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The creation of large scale magnetic fields is studied in an inflationary universe where electrodynamics
is assumed to be nonlinear. After inflation ends electrodynamics becomes linear and thus the description
of reheating and the subsequent radiation dominated stage are unaltered. The nonlinear regime of
electrodynamics is described by Lagrangians having a power-law dependence on one of the invariants
of the electromagnetic field. It is found that there is a range of parameters for which primordial magnetic
fields of cosmologically interesting strengths can be created.
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I. INTRODUCTION

Magnetic fields are observed to be associated with most
structures in the universe. Observations indicate magnetic
fields on stellar up to supergalactic scales. The field
strengths vary from a few �G on galactic scale, up to
103 G for solar type stars and up to 1013 G for neutron
stars. Furthermore, the magnetic field structure depends on
the object it is associated with. Thus, e.g., magnetic fields
observed in elliptical galaxies show a different structure
from those associated with spiral galaxies [1].

Magnetic fields in stars can be explained by the forma-
tion of protostars out of condensed interstellar matter
which was pervaded by a preexisting large scale magnetic
field (see, e.g., [2]). An open problem remains to explain
the origin of such large scale magnetic fields.

There are different types of proposals. Ranging from
processes on small scales, such as vortical perturbations
and phase transitions to models taking advantage of the
possibility of amplifying perturbations in the electromag-
netic field during inflation in the early universe (see, e.g.,
[3]).

Inflation provides a mechanism to amplify perturbations
in some field to appreciable size. In order for this mecha-
nism to lead to primordial magnetic seed fields of cosmo-
logically interesting strength, the corresponding
Lagrangian should not be conformally invariant. The
Maxwell Lagrangian describing linear electrodynamics is
conformally invariant. There have been already a multitude
of proposals to break the conformal invariance of the
Maxwell theory [4], e.g. by coupling to a scalar field [5],
breaking Lorentz invariance [6], adding extra dimensions
[7] or a coupling to curvature terms [8].

Here nonlinear electrodynamics is considered. It has its
origins in the search for a classical singularity-free theory
of the electron by Born and Infeld [9]. Later on it was
realized that virtual electron pair creation induces a self-
coupling of the electromagnetic field. For slowly varying,

but arbitrarily strong electromagnetic fields the self-
interaction energy was computed by Heisenberg and
Euler (cf. [10–12]).

The propagation of a photon in an external electromag-
netic field can be described effectively by the Heisenberg-
Euler Langrangian. Moreover, the transition amplitude for
photon splitting in quantum electrodynamics is nonvanish-
ing in this case. In principle, this might lead to observa-
tional effects, e.g., on the electromagnetic radiation
coming from neutron stars which are known to have strong
magnetic fields [12,13]. In particular, certain features in the
spectra of pulsars can be explained by photon splitting
[14].

Finally, Born-Infeld type actions also appear as a low
energy effective action of open strings [15,16]. As was
shown in [17] the low energy dynamics of D-branes is
described by the Dirac-Born-Infeld action.

The model of the cosmological background that will be
considered consists of a stage of de Sitter inflation fol-
lowed by reheating and a standard radiation dominated
stage. Quantum fluctuations in the electromagnetic field
are excited within the horizon during inflation. Once out-
side the horizon they become classical perturbations. As
mentioned above, in general, the conformal invariance of
the four dimensional Maxwell field has to be broken in
order to amplify the perturbations in the electromagnetic
field significantly. Thus, here electrodynamics is consid-
ered to be nonlinear during the de Sitter stage. This could
be motivated by the presence of possible quantum correc-
tions to quantum electrodynamics at high energies.
However, once inflation ends electrodynamics is described
by standard Maxwell electrodynamics. Thus the subse-
quent evolution described by the standard model of cos-
mology is unchanged.

II. NONLINEAR ELECTRODYNAMICS IN THE
EARLY UNIVERSE

The Born-Infeld or Heisenberg-Euler Lagrangians pro-
vide particular examples of theories of nonlinear electro-
dynamics. In general the action of nonlinear electro-
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dynamics coupled minimally to gravity can be written as,
see e.g. [16,18]

 S �
1

16�GN

Z
d4x

�������
�g
p

R�
1

4�

Z
d4x

�������
�g
p

L�X; Y�;

(2.1)

where L�X; Y� is the Lagrangian of nonlinear electrody-
namics. Furthermore, the invariants are denoted by X �
1
4F��F

�� and Y � 1
4F��

�F��, where �F�� is the dual bi-
vector given by �F�� � 1

2
�����
�g
p �����F��, and ����� the

Levi-Civita tensor with �0123 � �1.
The equations of motion are given by

 r�P
�� � 0 (2.2)

where P�� � ��LXF�� � LY�F���, furthermore LA de-
notes LA � @L=@A, and

 r�
�F�� � 0; (2.3)

which implies that F�� � @�A� � @�A�. The notation
used is given by �; �; � � � � 0; � � � ; 3 and i; j; � � � � 1, 2,
3. Moreover, the electromagnetic field is treated as a per-
turbation so that the vacuum Einstein equations apply to
the background cosmology. The background metric is
chosen to be of the form

 ds2 � a2���	�d�2 � dx2
: (2.4)

Furthermore, following [4] the Maxwell tensor is written in
terms of the electric and magnetic fields, ~E and ~B, respec-
tively, as follows,

 F�� � a2

0 �Ex �Ey �Ez
Ex 0 Bz �By
Ey �Bz 0 Bx
Ez By �Bx 0

0
BBB@

1
CCCA: (2.5)

These are the components in the ‘‘lab’’ frame in which in
linear electrodynamics the frozen-in magnetic field decays
in an expanding universe as 1=a2.

Then Eqs. (2.2) and (2.3) imply

 r � ~E�
�rLX� � ~E

LX
�
�rLY� � ~B

LX
� 0 (2.6)
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� 0 (2.7)

 r � ~B � 0 (2.8)

 

1

a2
@��a

2 ~B� � r� ~E � 0: (2.9)

Although Maxwell’s equations are recovered for
Lagrangians of the form L � n0X� n1Y, where n0 and

n1 are constants, standard linear electrodynamics corre-
sponds to L � �X. Equations (2.6), (2.7), (2.8), and (2.9)
are a set of four first order partial differential equations
which can be transformed into a set of two second order
partial differential equations. This describes the evolution
of the nonlinear electromagnetic field in a curved back-
ground. In linear electrodynamics this procedure leads to
two decoupled wave equations, one for the magnetic and
one for the electric field. In the case of nonlinear electro-
dynamics the resulting wave equations for the electric and
the magnetic fields are no longer decoupled because of the
nonlinearities.

