration
limit is Newtonian and its relativistic limit is general
relativity (GR). TeVeS sports two metrics, the “‘physical”
metric on which all matter fields propagate, and the
Einstein metric which interacts with the additional fields
in the theory: a timelike dynamical vector field u, a scalar
field ¢, and a nondynamical auxiliary scalar field o. The
theory also involves a free function F, a length scale €, and
two positive dimensionless constants k and K.

TeVeS is an attempt to recast MOND into a full physical
theory in which the latter’s novel behavior is due to the
gravitational field. Some checks of its consistency and
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comparisons with hard facts have been made. Thus
Bekenstein showed that TeVeS’s weak acceleration limit
reproduces MOND, and that it also has a Newtonian limit,
and calculated its parametrized post-Newtonian (PPN) co-
efficients 8 and 7y, which agree with the results of solar
system tests [3—5]. Skordis et al. [6] and Dodelson and
Liguori [7] studied the evolution of homogenous and iso-
tropic model universes in TeVeS, and showed that it may
reproduce key features of the power spectra of the cosmic
microwave background and the galaxy distribution. TeVeS
has also been tested against a multitude of data on gravi-
tational lensing (for some references, see Ref. [2]). All the
above refer principally to situations where the gravitational
potential is small on scale ¢2. Since neutron stars and black
holes exist in nature one must also understand strong
gravity systems in the TeVeS framework.

A beginning in the investigation of the strong gravity
regime of TeVeS has been made by Giannios [5]. For
vacuum spherically symmetric and static situations, he
showed that, under a simplifying limit (which we shall
detail below), the Schwarzschild metric qua physical met-
ric and a particular scalar field distribution together con-
stitute a black hole solution of TeVeS’s. This motivates us
to look in this paper at more complicated cases, such as that
of the charged nonrotating black hole in TeVeS. We find
that the Reissner-Nordstrom (RN) metric as physical met-
ric and the usual electric field together with a special
configuration of TeVeS’s scalar field constitute a black
hole solution in TeVeS. Using this solution we investigate
the thermodynamics of spherical black holes in TeVeS.

In Sec. II we recapitulate the fundamentals of TeVeS,
while in Sec. III we describe Giannios’ results for the
nonrotating vacuum black hole. In Sec. IV we go on to
solve the TeVeS equations for the case of a charged non-
rotating black hole, obtaining a physical metric which
coincides with the RN metric of GR. Section V presents
a resolution of the problem pointed out by Giannios: the
uncharged black hole solution he found seems to permit
superluminal propagation near the black hole horizon.
Next, in Sec. VI we examine how the familiar concepts
of black hole thermodynamics apply to our black hole
solutions, and check their consistency using several pre-
scriptions. We calculate the relevant thermodynamic quan-
tities using the physical metric, and show that the Einstein
metric is inappropriate for discussing thermodynamics. In
this light we discuss anew the potential thermodynamic
inconsistency described by Dubovsky and Sibiryakov (DS)
for theories with broken Lorentz symmetry [8].

II. THE TEVES EQUATIONS

The acronym TeVeS refers to the tensor-vector-scalar
content of the theory. The tensor part pertains to the two
metrics, g,,, dubbed the Einstein metric, on which the
vector and the scalar fields propagate, and the physical
metric g,,, on which matter, electromagnetic fields, etc.
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propagate. The physical metric is obtained from the
Einstein metric through the following relation:

Zap =€ 2845 — 2u,upgsinh(2¢). )

Thus one passes from the space of g,z to that of g,z by
stretching spacetime along the vector u by a factor ¢>¢, and
shrinking it by the same factor orthogonally to that vector.
This prescription retains MOND phenomenology, while
augmenting the gravitational lensing by clusters and gal-
axies to fit observations.

The dynamics of the metrics and the fields are derivable
from an action principle. The action in TeVeS is the sum of
four terms. The first two are the familiar Hilbert-Einstein
action and the matter action for field variables collectively
denoted f:

1
aBR 4
% " 16w G] apy/ 8 ©)

sm::/fﬁ@#wfﬁfmu-o¢1§¢%. )

Next comes the vector field’s action (K is a dimensionless
positive coupling constant)

K

S, = — m [(g“ﬁg“yu[a,u]u[g,y])

——(g Uyt +1)}/—_gd4x, (5)

which includes a constraint that forces the vector field to be
timelike (and unit normalized); A is the corresponding
Lagrange multiplier. The presence of a nonzero u® estab-
lishes a preferred Lorentz frame, thus breaking Lorentz
symmetry. Finally, we have the scalar’s action (k is a
dimensionless positive parameter while € is a constant
with the dimensions of length, and F is a dimensionless
free function)

S, = = 5o [ Ftnr s 0,0zt ©
Above, h*P = g — y*uP with u® = g*Pu,. The scalar
action is written here differently than in Ref. [3]; we have
eliminated the nondynamical field o and redefined the
function ‘F. The new form makes it easier to understand
the strong acceleration limit of the theory, which is espe-
cially relevant to the present work.

Variation of the total action with respect to g*# yields
the TeVeS Einstein equations for g,g;

Gop =87G(Top + (1 — e *PWurT yqtip) + Tap) + O4p.

(7

The sources here are the usual matter energy-momentum
tensor T, - the variational derivative of §,, with respect to
&%B, as well as the energy-momentum tensors for the scalar
and vector fields:

mle
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— j:gaﬁ
= (¢ ¢,B u ¢;Lu(a¢ B)) 2k2€2Gr (8)
Oap = K (8" tf,01Ufn,5) — 4877 8" Uo, 11,118 ap)
= Augug, )]
with
nx) = F'(x). (10)

Each choice of F defines a separate TeVeS theory, and
m(x) is similar in nature to the function & in MOND. In
particular, u(x) = 1 corresponds to high acceleration, i.e.,
to the Newtonian limit.