Taking the curl of Eq. (2.7) and using Eqs. (2.8) and
(2.9), a wave type equation for the magnetic field ~B can be
found.
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Similarly, taking the time derivative of Eq. (2.7) and using
the remaining equations results in a wave type equation for
the electric field ~E,
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Equations (2.10) and (2.11), respectively, are coupled
and nonlinear which makes it quite difficult to find exact
solutions. However, as a first approximation it might be
interesting to find the behavior of the magnetic field ne-
glecting the spatial dependence. This is the long wave-
length approximation. Considering variations over a
characteristic comoving length scale L much larger than
the horizon aH then the spatial derivatives of a quantity
can be neglected with respect to its time derivatives (see,
for example, [19]). In general, ~E and ~B can be written in
terms of Fourier expansions,

 

~E� ~x; �� �
Z
d3kei ~k� ~x ~Ek���

~B� ~x; �� �
Z
d3kei ~k� ~x ~Bk���:

(2.12)

Thus in the long wavelength approximation effectively
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only modes with small wave numbers will contribute to the
Fourier expansions. Therefore, e.g. ~B� ~x; �� ’Rkc

0 d
3kei ~k� ~x ~Bk���. Just using one mode ei ~k� ~x ~Bk��� for k�

kc & aH one can show that in the limit k! 0 the terms
involving spatial derivatives become subleading. As it is
commonly done, this approximation is applied to the sec-
ond order equations (2.10) and (2.11) (cf., for example,
[4]).

A different way of looking at this is to use the stochastic
approach to inflation where the mode expansion of a field,
for example, the inflaton, is separated into modes larger
than the coarse graining domain and modes with wave-
lengths smaller than the coarse graining scale [20]. The
superhorizon modes contribute to the coarse grained field
which is made homogeneous by averaging over the coarse
graining domain. The effect of modes leaving the coarse
graining domain and contributing to the coarse grained
field can effectively be modeled by a noise term in the
equation of the coarse grained field. Neglecting this back-
reaction effect the dynamics of the field on superhorizon
scales is basically described by the homogeneous, coarse
grained field.

Thus neglecting spatial derivatives Eq. (2.10) implies

 

~B 00
k �

L0X
LX

~B0k �
L0Y
LX

~E0k �
L0Y
LX

�
L0X
LX

~Ek �
L0Y
LX

~Bk

�
� 0;

(2.13)

where ~Bk � a2 ~Bk, ~Ek � a2 ~Ek and a prime denotes the
derivative with respect to conformal time �, that is 0 �
d
d� . In the case where the Lagrangian only depends on X,

LY � 0, ~Bk � const is a solution which corresponds to the
conformally invariant case, that is linear electrodynamics.
In general, for LY � 0, Eq. (2.13) implies

 

~B 0
k �

~Kk

LX
; (2.14)

where ~Kk is a constant vector and LX � 0. Moreover,
linear electrodynamics is recovered for ~Kk � 0.

Furthermore, Eq. (2.11) implies

 

d
d�

�
~E0k �

L0X
LX

~Ek �
L0Y
LX

~Bk

�
’ 0: (2.15)

Equation (2.15) can be integrated to give

 

~E 0k �
L0X
LX

~Ek �
L0Y
LX

~Bk � ~Pk; (2.16)

where ~Pk is a constant vector. The homogeneous part of
Eqs. (2.10) and (2.11) are coupled nontrivially because of
LY , cf. Eqs. (2.13) and (2.15). Therefore in order to find
solutions, the Lagrangian will be considered to be only a
function of X, L � L�X�. Furthermore, since X � 1

2 �
~B2 �

~E2� it is useful to find equations for ~E2
k and ~B2

k which are
given by, for ~P2

k > 0,

 

~E 200
k � 3

L0X
LX

~E20
k � 2

L00X
LX

~E2
k � 2 ~P2

k (2.17)

 

~B 200
k �

L0X
LX

~B20
k � 2

~K2
k

L2
X

� 0: (2.18)

Assuming that the constant vector in Eq. (2.16) vanishes,
~Pk � 0, leads to a significant simplification. In this case,
Eq. (2.16) for L � L�X� can be solved immediately, giving
for the electric field

 

~E k �
~Mk

LX
; (2.19)

where ~Mk is a constant vector. Thus for ~Pk � 0 Eq. (2.18)
leads to an equation only involving X and LX, namely,
 

d2

d�2

�
2a4X�

~M2
k

L2
X

�
�

1

LX

dLX
d�

d
d�

�
2a4X�

~M2
k

L2
X

�

� 2
~K2
k

L2
X

� 0: (2.20)

In order to solve this equation a particular Lagrangian
has to be chosen. Here it is assumed that the Lagrangian is
of the form

 L � �
�
X2

�8

�
���1�=2

X; (2.21)

where � is a dimensionless parameter and � a dimensional
constant. This is the abelian Pagels-Tomboulis model [21].
The non-Abelian theory was proposed as an effective
model of low energy QCD [22]. Evidently, linear electro-
dynamics is recovered for the choice � � 1. The
Lagrangian (2.21) is chosen since it leads to a simplifica-
tion of the equations, but still allows to study the effects of
a strongly nonlinear theory of electrodynamics on the
generation of primordial magnetic fields. In general, the
energy-momentum tensor derived from a Lagrangian L�X�
is given by

 T�� �
1

4�
	LXg

��F��F�� � g��L
: (2.22)

Furthermore, for the Lagrangian (2.21) the trace of the
energy-momentum tensor is given by

 T �
1� �
�

L; (2.23)

which vanishes only in the case � � 1 that is for linear
electrodynamics. In order to check if there are any con-
straints on the parameter � the energy-momentum tensor is
calculated explicitly. The Maxwell tensor can be decom-
posed with respect to a fundamental observer with 4-

velocity u� into an electric field ~̂E and a magnetic field
~̂B, following [23],
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 F�� � 2Ê	�u�
 � ���	
u	B̂

; (2.24)

where ���	
 �
�������
�g
p

���	
 and u�u� � �1. Then the
electric and magnetic field are given, respectively, by
Ê� � F��u� and B̂� �

1
2���!	u

�F!	. The lab frame is
defined by the proper lab coordinates �t; ~r� determined by
dt � ad�, d~r � ad~x. Applying a coordinate transforma-
tion then gives the relation between the fields measured by
a fundamental observer and the lab frame. Thus using the
four velocity of the fluid u� � �a�1; 0; 0; 0� this gives the
relation [24]

 Ei � aÊi; Bi � aB̂i: (2.25)

As shown in [23] the energy-momentum tensor of an
electromagnetic field can be cast into the form of an
imperfect fluid. The energy-momentum tensor of an im-
perfect fluid is given by (see for example, [23]),

 T�� � �u�u� � ph�� � 2q��u�� � ���; (2.26)

where � is the energy density, p the pressure, q� the heat
flux vector, and ��� an anisotropic pressure contribution
of the fluid. h�� � g�� � u�u� is the metric on the space-
like hypersurfaces orthogonal to u�. With q�u� � 0 and
���u

� � 0,

 � � T��u�u� q� � �T��u�h��

Q�� � T��h
�
�h�� Q�� � ph�� � ���:

(2.27)

Thus using Eqs. (2.22) and (2.24) the energy density and
the heat flux vector for the Pagels-Tomboulis model (2.21)
are found to be

 � � �
1

8�
L
X
	�2�� 1�Ê�Ê

� � B̂�B̂
�
 (2.28)

 q� �
�

4�
L
X
����
u�Ê

�B̂
: (2.29)

Imposing the condition that ��� is trace-free then the
pressure and ��� are given by

 p �
1

3
��

�� 1

3�
L (2.30)

 

��� � �
�

4�
L
X

�
1

3
�Ê�Ê

� � B̂�B̂
��h��

� �Ê�Ê� � B̂�B̂��
�
: (2.31)

Thus considering � [cf. Eq. (2.28)] in general there is a
constraint on �. Namely, the positivity of � requires �  1

2 .
Although in this work the Abelian Pagels-Tomboulis

model [cf. Eq. (2.21)] is used, for completeness, other types
of Lagrangians describing theories of nonlinear electro-
dynamics are briefly summarized in the following. The
self-interaction energy of a slowly varying, but arbitrarily

strong electromagnetic field was calculated by Heisenberg
and Euler [10,11]. Expanding the resulting Lagrangian into
an asymptotic series gives a Lagrangian of the form [10–
12]

 L � X� 	0X
2 � 	1Y

2: (2.32)

This describes the Heisenberg-Euler theory for the choice
	0 �

8�2

45m4
e

and 	1 �
14�2

45m4
e
, where � is the fine structure

constant and me the electron mass. Assuming the coeffi-
cients to be general and imagining a situation where the
quadratic term in X is dominant, the theory can be well
approximated by the Pagels-Tomboulis Lagrangian.

Born-Infeld theory is another example of a theory of
nonlinear electrodynamics. It was proposed as a classical,
singularity-free theory of the electron [9]. The Lagrangian
is given by (cf. [15–17])

 L �
1

�
�1�

��������������������������������������
1� 2�2X� �4Y2

q
�; (2.33)

where � is a parameter. This type of action also appears in
the description of open string states in string or M-theory
[15–17]. In this case � � 2��0 with �0 the string tension.
Considering a general parameter � and moreover the case
in which the term �2X is dominant results in a Lagrangian
of the Pagels-Tomboulis form. Furthermore, the parameter
� in (2.21) is given by � � 1

2 .
However, since both invariants X and Y appear, the

resulting equations are nontrivially coupled in X and Y
which makes it difficult to find solutions in closed form. In
order to study the effects of nonlinear electrodynamics in
the early universe, the Abelian Pagels-Tomboulis theory
[cf. Eq. (2.21)] will be used. This has the advantage that
even though it is a strongly nonlinear theory of electro-
dynamics, it is still possible to find approximate solutions
in certain regimes.

Therefore, in the following we will assume that the
theory is determined by the abelian Pagels-Tomboulis
Lagrangian (2.21).

III. ESTIMATING THE MAGNETIC FIELD
STRENGTH IN THE PAGELS-TOMBOULIS

MODEL

The following model will be considered. During de
Sitter inflation electrodynamics is nonlinear and described
by the Pagels-Tomboulis Lagrangian (2.21). This means
that electrodynamics is highly nonlinear and very different
from standard Maxwell electrodynamics. At the end of
inflation electrodynamics becomes linear and thus the
description of reheating and the subsequent radiation
dominated stage is unaltered.

The scale factor during de Sitter is given by

 a��� � a1

�
�
�1

�
�1
; (3.1)
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where � � �1 < 0. The end of inflation is assumed to be at
� � �1.

Equations (2.17) and (2.18) are coupled, since X depends
on ~E2 and ~B2, in particular, the invariant X reads, 2a4X ’
~B2
k � ~E2

k. In order to make progress three different regimes
of approximation will be considered.

(i) ~B2
k ’ O� ~E2

k�.
(ii) ~B2

k � ~E2
k. This implies the approximation 2a4X ’

~B2
k.

(iii) ~E2
k �

~B2
k. This implies the approximation 2a4X ’

� ~E2
k.

As will be explained further on, following [4] it is
assumed that quantum fluctuations in the electromagnetic
field provide an initial magnetic and electric field.
Therefore, it seems naturally to expect that initially ~B2

k ’

O� ~E2
k�. Thus the three cases mentioned above correspond

to different types of evolution of the ratio ~B2
k= ~E

2
k during

inflation. After the end of inflation, during the radiation
era, while the electric field decays rapidly due to plasma
effects, the magnetic field remains (see, e.g., [4,25]).