The equations of motion for the vector and scalar fields
are, respectively,

[Iu’(klzhyad),'y(ﬁ,ﬁ)haﬁd),a];ﬁ
= kG[g*® + (1 + e_4¢)u“uB]TaB, (11)

) 8
ulfl o+ A + T,U«uﬂ(i),ﬁg‘”(ﬁ,y
= 87wG(1 — e_4¢)g‘”‘uBTM3. (12)

Additionally, there is the normalization condition on the
vector field:

uu, = gaﬁu“uﬂ = —1. (13)

The Lagrange multiplier A can be calculated from the
vector equation.

III. NEUTRAL SPHERICAL BLACK HOLES

In his work on black holes, Giannios [5] worked in the
limit . — 1, which also entails F(x) = x. Since we shall
later work in the same limit, here we shall justify it in more
detail than he did. Near the horizon of a black hole of mass
m, the Newtonian acceleration amounts to 103(My/m)ay,.
Thus, even for the most massive black holes suspected
(10'%m,), the accelerations are strong on scale a, out to
at least a million times the gravitational radius, i.e. well
into the asymptotically flat region which determines the
metric properties. This means MOND effects are sup-
pressed while the full complexity of the TeVeS equations
is still evident. In the said limit, and under the assumption
that the vector field points in the time direction (which has
support in the more general context of static solutions [3]),
Giannios obtained an exact spherically symmetric analyti-
cal solution to the TeVeS equations, for metric, scalar, and
vector fields.

The Einstein metric is taken in isotropic coordinates,
X=tx=r x>=0, and x* = ¢,

ds? = gupdx®dxP = —e’dr* + e£(dr* + r*dQ?), (14)

where henceforth dQ? = d6? + sin®6d6?. Since v, { are
functions of r only, and the vector field points in the time
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direction, its r dependence is fully determined by the
normalization condition Eq. (13) and the requirement
that u® be future pointing:

u® = (e7"2,0,0,0). (15)

Then the relation between the physical and field metrics
reduces to

§u= €2¢gm (16)

gi=e g (17)

Giannios first solved the TeVeS equations assuming that
K =0, thus decoupling the vector field from the theory,
and then performed a transformation involving K, which
recovered the more general solution. For K =0 the
Einstein’s #t, rr, and 66 equations are, respectively,

/ 1\2 N2
2 (Z) . _4w(]:b) ’ (18)
r
A (4 O S C 0 "
A
/ / N2 1! /! 2
y2+r§ _I_(v) +2f + 2 =_47T(]:Z§)’ 20)
and the scalar equation takes the form
gy SOV EO T on

2r

Since there are only three unknown functions, v(r), £(r),
and ¢(r), one of the four equations is obviously
superfluous.

Combining the rr and 66 Einstein equations gives the
simple differential equation

2w+ ) + 6(” D L (wrgr=0 @
This has the solution
2 _ 2
v = 21n<’ _ ’C), (23)
r

where the additive integration constant has been set to zero
in order to have an asymptotically flat spacetime, namely,
v, { — 0 when r — o0,

The second integration constant, r., can be evaluated by
expanding v + { above in 1/r and comparing with the 1/r
expansions (with K = 0) of the metric coefficients of the
exterior solution for a spherical mass [3,5],

r 172
V:1__g+__g+...’ 24
¢ roo277 @4
1 2 N2 72
=1+ L[ ZKOmANTe o
r 16 T\ T, r
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Here my; is a mass scale [3] defined by the expansion

kGmy
d7rr

for the solution of Eq. (21). For a ball of nonrelativistic
fluid, m; is very close to the Newtonian mass, and r, is a
scale of length that can be linked to the object’s mass [3].
However, the relation between Gm, and r, depends on the
system under consideration, and is different for stars and
black holes. At any rate, for K = 0, r,. is found to be

d(r) = . — T (26)

k (Gm,\2

S | 1+f< m) 27)

4 T\ I,

Making the educated guess that

452 r
/= = - g 28
4 r(r>—r2) r—r¥ (28)

Giannios determines » to be

o }’g r—r.
=1 . 29
g 2r, n<r + rc> (29)

The correctness of Egs. (28) and (29) can be checked by
substituting them into the sum of Eqgs. (18) and (19), or the
difference of Egs. (18) and (20); both combinations are
independent of the equation pair already used. The deter-
mination of the Einstein metric for K = 0 is completed by
the trivial integration of Eq. (28). Finally, the scalar field is
found now by integrating Eq. (21) and fixing the two
integration constants just as in Eq. (26),

k —
G ln(r VC). (30)
r+r.

8mr,
Going on to the more general case K # 0, Giannios finds
that just replacing Eq. (27) by

rc:rg\/l +k(GmS>2—K 31)

4 T\ Ty 2

(r) = . +

in the above solutions for v, £, and ¢ will produce an exact
solution of the TeVeS equations for K # 0 [equations
which are the Q = 0 case of Egs. (49)—(52) below].