A. Case (i) ~B2
k ’ O� ~E2

k�

As a further simplification it is assumed that the contri-
bution of the constant vector ~P2

k in Eq. (2.17) vanishes. In
this case the Eq. (2.20) during inflation in the Pagels-
Tomboulis model (2.21) can be written in the form
 ��
x
x1

�
�4
� �1��� 1�y�2��1

�
�y

� ���� 1�
�
�1�y�2��1 �

�
x
x1

�
�4
�

_y2

y

�
4��� 1�

x1

�
x
x1

�
�5

_y�
20

x2
1

�
x
x1

�
�6
y� �2y

�2���1�;

(3.2)

where a dot denotes the derivative with respect to x and
y � y�x�. Furthermore the following definitions have been
used,

 x �
�

M�1
P

; y �
X

�4 ;

�1 �
M̂2

�̂4�2a4
1

; �2 �
K̂2

�̂4�2a4
1

:

(3.3)

Moreover, the hatted quantities are dimensionless con-
stants,

 �̂ �
�

MP
; M̂2 �

~M2
k

M4
P

; K̂2 �
~K2
k

M6
P

: (3.4)

Finally, MP is the Planck mass. Equation (3.2) is a non-
linear differential equation and thus to find exact solutions
is not trivial. Therefore, in order to proceed one further

approximation will be made. It turns out that there is an
approximate solution in closed form for � > 1. In this case
neglecting the terms involving � xx1

��, with the exponents
� � �4, �5, �6, yields the equation

 y �y � �� _y�2 �
1

1� �
m2y2; (3.5)

where m2 � �2

�1
which is solved by

 y�x� � C2	cosh�mx� ��� 1�mC1�

1=�1���; (3.6)

whereC1,C2 are constants. In general, the magnetic field is
given by

 

~B 2
k � 2X�

~M2
k

�2a4

�
X

�4

�
�2���1�

: (3.7)

However, for the approximate solution (3.6) the first term
becomes subdominant and the magnetic field can be ap-
proximated by

 

~B 2
k ’

~M2
k

�2a4

�
X

�4

�
�2���1�

: (3.8)

Thus, the magnetic field at the end of inflation at the time
�1 can be expressed in terms of the magnetic field at the
time, say �2, when the comoving length scale  was
crossing the horizon during inflation. Thus

 

B2
k�a1�

B2
k�a2�

’ e�4N�� cosh2	m�x1 � ��� 1�C1�


cosh2	m�x2 � ��� 1�C1�

; (3.9)

where N�� is the number of e-folds before the end of
inflation at which  left the horizon, that is, eN�� � a1=a2.
Furthermore, the constant C1 is chosen such that ���
1�C1 � �x2. Using that during de Sitter inflation, a �
a1��1=�� and the number of e-folds, results in the mag-
netic energy density �B at the end of inflation,

 �B�a1� ’ �B�a2�e�4N��cosh2	�mx1�eN�� � 1�
; (3.10)

where �B �
B2

8� . Following [4] the ratio of magnetic energy
density to radiation energy density, r is introduced,

 r �
�B
��
: (3.11)

In the case of linear electrodynamics, the energy density in
the magnetic field and the radiation background decay both
as a�4 and thus the ratio r stays invariant as the universe
expands. In order to seed a galactic dynamo r has to be at
least r � 10�37 corresponding to a magnetic seed field at
the time of galaxy formation Bs ’ 10�20 G. In order to
seed the galactic field directly, without a galactic dynamo
operating, r has to be of order r � 10�8. Furthermore, we
also note, that in a flat universe with a cosmological
constant, these bounds can be lowered significantly. In
this case, r has to be at least r � 10�57 to successfully
seed a galactic dynamo [26]. This implies that the magnetic
field at the time of galaxy formation has to be at least of
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order Bs ’ 10�30 G. Following [4], it is assumed that the
energy density stored in the mode with comoving wave-
length  is of the order of the energy density in a thermal
bath at the Gibbons-Hawking temperature of de Sitter
space. This leads to �B�a2� ’ H

4 ’ �M
4

M2
p
�2, where the con-

stant energy density during inflation is given by M4.
Finally, using that at the end of inflation the energy density
in the radiation background is given by �� � M2T2

RH,
where TRH is the reheat temperature, the ratio of magnetic
to radiation energy density at the end of inflation at � � �1

is found to be,

 r�a1� ’

�
M
MP

�
6
�
TRH
MP

�
�2
e�4N��cosh2	�mx1�e

N�� � 1�
:

(3.12)

Furthermore, following [4], the number of e-folds can be
found as

 eN�� ’ 9:2� 1025

�


Mpc

��
M
MP

�
2=3
�
TRH
MP

�
1=3
; (3.13)

where it is assumed that the scale factor today is a0 � 1
and thus comoving and physical scales coincide in the
present. Thus the ratio r at the end of inflation is given by
 

r�a1� ’ 10�104

�


Mpc

�
�4
�
M
TRH

�
10=3

cosh2

�

�
�9:2� 1025

�


Mpc

��
M
MP

�
2=3
�
TRH
MP

�
1=3
mx1

�
:

(3.14)

Therefore, in order to achieve, a ratio of magnetic to
radiation energy density at the end of inflation, which is
at least some value r0, that is r�a1�  r0,mx1 has to satisfy,

 �mx1  10�26

�


Mpc

�
�1
�
M
MP

�
��2=3�

�

�
TRH
MP

�
��1=3�

arccosh
�

1052

�


Mpc

�
2

�

�
TRH
M

�
5=3
r1=2

0

�
: (3.15)

Equation (3.15) only implies a constraint on mx1 if the
argument of arccosh is bigger or equal to one which can be
interpreted as a bound on the reheat temperature.
Assuming a galactic scale, that is  � 1 Mpc implies,

 10 52

�
TRH
M

�
5=3
r1=2

0  1; (3.16)

which for r0 � 10�37 implies TRH  1 MeV, where it was
assumed [4] that the inflationary energy scale is given by
M � 1017 GeV. This is always satisfied since the reheat
temperature has to be at least 10 MeV (for even lower
values, see [27]) in order to allow for nucleosynthesis to
take place unaltered. For a smaller value of r0, say r0 �

10�57, the reheat temperature is required to be at least of
order 103 GeV. However, in this work the reheat tempera-
ture is assumed to be at least TRH  109 GeV. There is
also an upper bound on �mx1 coming from the require-
ment that r < 1 in order not to overclose the universe. This
implies,
 

�mx1 < 10�26

�


Mpc

�
�1
�
M
MP

�
��2=3�

�
TRH
MP

�
��1=3�

� arccosh
�

1052

�


Mpc

�
2
�
TRH
M

�
5=3
�
: (3.17)