The physical metric now follows from Egs. (16) and

(17):

5 r—r.\¢
= — , 32
8u <r T ’”c) (32)

. (P —=r)*/r—r.\a
= () (33)
r r+r,

with a = ;75 + ]fgr’f . In order for this result to represent a

black hole, the candidate event horizon » = r, must have
bounded surface area, and must not be a singular surface.
The surface area is proportional to g,,.(r.), which has a
factor (r — r.)>~¢; for this to be bounded requires a < 2.
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The Ricci scalar of the above metric is

2(a®> — Hr2rt(r — r)v 4
R= e (34)

We notice that R will blow up as r — r,. unless a = 2 or
a > 4. Thus, only the value @ = 2 describes a black hole.
The definition of a then gives another relation between r,
and Tgs

1y kGmy

==+ , 35
e ™y 8 (33)

and the physical metric takes the final form

- r—r.\2

= - , 36
8u <r T rc> (36)
- r+r.a\4
2= () 67

which we recognize as the Schwarzschild metric in iso-
tropic coordinates.

Unlike GR’s Schwarzschild black hole, the TeVeS neu-
tral spherical black hole is “dressed” with a scalar field ¢,
a solution of Eq. (30). This field does not induce a singu-
larity at the horizon because of the particular structure of
the TeVeS equations. However, the logarithmic divergence
of ¢ at the horizon was a cause of concern to Giannios. It
was earlier shown [3] that the absence of superluminal
propagation of the various TeVeS fields is guaranteed
only when ¢ = 0. But here ¢ diverges logarithmically at
r = r., and becomes already negative sufficiently close to
r. even if ¢, > 0. We will show in the next section how
this apparent problem is solved.

IV. CHARGED SPHERICAL BLACK HOLES

The next natural step is to look for an electrovacuum
static spherically symmetric solution to the TeVeS equa-
tions, the analog of the RN solution of GR. We again take
= 1. Again we assume that the vector field points in the
time direction, and that both the physical and the Einstein
metrics are spherically symmetric. These are essential
simplifying assumptions which enable us to find a specific
solution to the TeVeS field equations. Other solutions may
exist for which the vector field is endowed with a radial
component. However, to judge from the neutral case, as
analyzed by Giannios [5], the PPN parameter 8 of such a
solution with very low charge would be in contradiction
with recent observations [9] in the solar system. It would
be odd if the PPN structure of a black hole’s far field were
that different from the sun’s. By contrast, still in the neutral
case, a TeVeS solution with the vector field pointing in the
cosmological time direction yields PPN parameters iden-
tical to those of GR [5].

We continue to work in isotropic coordinates, for which
the transition between physical and Einstein metrics is
simplest: as seen earlier, in view of the normalization
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condition (13), the transformation (2) is equivalent to

e gy i=r6 0,

equgtt. (38)

gaﬁz{

The Einstein metric again takes the form (14), and the
physical metric will have a similar form, namely,

d5? = §,pdx®dxP = —e"di> + €4(dr* + r?dQ?), (39)
with the following relation among 7, Z , v,and {:

{(r) = £(r) + 2¢(n),
v(r) = o(r) = 26(r).

Now, the cosmological value of ¢ should be nonzero in
our evolving universe: ¢(r — o) = ¢,.. Thus the require-
ment that the Einstein metric be asymptotically Minkowski
(both ¢ and v vanish as r — o), needed to maintain
consistency with previous work [3], introduces a factor
+2¢, in the physical metric coefficients,

{(r—o0) = —2¢,,

(40)

(41)

(42)

p(r — ) =2¢,. (43)

This is equivalent to a rescaling of the coordinates which
depends on a cosmological epoch, and will have to be
taken into account when considering physical quantities
in the framework of TeVeS.
The energy-momentum tensor no longer vanishes; it is
given by
O T e
TU‘B = _<F01pF'8 - Zga,BFpo'Fp >,

dar @4

with F B the electromagnetic field tensor (not its dual),
obtained by solving Maxwell’s equations in vacuum writ-
ten wholly with the metric g,g, namely,

VpFeB = (=)' Pagl(—8)" g+ P F ] = 0. (45)

In the isotropic metric Eq. (39), and with the assumption of
spherical symmetry and the absence of magnetic mono-
poles, the only nonvanishing component of the electromag-
netic field tensor is

1/2)(@()={(M)+26(r)

P = 2ottt 2 (46)

e
r r?
The constant of integration Q will be shown in Sec. IV to
coincide with the physical electric charge of the black hole.
Since we assumed the vector field to point in the time
direction, then, as in the vacuum case, the normalization

condition (13) determines its functional dependence:

u® = (e772,0,0,0). 47)

It follows that the spatial components of the vector equa-
tion (12) are identically satisfied, while its temporal com-
ponent serves to determine the Lagrange multiplier A to be
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substituted in the Einstein equations:

GQ?e*?(e** — 1)

K+ 21y + 4V) N
A

A=
4ret

(48)

We now turn to the Einstein equations (7), and the scalar
equation (11). Upon substitution of the Lagrange multi-
plier (48) and the electromagnetic field tensor (46), the t1,
rr, and 66 equations become, respectively,

2_{’ N ()2 Lo K@y +2rv/" + r(v)?* + 4rv)
4 8r
4m(d)? e {t2¢GO?
__4m)_eiee o)
!/ / 1\2 !4,/ N2
J+v @ VK
r 4 2 8
4(d')? e G2
~tme) e TL (50)
W+ o) (WP F2+ 20 KW
2r 4 8
47(P)? e Er2G Q2
= — ]j) + I Q . D
The scalar equation is
F+ N+ 4)g! —{+2¢ 2
g P N NG

2r 47t

These are four equations for three unknowns, £(r), v(r),
and ¢(r), so one of the equations is actually redundant. We
shall use two combinations of the three Einstein equations
plus the scalar equation.

By adding the rr and 66 equations, we again obtain, as
in the vacuum case, Eq. (22). This time we write the
solution

2 2

l+v= 21n<r _ rh). (53)

r

Here one integration constant has been set so as to have an
asymptotically flat spacetime, namely, v, { — 0 when r —
oo. The other constant, rj,, will be set by the boundary
conditions on the horizon.

The remaining equations for v, {, and ¢ are not imme-
diately solvable. To make progress we shall assume that the
physical metric g, is of RN form, solve for the scalar field
in this framework, and check that all TeVeS equations are
satisfied. This will give us a pair of charged black hole
solutions of TeVeS; existence of other solutions is yet to be
excluded.

In Schwarzschild coordinates x° =, x! = R, x2 = 6,
and x*> = ¢, the RN metric may be written as
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ds> = —(1 —R,./R)(1 — R_/R)dr’
dR?

2 2
taR TR R R dQ (54)

where R, and R_ are the coordinates of the outer and inner
horizons, respectively. We may transform the metric to
isotropic form by going over to a new radial coordinate r
defined implicitly by

R(r)=r+ (R, —R_)?*/16r + (R, + R_)/2.  (55)
This gives
_ (4r— (R, —R.))*@r+ (R, —R))?
(167 + 8r(R, + R_) + (R, — R_)?)?
+_(16;»2-+8r(R++R,)+(R+——R,)2)2

256r*
X (dr* + r2dQ>?).

ds* = dr

We recall that in GR R, and R_ satisfy the relations
R, +R_=2Gym and R, R_ = Gyq*, where we write
the gravitational constant as G to distinguish it from plain
G, the coupling constant in TeVeS. Here we shall assume
that the physical metric of TeVeS has the above form, while
leaving the parameters R, and R_ to be determined later.
However, the proposed metric is asymptotically
Minkowskian, while as previously mentioned, we require
rather that the Einstein metric be asymptotically
Minkowskian. This means that, in the generic physical
metric Eq. (39), we must set

(4r — (R —R))(@4r+ Ry —R-))?

P = I 8 R, R+ (R, R 2P
(56)

5 (16r* +8r(Ry +R)+ (R, —R_)*)*

l(r) =In 56,4 2¢..
(57)

To simplify these, note that by Egs. (40) and (41) we
have { + v = { + ¥, whereupon, in view of Eq. (53),
(rr=r)? _ (4r — (R, — R_))*(4r+ (R, —R_))*
I 2561 '

(58)

We may thus relate R, and R_ to the integration constant
rj, appearing in (53):

rp=3(R: — R_). (59)

Since R(r =r,) = R,, r=r, is the outer black hole
horizon in isotropic coordinates. In terms of r, and M =
(R, + R_)/2 the physical metric coefficients are

2+ r% + Mr)? o2

P

el = d, (60)
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2 2)2
= T ©1)
(r* + r; + Mr)
It is useful at this point to trade the charge Q for a
dimensionless positive parameter « defined by

GQ? = @’R,R_ = a*(M? — 4r3). (62)

This replaces the GR relation R, R_ = Gyg>. The value of
a will be determined by the Einstein equations (49) and
(50).

The only indeterminate function remaining now is the
scalar field. The scalar equation (52) can be rewritten in
terms of the new parameters M, rj,, and «, as

2rp’ ka?(M? — 4r2)e*¢:

/i
J’_
¢ P2 — r% 47r(r? + r%l + Mr)?

=0. (63)

Its general solution is

ke*®e?

¢ =, + - [+ CO)In(r +ry)

+(1—C)In(r — r;) — In(+*> + rfl + Mr)], (64)

with ¢. and C integration constants, the first already
familiar. Since we guessed the form of the metric, we
need to verify that the Einstein equations are satisfied.
From the requirement that Eq. (50) be satisfied, we obtain
values for o and C:

,  A4m(2 — K)e

Tk K t 87 (©)

- V2K2(2 — K) + 87kK
S (2 - Kk

(66)

Equation (49) is then satisfied identically. Since we have
already used the sum of Eqs. (50) and (51) to get the
solution (53), we see that all TeVeS equations are satisfied.
Thus the RN metric from GR with a suitable choice of
parameters is the physical metric of TeVeS spherical
charged black holes.

We shall soon see that a physically acceptable solution
can be had only for K < 2. For such solutions the sign of
the quantity under the square root in Eq. (66) is positive.
The two TeVeS solutions (corresponding to the two signs
of C) are most clearly presented in terms of the coefficients
8+ = (k/4m)a?(1 + C)e??e, or

5. _ 2 Kk=x V2K2(2 — K) + 87kK
- 2 - Kk + 8w ‘

(67)

In view of Eq. (47) we finally obtain the solutions
_ (P-np
(r + r} + Mr)?
(r? + 2 + Mr)?
+ i

r

ds? = e*®edr?

e 2%(dr* + r2dQ?), (68)
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d(r) = ¢, + 6-In(r +r,) + 6-In(r — ry)
=384 +6.)In(r? + 13 + Mr), (69)

o <(’”_ )= (r + )%=t
ue —

(2 + 2+ Mp)Bre 0.0, O)- (70)

V. RESOLVING THE SUPERLUMINAL PARADOX

We have found two black hole solutions for each value
of R;, and M. The requirement that superluminal propaga-
tion be excluded selects one of them as physically viable.
As mentioned in Sec. III, in a region where ¢ < 0, super-
luminal propagation of the TeVeS fields is not ruled out.
This acausal behavior would be unacceptable. Now, since
In(r — r;,) in Eq. (69) is arbitrarily large and negative near
enough to the horizon, its coefficient must be negative in
order that ¢ has a chance to be nonnegative everywhere. It
is easy to see that for K > 0, k > 0, ., is always positive.
Thus the solution, Eqs. (68)—(70), with lower signs is
immediately excluded on grounds that it permits super-
luminal propagation. But is the second solution viable in
this sense?