The constraint equations (3.15) and (3.17) can always be
satisfied, since, by assumption, r0 � 1 and, moreover, for
physically interesting models r0 � 1. Thus assuming  �
1 Mpc andM � 1017 GeV, the following values for�mx1

are found. For a model with reheat temperature TRH �
109 GeV [4] the parameter �mx1 has to be in the range
2:7� 10�20 <�mx1 < 5� 10�20 in order to achieve a
magnetic seed field with a field strength to be at least Bs ’
10�20 G, corresponding to r0 � 10�37. For a higher reheat
temperature TRH � 1017 GeV [4], for the same magnetic
seed field strength �mx1 has to be in the range, 9:5�
10�23 <�mx1 < 1:5� 10�22. And similarly, for the less
conservative bound r0 � 10�57, for TRH � 109 GeV,
�mx1 has to be in the range 1:4� 10�20 <�mx1 < 5�
10�20 and for TRH � 1017 GeV it is found that 6:7�
10�23 <�mx1 < 1:5� 10�22.

Thus there is a range of parameters for which strong
enough magnetic seed fields can be created in the Pagels-
Tomboulis model of nonlinear electrodynamics. Since the
analysis is based on the approximate exact solution given
by Eq. (3.6) it is also important to check that the solution
provides a good approximation to the solution of the full
differential equation (3.2). This has been done in
Appendix A.

In summary, for � > 1, there is an approximate analyti-
cal solution which allows to find an expression for the ratio
of the magnetic to radiation energy density. There is a
range of parameters for which magnetic seed fields of
cosmologically interesting field strengths can be created.

B. Case (ii) ~B2
k � ~E

2
k

In this case Eq. (2.18) takes the form,

 

d2

d�2
�a4X�����1�

1

X
dX
d�

d
d�
�a4X��

~K2
k

�2

�
X

�4

�
�2���1�

�0;

(3.18)

where it has been used that 2X ’ ~B2
k. It is possible to find

different types of solutions of Eq. (3.18) depending on the
value of the parameter � of the Pagels-Tomboulis model.
On the one hand there are power-law solutions for � � 1

2
and � � 5

4 . On the other hand there are solutions with a
distinct behavior for � � 1

2 and � � 5
4 . Actually of the

latter ones only the case � � 1
2 will be discussed explicitly.
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This is so because for � � 5
4 it is only possible to find an

implicit solution depending on Euler’s � function which
makes it very difficult to estimate the primordial magnetic
field strength.

1. Solution for � � 1
2 and � � 5

4

For � � 1
2 and � � 5

4 , Eq. (3.18) can be solved by a
power-law function,

 X � X1

�
�
�1

�
�
: (3.19)

This leads to the solution for the magnetic field

 

~B 2
k � 2�4

�
2

�2x2
1

�
5� 4�
2�� 1

�
2
�

1=�1�2��
�
�
�1

�
6=�2��1�

;

(3.20)

where, as before, �2 �
K̂2

a4
1�̂4�2 . Thus using the definitions

as given for case i.) (cf. Sec. III A) the ratio of magnetic
energy density to radiation energy density at the end of
inflation r�a1� is found to be, for � � 1

2 , � � 5
4 ,

 r�a1� ’ �9:2� 1025���6=�2��1��

�


Mpc

�
��6=�2��1��

�

�
M
MP

�
2��6��5�=�2��1��

�
TRH
MP

�
��4�=�2��1��

(3.21)

The range of validity of the assumption ~B2
k � ~E2

k can be
checked to first order by using the solution for B2

k ’ 2X,
[cf. Eq. (3.20)] in the equation for ~E2

k, Eq. (2.17). This leads
to

 

~E 200
k � �1�

�1 ~E20
k � �2�

�2 ~E2
k � 2 ~P2

k; (3.22)

where �1 � 3���� 1� and �2 � 2���� 1�	���� 1� �
1
. This equation is solved by, for ~P2

k � 0,

 

~E 2
k �

~P2
k

�
2�� 1

8�� 7

�
2
�2 � c0

�
�
�1

�
��4��5�=�2��1�

� c1

�
�
�1

�
��12���1��=�2��1�

; (3.23)

where c0 and c1 are constants. For ~P2
k � 0, the solution is

given by Eq. (2.19) which will be discussed below. During
de Sitter inflation the scale factor is given by Eq. (3.1).
Thus, finally, the ratio ~E2

k= ~B
2
k is given by

 

~E2
k

~B2
k

’ �0

�
�
�1

�
12����1�=�2��1��

��1

�
�
�1

�
�4��5�=�2��1�

��2

�
�
�1

�
�2
; (3.24)

where �0, �1, and �2 are constants depending on the
constants of the solutions of the electric and magnetic field.
However, their explicit form is not important here. Since
during inflation, �< �1 < 0, and hence �=�1 > 1. At

� � �2, that is at the time when the mode is leaving the

horizon during inflation, the initial condition,
~E2
k
~B2
k
��2� � 1

is imposed. In order for the approximation to be consistent,

it is required that the solution evolves such that
~E2
k
~B2
k
� 1. So

assuming that each of the terms is of the order of 1
3 at � �

�2 then the constants �0, �1 and �2 can be estimated in
terms of �2

�1
. This leads to

 

~E2
k

~B2
k

�
1

3

�
�
�2

�
12����1�=�2��1��

�
1

3

�
�
�2

�
�4��5�=�2��1�

�
1

3

�
�
�2

�
�2
: (3.25)

Thus the last term is growing and in general,
~E2
k
~B2
k

is not

smaller than 1. Thus in order for the solution to be con-
sistent within the approximation, the constant c1 in
Eq. (3.23) has to be set to zero. Furthermore, the exponents
in Eq. (3.25) have to be positive, imposing the constraints,
� < 1

2 or � > 5
4 . The former one is ruled out since �  1

2 .
Then by assuming that the two remaining terms, after
setting c1 to zero, contribute equally at � � �2, the ratio
~E2
k
~B2
k
� 1 for �  �2 and � > 5

4 .