Focusing on the solution with upper signs, we must now
exclude the parameter range K = 2 + 87/k; the equality
here corresponds to unbounded &6_ and ¢, while the in-
equality leads to 6_ >0 and superluminal propagation.
The range 2 = K < 2 + 87/k, although palatable in this
sense, gives a® < 0. We shall show in Sec. VI that this is
unphysical. For 0 < K < 2 we have §_ < 0, while a® > 0.
Thus a physically viable black hole solution of TeVeS can
exist only for 0 < K <2 (we continue to assume that
k>0). It is the solution with the lower indices in
Eqgs. (68)—(70).

Close enough to the horizon, ¢ of this solution is
necessarily positive because of the §_ In(r — r;,) which is
arbitrarily large. Additionally, the asymptotic value of ¢ is
¢., the cosmological value of the scalar, which may be
assumed to be positive [3]. Hence the question of whether
¢(r) is positive in the intermediate region hinges on
whether it has a negative minimum outside the horizon,
or not.

To find out, we look at its derivative,

_ M+ 2r,)(r + r,)?6_ + (M — 2r,)(r — rh)25+'

¢ 2(r* — r%)(r2 + r% + Mr)

(71)

The numerator here is quadratic in r and thus has two roots.
Now in the case K <2wehave §_ <0,but 6, + 6_ > 0.
Then, because M > 2r;, [see Eq. (59) and the following
discussion], both roots are real. Furthermore, if

8+_6_

2k*(2 — K) + 87K
R B

(2-K)k '

=2, (72)
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both roots are at r < 0, so for r > r,, the field ¢(r) has no
minimum and must be everywhere positive.
Focus now on the case

V222 — K) + 87Kk
(2 — Kk

M>2r, (73)

Now ¢ does have a minimum outside the horizon. In Fig. 1
we plot ¢ — ¢, for several values of M/r;,. We see that,
unless M/r;, is very large, the dip below the axis (which
grows roughly as InM/r;) is modest compared to unity.
Hence, a modest positive ¢, (which is expected from
cosmological models [3]) will be enough to keep ¢(r)
positive throughout the black hole exterior, except for
black holes with exponentially large values of M/r, for
which a region of negative ¢ will occur near the horizon.

In fact, for r, = 0, which by Eq. (59) means that R, =
R_, i.e., that the physical metric is extremal RN, the two
solutions for ¢ are identical:

2 - K)k

¢=¢ Gk +8n

1n<1 + %) (74)

Thus for K <2 and r, = 0, the variable part of ¢ is
negative and can be very large for r << M. This is unac-
ceptable as it permits superluminal propagation. We may
conclude that, provided 0 < K <2, k>0 and ¢, some-
what above zero, the superluminality issue raised by
Giannios does not arise for the TeVeS charged black hole
solution with the lower signs in Egs. (68)—(70). The above
conclusion does not apply to black holes near the extrem-
ally charged case.

What about Giannios’ case Q = 0 for which he found
conditions conducive to superluminal propagation (see end
of Sec. III)? The TeVeS equations (49)—(52) are smooth
with Q, so we may take the limit Q — 0 of their solutions,
Egs. (68)—(70). In this limit, according to Eq. (62), M =
2r;,, while by Eq. (59), r, = R, /4. Thus our metric (68)
reduces exactly to Giannios’ equations (36) and (37) with
the obvious identification r, = r;; that is, we recover the
fact that the physical metric is Schwarzschild. In the same
limit, our scalar field solutions (69) reduce to the pair

¢ - ¢c
0.03
0.02
0.01
7 Tr
-0.01
-0.02
-0.03

FIG. 1. Our solution for ¢ — ¢, as a function of r for several
values of M/ry: the higher M/r,, the lower the curve. Both axes
are in arbitrary units.
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b=+ 0 ln(r rh), (75)
r+ry,

whereas Giannios obtained only one scalar solution. We
notice that the solution with upper sign has ¢ > 0 for all
r > r;, provided that we stick to the parameter ranges 0 <
K <2, k>0 for which 6_ < 0. The solution with the
lower sign has ¢ <0 sufficiently near r = ry; this is
Giannios’ solution, and it is indeed excluded because it
allows superluminal propagation.

To sum up, in our study of spherical static black holes in
TeVeS, we have found a viable charged black hole solution
for the parameter range 0 < K <2, k> 0. The limiting
case Q — 0 of this is a viable neutral black hole solution.
Since black holes are seen in nature with virtual certainty,
the above results tell us that only the range 0 < K <2, k >
0 of TeVeS needs to be considered as physical. This range
includes the values that have been explored in the con-
frontation of TeVeS with observations [2,3,6,7].

VI. BLACK HOLE THERMODYNAMICS

It has been clear for a long time that black holes are
really thermodynamic systems characterized by tempera-
ture and entropy. Thus a discussion of black hole solutions
in TeVeS would be incomplete without a survey of their
thermodynamic properties. However, before we can talk
about thermodynamics for the charged black hole in
TeVeS, we must first identify the physical values of attrib-
utes of the black hole solution. By physical values we mean
the quantities that an asymptotically Minkowski observer
would measure using instruments made of matter, mea-
surements which are thus referred to the physical metric.
These values need not be identical with those of quantities
naively associated with the attributes. For example, we do
not know a priori that the masslike quantity M and the
chargelike quantity Q appearing in our solution are indeed
the physical mass and charge of the black hole. In fact, we
shall see that M is related to the physical mass in a non-
trivial fashion.

We first note that the G appearing in the TeVeS equa-
tions is not Newton’s constant, but, as shown elsewhere
[10], is related to it through

(2 =Kk + 87

It will be useful to also write the above relation in terms of
the constant « defined by Eq. (65):

Gy = (G/a?)e 2%, (77)

Experimentally Gy > 0; it also seems natural that the
fundamental coupling constant G be positive; hence we
must require @® > 0. This explains why in Sec. IV we ruled
out the parameter range 2 < K <2 + 87 /k.

Next, recall that if we use the same coordinates for the
Einstein and physical metrics, the transformation (2) im-
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plies that our physical metric is not asymptotically
Minkowski. Thus, asymptotically, the relation between
the physical distance ¥ and the corresponding spatial
lengthlike coordinate (denoted x) must be

¥=e %x. (78)

Focus now on M. According to Eq. (61), we may write
the asymptotical expansion for e” as

e’ = (1 _2M + 0<l2>>ez¢f. (79)
r r

Thus r here is not the physical distance 7, but it is related to
it through Eq. (78). Rewriting e” in terms of the latter gives

; 2Me % 1
¢ ~ (1 -2 0<—z>>e2¢c. (80)
r r

From the customary linear approximation we see that M
and physical mass m are related by

Me™% = Gym. 81

Likewise, the physical charge g can be easily identified
by integrating the flux of the electromagnetic field tensor
through a spherical shell at spatial infinity:

q= Jim - / Frefr? sinfdod . (82)
r—oodqr | g2

Use of e¢ in forming the area element guarantees that we

are calculating a physical flux: according to Eq. (40) the

factor e~?¢< required by Eq. (78) is supplied by the ¢?.

Substituting £ from Eq. (46) gives

g = lim — %e*“ﬂ)(“é’)rz sinfdfd ¢
r—odq |2 r

. 1 Qr2 .
— lim — ﬁ s Sinddbdd = 0. (83)
Thus our charged black hole is characterized by mass m
and charge Q as measured by physical asymptotic observ-
ers for which the metric is §,p.

In investigating the black hole entropy we start with the
assumption that it is given in terms of the physical surface
area of the outer horizon A by the usual formula

i A
BH T 4nGy

(84)

It is true that more complicated forms are known, but they
usually appear in gravity theories with higher derivatives;
TeVeS is free of these. The proof that our choice is correct
ultimately rests on the consistency checks we present later
in this section.

Obviously

A= 477}%65(”1) = 47 (2r, + M)?e 2. (85)

From (62) we have for the outer horizon
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= %w/Mz - GO?*/a> (86)
A =47(M + \|M? — GQ*/a?)?e 2%, (87)

We now express A in terms of physical mass, charge, and
Newton’s constant using the relations (77) and (81):

Thus

A = 47(Gyme® + \/(Gj\,i’ne"’ff)2 — Gye0?)?e 2,
(88)

so that

Son = G Gvm +(Gym)” = Gy O (89)

This is identical to the familiar expression for the entropy
of a RN black hole. To it corresponds the thermodynamic
temperature Ty = (9Sgy/dm),', or

_ o Gym)?* —GyQ?
27 (Gym + /(Gym)? — Gy 07

BH (90)

To check the consistency of our scheme, we now also
calculate the temperature corresponding to our black hole
solution using the Euclidean path integral approach [11].
This approach entails performing a Wick rotation of the
time coordinate to obtain a Euclidean metric. The path
integral for the gravitational action then becomes the par-
tition function for a canonical ensemble. Regularity of the
new coordinate system near the horizon requires the new
time coordinate to be periodic, and the period is related to
the black hole temperature: T = //period.

We first define [, the radial proper distance from the
horizon using the physical metric (68):

2.4 .2
_ (r*+r; ~I—Mr)e_¢l_

2

=[1=(r— r%/r + Mn(r/rp))e . (28]

dl dr

Consequently the physical (2-D) line element dé? for fixed
6 and ¢ following from metric (68) becomes
(r* = r})?

d~2 —
7 (r* + r2 + Mr)?

2%drr + di2.  (92)

Near the horizon, where r = r;, we have
I= Q4+ M/r)e %(r—r,) + O((r—ry?). (93)

Substituting this into d&? and replacing e®-dt, the global
physical time interval according to Eq. (79), by id7, we
obtain an expression for the Euclidean metric near the
horizon,

>212(d7)2 + dP. (94)
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For this metric to be regular at [ = 0 (» = r;,), we must
regard 7 as an angular variable with period

2ry, + M)?
(2ry, ) . (95)
2r,e®e
the corresponding temperature is thus
hrje®e
Tgy= ————-. 96
BH 2, + M)? (96)

By means of Eqs. (77), (81), and (86), this can be reduced
to precisely the form (90). Thus far, the thermodynamic
description based on Eq. (84) is consistent.

Of course, our black hole solution must exhibit an
electric potential. By thermodynamics we would expect
that [12] ®gy = —Tpu(0Sgy/90),,. This gives

S 0
BH — 5 =
Gym + \/(GNm) - Gy0

97

which agrees with the potential of the RN black hole in
GR. To verify this result we shall also calculate the electric
potential by a strictly mechanical approach using the con-
servation of energy. We expect the increase in the black
hole’s energy due to the fall into it of a charged particle to
equal the particle’s conserved (kinetic plus electric poten-
tial) energy.