In order to seed the galactic dynamo, it is required that
r  r0 where r0 is the lower bound on the strength of the
magnetic field. In the expression for r � �B

��
at the end of

inflation there are, apart from �, two parameters: on the
one hand the constant energy density during inflation given
by M4 and on the other hand the reheat temperature, TRH.
Following [4] M is chosen to be M � 1017 GeV. The
reheat temperature depends on the details of the reheating
process. It can be as low as 4 MeV [27] and in general, one
expects an upper limit TRH � M. However, in supersym-
metric theories this limit is lowered down to 109 GeV [28].

In Fig. 1 logr is plotted against the Pagels-Tomboulis
parameter � for the inflationary energy scale M �
1017 GeV for the reheat temperatures TRH � 1017 GeV
and TRH � 109 GeV. As can be seen from Fig. 1 for � >
5
4 there is range of � for which primordial magnetic fields
with cosmologically interesting field strengths can be
generated.

In the case ~P2
k � 0 the solution for ~Ek is given by

Eq. (2.19). This leads to

 

~E 2
k ’

~M2
k

�2

�
X2

�8

�
1��

(3.26)

and thus

 

~E2
k

~B2
k

’
1

m2x2
1

�
5� 4�
2�� 1

�
2
�
�
�1

�
�2
; (3.27)

where as before [cf. Eq. (3.2)]m2 � �2

�1
. Thus imposing the
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initial condition
~E2
k
~B2
k
��2� ’ 1 implies

 

~E2
k

~B2
k

�

�
�2

�

�
2
; (3.28)

which implies
~E2
k
~B2
k
 1 for �  �2. Thus this solution is not

consistent with the approximation.

2. Solution for � � 1
2

In this case Eq. (3.18) can be written as

 �g�
1

2

�
4

x
�

_g
g

�
_g� �2

�
x
x1

�
4
g � 0; (3.29)

where g � � xx1
��4X, x � �=M�1

P and �2 a constant as

defined before, [cf. Eq. (3.3)]. This is solved by g�x� �

c2cosh2	��2

18�
1=2x1�

x
x1
�3 � c1
, where c1 and c2 are constants.

Thus with ~B2
k ’ 2X it follows that

 

~B 2
k ’ 2c2

�
x
x1

�
4
cosh2

��
�2

18

�
1=2
x1

�
x
x1

�
3
� c1

�
: (3.30)

This then leads to the ratio of magnetic energy density to
radiation background energy density r � �B

��
at the end of

inflation,
 

r�a1�’10�104

�


Mpc

�
�4
�
M
TRH

�
10=3

�cosh2

�
�8�1077x1

�
�2

18

�
1=2
�


Mpc

�
3
�
M
MP

�
2TRH
MP

�
:

(3.31)

Here the constant c1 has been chosen as c1 �

���2

18�
1=2x1�

�2

�1
�3. Imposing the condition that r0 < r�a1�<

1 results, for  � 1 Mpc, in

 

10�78

�
M
MP

�
�2
�
TRH
MP

�
�1

arccosh
�

1052

�
TRH
M

�
5=3
r1=2

0

�

<�x1

�
�2

18

�
1=2
< 10�78

�
M
MP

�
�2

�

�
TRH
MP

�
�1

arccosh
�

1052

�
TRH
M

�
5=3
�
: (3.32)

The resulting values for different choices of TRH, M and r0

are given in Table I. Furthermore, in order to check the
validity of the solution (3.30) which was derived under the
assumption that ~E2

k= ~B
2
k � 1, we consider the cases ~P2

k > 0
and ~P2

k � 0. In the case ~P2
k > 0 the electric field strength is

determined by Eq. (2.17). As a first approximation, the
solution for X ’ 1

2
~B2
k, where ~B2

k is given by (3.30), will be
used in (2.17). For consistency, the resulting solution for
the electric field strength should be much smaller than the

magnetic field strength. In Eq. (2.17) the expressions for L
0
X
LX

and L00X
LX

are needed which are given in Appendix B. The

cosmologically interesting values of � � ���2

18�
1=2x1 are

very small, � & O�10�62�, as can be seen from Table I.
Thus to zeroth order in � Eq. (2.17) becomes,

 

~E 200
k �

6

�
~E20
k �

12

�2
~E2
k � 2 ~P2

k; (3.33)

which is solved by

 

~E 2
k �

~P2
k�2

1

�
�
�1

�
2
� �0

�
�
�1

�
3
� �1

�
�
�1

�
4
; (3.34)

where �0 and �1 are constants. Therefore

 

~E2
k

~B2
k

’
~P2
k�2

1�
�
�1
�2 � �0�

�
�1
�3 � �1�

�
�1
�4

2c2a4
1cosh2	���2

18�
1=2x1	�

�2

�1
�3 � � ��1

�3


: (3.35)

Imposing the initial condition
~E2
k
~B2
k
��2� � 1 it can be seen

that
~E2
k
~B2
k

is decreasing very fast and thus the solution (3.30) is

consistent at lowest order in �.
In the case ~P2

k � 0 the solution for the electric field
strength is given by Eq. (2.19), leading to

TABLE I. Lower and upper bounds of�x1�
�2

18�
1=2 derived from

Eq. (3.32) for different values of the reheat temperature TRH, the
constant energy density during inflation determined by M and
the lower limit on the field strength of a primordial magnetic
seed field determined by r0. The notation used indicates
�x1�

�2

18�
1=2
low <�x1�

�2

18�
1=2 <�x1�

�2

18�
1=2
up .

TRH�GeV� M�GeV� r0 �x1�
�2

18�
1=2
low �x1�

�2

18�
1=2
up

109 1017 10�37 8:6� 10�63 1:6� 10�62

109 1017 10�57 4:4� 10�63 1:6� 10�62

1017 1017 10�37 8:6� 10�71 1:6� 10�70

1017 1017 10�57 4:4� 10�71 1:6� 10�70

1.5 2 2.5 3 3.5 4 4.5 5
δ

-100

-80

-60

-40

-20

lo
g

r

FIG. 1. For  � 1 Mpc logr [cf. Eq. (3.21)] is shown as a
function of � for TRH � 1017 GeV (black line) and TRH �
109 GeV (long-dashed line). The dashed line corresponds to r �
10�37.
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~E 2
k ’ 4 ~M2

k

�
X2

�8

�
1=2
: (3.36)

This implies

 

~E2
k

~B2
k

’
�1

2

�
�
�1

�
4
: (3.37)

Imposing that initially
~E2
k
~B2
k
��2� � 1 it follows that

 

~E2
k

~B2
k

�

�
�
�2

�
4
; (3.38)

which is smaller than 1 for �> �2. Hence the solution is
consistent with the approximation.

Thus, for the solution in this case, there is a choice of
parameters which allows to create primordial magnetic
fields of cosmologically interesting field strengths. This
holds for both cases, ~P2 > 0 and ~P2 � 0.

C. Case (iii) ~E2
k �

~B
2
k

Starting out at the same order of magnitude, in this
approximation at the end of inflation the energy density
in the electric field is much larger than in the magnetic
field. The approximation implies that ~E2

k ’ �2a4X. In the
case ~P2

k > 0 Eq. (2.17) yields to
 

d2

d�2 �a
4X� � 3��� 1�

X0

X
d
d�
�a4X� � 2��� 1�

�

�
X00

X
� ��� 2�

�
X0

X

�
2
�
a4X � � ~P2

k; (3.39)

which is solved by, for � � 5
6 ,

 X � �
~P2
k�

2
1

2a4
1�6�� 5�2

�
�
�1

�
6
: (3.40)

Thus using X � X1�
�
�1
�� in the equation determining the

magnetic field [cf. Eq. (2.18)] gives,
 

~B2
k �

~K2
k�

2
1

a4
1�

2	1� ���� 1�
2

�
X2

1

�8

�
����1�

�
�
�1

�
6�2����1�

� b0

�
�
�1

�
4
� b1

�
�
�1

�
5�����1�

; (3.41)

where b0 and b1 are constants and X1 � �
~P2
k�

2
1

2a4
1�6��5�2

. With

� � 6 this leads to

 

B2
k

E2
k

’ �0

�
�
�1

�
�12���1�

��1

�
�
�1

�
�2
��2

�
�
�1

�
5�6�

;

(3.42)

where �0, �1 and �2 are constants which can be found
from the expressions for E2

k and B2
k. Imposing the initial

condition E2
k��2� ’ B2

k��2� and that all terms contribute
equally at this time results in

 

B2
k

E2
k

’
1

3

�
�2

�

�
12���1�

�
1

3

�
�2

�

�
2
�

1

3

�
�2

�

�
6��5

: (3.43)

Thus in order to achieve, B2
k=E

2
k � 1 the constant b0 in

Eq. (3.41) has to be set to zero. With the remaining two
terms contributing equally at � � �2 and requiring 1

2 <
�< 5

6 leads to solutions which are consistent with the
assumption B2

k=E
2
k � 1. Furthermore, in the expression

for B2
k the dominant contribution comes from the last

term, thus the evolution of the magnetic field is given by
~B2
k � �

�
�1
�� where � � 11� 6� and 1

2 < �< 5
6 . Moreover,

the ratio of the energy density in the magnetic field and the
background radiation r at the end of inflation can be
calculated, resulting in

 r�a1� ’ �9:2� 1025���
�


Mpc

�
��
�
M
MP

�
6��2�=3�

�

�
TRH
MP

�
�2���=3�

: (3.44)

In Fig. 2 logr is shown. As can be seen the resulting
magnetic field strengths are far below the lower boundary
of r0 � 10�37, corresponding to a magnetic seed field of
Bs � 10�20 G.

Finally, the solution for ~P2
k � 0 will be discussed. Thus

using Eq. (2.19) and X ’ � 1
2
~E2
k yields to

 

~E 2
k �

�
�
�1

�
4=�2��1�

: (3.45)

It is found that the solutions are consistent with the as-
sumption ~E2

k > ~B2
k for 1< �< 3

2 implying � � 4 and for
� > 3

2 corresponding to � � 2 2��1
2��1 . Thus using � � 4 and

 � 1 Mpc yields to r�a1� ’ 10�104 for M � 1017 GeV
and TRH � 1017 GeV. Moreover r�a1� ’ 10�77 is found
for M � 1017 GeV and TRH � 109 GeV. These values
are far below the lower bounds on the primordial magnetic
field required to seed the galactic field. The results for � >
3
2 are shown in Fig. 2. As can be seen for TRH � 109 GeV
magnetic fields satisfying r > 10�37 can be generated for
� > 19:5.

D. Discussion

Solutions for the magnetic energy density of nonlinear
electrodynamics with a Lagrangian given by L �

��X
2

�8�
���1�=2X, where � and � are constant parameters

have been found for different approximations. The solu-
tions are determined by the system of Eqs. (2.17) and
(2.18). These equations depend on two constants, ~P2

k and
~K2
k. In the case where ~P2

k � 0, Eq. (2.17) is replaced by
Eq. (2.19) which involves a new constant, ~Mk

2, in the final
Eq. (2.20). Furthermore, ~M2

k and ~K2
k lead to the definitions

of the two dimensionless constants �1 and �2 in Eq. (3.2)
and m2 � �2

�1
.
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It is assumed that the electric and magnetic fields, re-
spectively, have their origin in quantum fluctuations during
inflation. Therefore, it seems quite natural to impose that
initially, that is at the time when the perturbation leaves the
horizon, the energy density in the electric and magnetic
field are of the same order. During the later evolution these
quantities of course can be very different. In order to solve
the equations, we have assumed three different types of
evolution of the ratio of the energy densities in the electric
and magnetic field. This has led to estimates of the pri-
mordial magnetic field at the time of galaxy formation.

In the case ~B2
k ’ O� ~E2

k� for ~P2
k � 0 it was found that

strong primordial magnetic fields can be generated.
Assuming that during inflation ~B2

k � ~E2
k there is a range

of the Pagels-Tomboulis parameter � for which in the case
~P2
k > 0 primordial magnetic fields can be generated that

are strong enough to seed the galactic dynamo. In particu-
lar, for � > 1:9 for TRH � 1017 GeV and for � > 3:0 for
TRH � 109 GeV the ratio of the energy density of the
magnetic field over the energy density of the background
radiation r is found to be r > 10�37 corresponding to a
primordial magnetic field of at least Bs � 10�20 G
(cf. Fig. 1). However, in the case ~P2 � 0 this solution is
not consistent with the approximation ~B2

k � ~E2
k. Thus it

cannot be used to estimate the primordial magnetic field in
this case. The former class of solutions do not include the
case � � 1

2 . In that case the solutions found for the electric
and magnetic field are consistent with the approximation
for ~P2

k > 0 and ~P2
k � 0. Moreover, the resulting magnetic

field is strong enough to seed the galactic dynamo.
Finally, making the approximation ~E2

k �
~B2
k yields in

the case ~P2
k > 0 to very weak magnetic fields. However, in

the case ~P2
k � 0, for � > 19:5 and a reheat temperature

TRH � 109 GeV primordial magnetic fields result which
could successfully act as seed fields for the galactic dy-
namo (cf. Fig. 2).