We set out from the Lagrangian for a charged particle
with mass p and charge e,

dx® dxP ~ dx®
= b —pu|—8 o 4+ A —
L =e ( ,uq/ Bap— T “dr)’ (98)

where A, is the potential for F, 5. The e~ %< normalization
will soon be justified. The Lagrangian does not depend on
t; therefore, we have the conserved canonical momentum

P, = a_i = we ¢ g,lﬁ + eAe” ¢ (99)

dJ ar dr
Asymptotically g, — e?%c, so that P, — ue® % +
eA,e”%; now, since the physical global time is given by
f = e%ct, the first term in P, is recognized as minus the
physical value of the particle’s rest plus kinetic energy.
This justifies the normalization we selected for the
Lagrangian. We can thus identify —eA, e~ %< as the physi-
cal value of the particle’s electric energy. The physical
electric potential of the black hole is inferred from this
last energy at the horizon, ®gy = —A,(r),)e .

We calculate A, by integrating the electric field (46)
from infinity to ry,

i o o 0p1/2(-0)
A (rp) =f F,dr = _[ Qe 2 dr
T

2%
h

024010-9



EVA SAGI AND JACOB D. BEKENSTEIN

Substituting here the expression (86) for r;, in terms of M
and @, and switching to physical mass using Eq. (81), we
finally get

Qe
Gym + \(GymP? — Gy O

Ary) = — (101)

But we found the physical black hole electric potential to
be —A,(r;)e” %<, so the present method of calculation gives
exactly the same result, Eq. (97), as the thermodynamic
computation.

The above calculations serve as a consistency check of
the physical values for mass and charge which we attrib-
uted to the black hole. They also demonstrate the physical
consistency of a thermodynamical description of spherical
black holes in TeVeS. In particular, they justify our guess
(84) for the form of the black hole entropy, and verify that
the first law of black hole thermodynamics [12,13] holds
for the TeVeS spherical black holes. All this is accom-
plished by referring all physics to the physical metric.
However, there is one issue for which one must consider
the role of the Einstein metric.

Recently DS [8] showed that, in a theory with Lorentz
symmetry breaking via a time-dependent scalar field, in
which there is more than one maximal propagation speed,
it would be theoretically possible to construct a perpetuum
mobile that would transfer heat from a colder to a hotter
region. This would be accomplished, via Hawking radia-
tion, by exploiting the different temperatures of the nested
horizons corresponding to massless fields with different
propagation speeds.

DS consider a static spherical black hole, and two fields,
¢, and ¢,, which do not interact with each other except
through gravity, and propagate at different speeds c¢; and
c,. Consequently there exist two distinct horizons, one for
field ¢, that radiates a la Hawking with temperature T,
and the second for i, radiating at temperature 7. It is
assumed that ¢, > c¢;; the model then gives T, > T;. DS
assume the black hole is surrounded by two nested shells,
shell A, which interacts with ¢, but is transparent to i,
and shell B, which interacts only with ¢,. Shell A has
temperature 7,, and shell B is hotter at Tp. It is also
assumed that 74 > T| and Ty < T,. DS make the innoc-
uous assumption that heat flows from higher to lower
temperature, with the heat flow increasing monotonically
with temperature difference, and vanishing only when the
two temperatures are equal. Then they point out that heat
will flow from A to the black hole via quanta of ¢, and
from the black hole to B via i, particles. It is possible to
adjust the shell temperatures so that the two mentioned
flows become equal, in which case the black hole is in a
steady state. Then the only overall effect is heat flow from
A to B, that is, from cold to hot. The second law thus
appears to be violated.

TeVeS also breaks local Lorentz symmetry, albeit by a
different mechanism: it is equipped with a timelike non-
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vanishing future-pointing vector field. Further, TeVeS pos-
sesses two metrics; this feature implies different
propagation velocities for light and for gravitational waves.
Does the second law fail in TeVeS within some version of
the DS scenario? In order to construct the appropriate
version, we evidently first need to identify the distinct
horizons associated with light and with gravitational
waves. In TeVeS light propagates on the null cone of the
physical metric g,p, and it is evident immediately from
Eq. (68) that the horizon for light is at » = r;,. By contrast,
tensor gravitational waves propagate on the null cone of
the Einstein metric g,z [3].

With ¢ given by the upper sign alternative of Eq. (69),
the Einstein metric corresponding to the physical metric
(68) is

(r = r)? 2% (r + ry)* 20

(PP + 12 + Mr)?9-78) 7

=2¢ — _

8y = —€ (102)

(r =)= (r + )%~

r(r? + r%l + Mr)©0-+0:-2)"

g, = elt2 = (103)

For this metric the horizon (for gravitational waves) could
only be at r = rj, the same location as the horizon for
light. However, as measured with respect to g,z that
surface’s area diverges: since 6_ = 0 for the physical K,
k region, g,, blows up at horizon, and since the metric is
isotropic, this alone causes the area of the surface r = ry, to
blow up. The curvature scalars calculated with g,z also
diverge at r;,, revealing this location to be an essential
singularity of the Einstein metric, and not a horizon.
Thus we are in no position to form a well-defined entropy
while working in the geometry perceived by gravitational
waves. Likewise, we cannot obtain a black hole tempera-
ture: no entropy, no thermodynamic temperature. A similar
problem arises in trying to calculate the temperature by
applying the Euclidean prescription to the Einstein metric:
the g,, does not behave like /2.