IV. CONCLUSIONS

Observations of magnetic fields on large scales provide
an intriguing problem. A possible class of mechanisms to

create such fields is provided by inflationary models.
Fluctuations in the electromagnetic field are amplified
during inflation and provide a seed magnetic field at the
time of structure formation which might be further ampli-
fied by a dynamo process. In general a sufficiently strong
initial field strength can only be achieved if the conformal
invariance of electrodynamics is broken. This has been
realized, for example, in models where the Maxwell
Lagrangian has been coupled to a scalar field, to curvature
terms, etc. or by breaking Lorentz invariance or adding
extra dimensions.

Here nonlinear electrodynamics has been considered. It
has been assumed that whereas during the early universe
electrodynamics is nonlinear it becomes linear at the end of
inflation. In particular the evolution of the magnetic energy
density has been studied in a model of nonlinear electro-
dynamics, which is described by a Lagrangian of the form
L��	�F��F

���2=�8
���1�=2F��F
��, where � and � are

parameters. Originally the non-Abelian version of this
model had been proposed to describe low energy QCD
[22]. Here this model has been chosen as it is a strongly
nonlinear theory of electrodynamics which allows to study
in a semianalytical way the possible creation and amplifi-
cation of a primordial magnetic field during de Sitter
inflation. This is so since on the one hand the Lagrangian
only depends on one of the electromagnetic invariants,
namely X � 1

4F��F
��, which leads to a significant sim-

plification of the equations. On the other hand the power-
law structure of the Lagrangian make the equations
simpler.

Approximate solutions have been found in three regimes
of approximation which describe the evolution of the ratio
of the energy densities of the electric and magnetic fields
during inflation. It is assumed that initially the energy
density of the electric and magnetic field are of the same
order. Furthermore, these initial fields are due to quantum
fluctuations in the electromagnetic field during inflation.
Whereas in the radiation dominated era, the energy density
in the magnetic field decreases as a�4, the electric field
strength rapidly decays in the highly conducting plasma
(see, e.g., [4,25]). Solutions in closed form have been
found and the resulting primordial magnetic field esti-
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FIG. 2. For  � 1 Mpc logr [cf. Eq. (3.44)] is shown as a function of � for TRH � 1017 GeV (black line) and TRH � 109 GeV (long-
dashed line). The dashed line corresponds to r � 10�37. The left panel corresponds to the case ~P2

k > 0. The right panel corresponds to
the case ~P2

k � 0.
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mated. It has been shown that depending on the regime of
approximation and the value of the Pagels-Tomboulis pa-
rameter � primordial magnetic fields can be generated that
are strong enough to seed a galactic dynamo. Thus we have
provided an example of a theory of nonlinear electrody-
namics where the nonlinearities act in a way as to amplify
sufficiently an initial magnetic field.

The energy-momentum tensor of the electromagnetic
field can be cast in the form of an imperfect fluid. This
has been found explicitly for the particular model of non-
linear electrodynamics under consideration here.
Moreover, this allows to find the expression for the energy
density � of the fluid. Requiring that � should be positive
provides the bound �  1

2 .
In [29] the possible creation and amplification of mag-

netic fields was studied in an inflationary model coupled to
a pseudo Goldstone boson (see also [4]). In this case the
Lagrangian has the form L� 1

2@��@
��� X� ga�Y,

where � is the axion field. This provides an example of a
more general Lagrangian having also an explicit depen-
dence on Y � 1

4F��
�F��. However, as it turns out the

resulting primordial magnetic field is not strong enough
in order to seed, for example, a galactic dynamo. In [30]
the model of [29] was generalized to N axions. In this case
it was found that at least the weaker bound of r > 10�57

can be satisfied. Here, in this work the creation of primor-
dial magnetic fields in a particular model of nonlinear
electrodynamics has been studied. It might be interesting
to generalize this to Lagrangians depending on both elec-
tromagnetic invariants X and Y.
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APPENDIX A

In this section it is checked that the approximate exact
solution (3.6) is a good approximation to the solution of the
full differential equation (3.2). The solution (3.6) satisfies
Eq. (3.5). Writing the full differential equation (3.2) as

 y �y � � _y2 �
m2

1� �
y2 � I; (A1)

where for the approximate solution y � C2 cosh�z�1=�1���

with z � m�x� ��� 1�C1� the additional term I is given
by
 

I �
C2��1

2

�1��� 1�
cosh�2��1�=�1����z�

�
x
x1

�
�4
�
�2�� 1�

�
m2

�1� ��2
tanh2�z� �

4��� 1�

x1

�
x
x1

�
�1 m

1� �
tanh�z�

�
20

x2
1

�
x
x1

�
�2
�

m2

1� �

�
: (A2)

At x2 when the comoving length scale  leaves the horizon
z � 0 by construction. Thus I is proportional to �x2

x1
��4 �

1. At the end of inflation, x � x1, using the bound on�mx1

which in general implies �mx1 � 1, I�x1� is given ap-
proximately by

 I�x1� �
20C2��1

2

��� 1��1x
2
1

cosh��2��1�=���1��z1�; (A3)

where the last factor is much less than 1 since it is assumed
that � > 1 and, moreover, z1 ��mx1eN�� � 1. Thus
choosing C2 appropriately, jI�x1�j � 1.

Finally, it can also be checked using the bounds on
�mx1 that the square of the magnetic field strength ~B2

k is
well approximated by Eq. (3.8).

APPENDIX B

Expressions for L
0
X
LX

and L00X
LX

for the solution (3.30).
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where � � ���2

18�
1=2x1.
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