The appearance of a singularity of g,g at the same
surface as the physical metric’s horizon does not pose an
insurmountable problem. It was shown by Zlosnik,
Ferreira, and Starkman [14] that TeVeS can be reformu-
lated as a vector-tensor theory, with a single metric, the
physical metric. Probably, the formal failure to bring out a
thermodynamics in the Einstein metric reflects the fact that
TeVeS is at the bottom a one-metric theory, with the
Einstein metric being no more than a mathematical
convenience.

The absence of a thermodynamic temperature for gravi-
tational waves in the TeVeS black hole background most
likely means that any Hawking-like emission of these
waves is not thermal. The attempt, a la DS, to identify
two distinct black hole temperatures for the same black
hole, each tied to a different maximal propagation velocity,
thus fails. However, it has been suggested to us that the
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paradox can still arise as follows. One associates with the
black hole a graviton effective temperature 7 in lieu of, say,
T, in the DS scenario. This 7 is defined as the temperature
that the shell B, which interacts solely with gravitons,
would have to possess in order to just balance the black
hole’s emission power in gravitons (though, of course,
without any pretense of detailed balance). Now suppose
7 exceeds T, the black hole’s photon temperature. By
suitably adjusting T4 and Ty while observing the ordering
7> Tp > Ty > Ty, it should be possible to annul the over-
all energy gain of the black hole. Then we have a DS
scenario where heat flows from the low temperature 7,
to the higher T without any other change taking place. Of
course if 7 < T, we have to arrange things with 7 < T <
T, <T, to get flow from T} to the higher 7,. We empha-
size that, with the introduction of the effective temperature
7, the propagation velocities and Lorentz symmetry viola-
tion no longer play the dominant role they played in the
original DS argument.

In both of the above setups we seem to have a violation
of the ordinary second law of thermodynamics. This can be
avoided only if necessarily 7= T;, when the above
schemes require 74 = Ty so that no violation is possible.
Our methods in this paper are not suitable for the study of
Hawking-like radiation, so here we cannot affirm or ex-
clude this possibility. But it seems a fair conjecture that, in
fact, 7 = T.

Following the DS paper, Eling, Foster et al. [15] sug-
gested a classical mechanism for violating the second law
in its generalized form within a gravitational theory
equipped with a timelike vector field that causes Lorentz
symmetry violation. This mechanism also relies on two
maximal propagation speeds, with ¢, > cp. It is imple-
mented in a spherically symmetric static situation around a
black hole. The scenario envisages a particle of type A and
one of type B. They both fall through the horizon for
particles of type A and interact with each other in a region
still outside the horizon for type B particles, where the time
Killing vector is spacelike with respect to the metric sensed
by A particles. It is then possible for the interaction to make
the A particle acquire negative energy while the B parti-
cle’s energy remains positive. If now A falls through the B
particle’s horizon, and B escapes passing on its way out
through A’s horizon, the black hole’s mass has been low-
ered in the process. Under mild assumptions, this means
the black hole entropy decreases. But since the particle
state may have been pure all along, there is no ordinary
entropy to compensate, and so the generalized second law
is violated.

We point out that in our black hole solution there is no
intermediate region still outside the second horizon where
the Killing vector already has positive norm. Equation (68)
shows that in the region r < ry, the Killing vector is indeed
spacelike with respect to the physical metric. However, this
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region is not outside the null surface [also, » = r, butin the
Einstein metric Eq. (102)] that might have been construed
as the horizon for gravitons. Thus negative energy particles
can be created, but only inside the black hole, and the
scenario envisaged in Ref. [15] cannot be enacted.

VII. CONCLUSIONS AND SUMMARY

Here we have derived a pair of charged spherical static
black hole solutions of TeVeS that, as far as the physical
metric is concerned, resemble the RN solution of GR. The
new features are the TeVeS vector field which points in the
time direction, and the spherically symmetric TeVeS scalar
field. We have shown that, for a wide range of TeVeS
parameters, the scalar field of one solution is positive
everywhere as long as the field has a modest positive
cosmological value. This insures that superluminal propa-
gation does not take place in that solution’s background.
Regarding the TeVeS analogue of Schwarzschild’s black
hole exhibited earlier by Giannios, we showed that there
are actually two separate solutions here too. For one of
them the evident positivity of the scalar field precludes
superluminal propagation. This singles out the physical
solution.

An element of guesswork entered in both Giannos’ and
our derivations. He had to guess Eq. (28); we had to guess
the RN form of the physical metric. Thus in both cases it is
not clear if the black hole solutions found are the unique
ones. Proof of uniqueness in both cases is still at large.

By expressing the parameters of the charged black hole
in terms of physical attributes measurable by material
Minkowski observers, we calculated the entropy, tempera-
ture, and electric potential characterizing the black hole.
They turn out to be the same as for GR’s RN black hole.
Black hole entropy and temperature cannot be consistently
defined for the Einstein metric, which would have been the
correct framework for studying Hawking emission of
gravitational waves. We consider in this context a modified
version of the Dubovsky-Sibiryakov [8] scenario for bring-
ing about a violation of the second law of thermodynamics
out of Lorentz symmetry breaking. This violation of the
second law can be forestalled if a conjectured equality of
the effective graviton radiation temperature and the photon
Hawking temperature hold. The scenario described by
Eling, Foster et al. [15] for bringing about classical viola-
tions of the second law in theories with Lorentz symmetry
violation cannot be implemented with our TeVeS black
hole solutions.
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