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We study a mechanism to produce the circular polarization of primordial gravitational waves. The
circular polarization is generated during the superinflation driven by the Gauss-Bonnet term in the string-
inspired cosmology. The instability in the tensor mode caused by the Gauss-Bonnet term and the parity
violation due to the gravitational Chern-Simons term are the essential ingredients of the mechanism. We
also discuss detectability of the produced circular polarization of gravitational waves. It turns out that the
simple model of single-field inflation contradicts cosmic microwave background (CMB) observations. To
circumvent this difficulty, we propose a two-field inflation model. In this two-field model, the circular
polarization of gravitational waves is created in the frequency range designed by the big-bang observer
(BBO) or the deci-hertz gravitational-wave observatory (DECIGO).
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I. INTRODUCTION

It is widely believed that the most promising candidate
for a unified theory including quantum gravity is super-
string theory. It is therefore interesting to prove or disprove
superstring theory from an observational point of view. To
this end, primordial gravitational waves have been consid-
ered as the most efficient probe, since the gravitational
waves can carry the information of the Universe at the
Planck time.

In this paper, we focus on a robust prediction of super-
string theory, namely, the parity violation due to the gravi-
tational Chern-Simons term. In fact, the Chern-Simons
term appears in the Green-Schwarz mechanism which is
necessary to cancel the anomaly in the theory [1]. It also
arises as a string correction [2]. Intriguingly, the existence
of the Chern-Simons term can be probed by the primordial
gravitational waves. This is because the Chern-Simons
term can generate the circular polarization of gravitational
waves through the parity violation, while it is difficult to
find other effects to produce the circular polarization of
primordial gravitational waves. Hence, if we detect the
circular polarization in the primordial gravitational waves,
it would be a strong indication of existence of the Chern-
Simons term in the early universe. Thus, it can be inter-
preted as an evidence of superstring theory. In addition to
this fundamental motivation, there is a phenomenological
interest in Chern-Simons gravity as an alternative theory of
gravity [3]. Even from this phenomenological point of
view, the circular polarization of gravitational waves de-
serves detailed investigation.

Concerning the issue if the Chern-Simons term can
produce the primordial gravitational waves with circular
polarization, there has been already several works [4–6]. It

turned out that, however, there exists no observable amount
of circular polarization of gravitational waves [7,8], if the
background spacetime undergoes the standard slow-roll
inflation. The purpose of this paper is to point out that
this disappointing result is reversed if we properly take into
account another stringy effect. The point is that the Chern-
Simons term is not the only term that could be induced by
the stringy corrections. There is another term, the so-called
Gauss-Bonnet term. If we consider the Chern-Simons
term, it would be mandatory to incorporate the Gauss-
Bonnet term. Hence, we consider both terms, the Gauss-
Bonnet and Chern-Simons terms, and study a possibility to
have the circular polarization of primordial gravitational
waves. The reason we expect a different result from the one
obtained from the standard slow-roll inflation is the exis-
tence of the superinflationary phase induced by the Gauss-
Bonnet term [9–13]. And more importantly, as was first
discovered in [14–16], there exists an instability in
gravitational-wave modes during the superinflationary
stage. It is this instability that generates the circular polar-
ization of primordial gravitational waves. In fact, we show
the primordial gravitational waves are fully polarized due
to the Gauss-Bonnet term. We also discuss the detectability
of the polarization of gravitational waves. The detectability
of circular polarization of gravitational waves depends on
when the superinflation occurs. Since the curvature pertur-
bation has a blue spectrum in the superinflationary regime,
we need to assume the superinflation occurs in the late
stage of the slow-roll inflation. As a realization, we pro-
pose a two-field inflation model where the circular polar-
ization of gravitational waves could be produced in the
BBO [17] or DECIGO [18] frequency range.

The organization of this paper is as follows. In Sec. II,
we present basic equations. First, we study the evolution of
the background spacetime in the Gauss-Bonnet–Chern-
Simons gravity. For the background evolution, the Gauss-
Bonnet term is crucial, while the Chern-Simons term plays
no role. We show there are two types of inflation, namely,
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the standard slow-roll inflation and the superinflation.
Next, we derive equations for gravitational waves. Here,
the Chern-Simons term plays an important role. In Sec. III,
we explain the essential mechanism to produce the circular
polarization of gravitational waves. We quantize the gravi-
tational waves in the superinflationary background and
calculate the degree of the circular polarization of gravita-
tional waves. There, we will show that the significant
circular polarization is created due to the instability caused
by the Gauss-Bonnet term. We note that the model pre-
sented in this section is just for illustration. More realistic
modes are considered in the next section. In Sec. IV, we
discuss the detectability of the circular polarization gen-
erated during the superinflationary regime. We point out
the defect of the single-field inflation model. Then, as a
model consistent with current observations, we propose a
two-field inflation model where the Gauss-Bonnet and
Chern-Simons term couple with the inflaton only in the
second stage of the inflation. The final section is devoted to
the conclusion.

II. BASIC EQUATIONS IN GAUSS-
BONNET–CHERN-SIMONS GRAVITY

Before discussing primordial gravitational waves from
the quantum fluctuation during the inflation, we need to
reconsider the chaotic inflationary scenario driven by an
inflaton � with a potential V���. Although the Chern-
Simons term does not alter the background geometry, the
Gauss-Bonnet term changes the inflationary scenario at the
early stage of the inflation. The change would be important
for the primordial gravitational waves.

We start with the action motivated from string theory
given by [9]
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where the first term of action is the Einstein-Hilbert term
and g is the determinant of the metric g��. We have set the
unit 8�G � 1. In the above action (1), we have taken into
account the Gauss-Bonnet term

 R2
GB � R���	R���	 � 4R��R�� � R

2 (2)

and the Chern-Simons term

 R ~R � 1
2

���	R����R�	

��; (3)

where 
���	 is the Levi-Cività tensor density. We have
also allowed the coupling of the inflaton field both to the
Gauss-Bonnet ���� and Chern-Simons terms !���.
Otherwise, these topological terms vanish identically. It

should be noted that, as is well known, the Chern-Simons
term does not contribute to the dynamics of the isotropic
and homogeneous universe.

From now on, for simplicity, we consider a typical
potential, V � 1=2m2�2. We also specify the coupling
function ���� � !��� � 16�4 for concreteness, although
we keep them in the formula as far as we can. For other
coupling functions, the analysis is similar and easy to
perform.

A. Background spacetime

Let us consider the background spacetime with spatial
isotropy and homogeneity. Then, the metric is given by

 ds2 � g��dx�dx� � a2�
���d
2 � 	ijdxidxj�: (4)

Here, we have also assumed the flat space and used the
conformal time 
. Taking the variations of the action (1),
we have equations
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2a2 H
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 �00 � 2H�0 �
3

2a2 H
2H 0�;� �m2a2� � 0; (7)

where we have defined H � a0=a. Here, the prime de-
notes the derivative with respect to the conformal time 
.

In the conventional case, namely, without the Gauss-
Bonnet term, the Hubble friction in the equation of motion
for the scalar field makes the rolling of the scalar field slow.
Then, the slow-roll inflation is soon realized for the initial
condition with a large Hubble. However, in the presence of
the Gauss-Bonnet term, the force due to the Gauss-Bonnet
term becomes dominant for a large value of�. If the scalar
field starts with a negative value, the force term accelerates
the scalar field and makes the kinetic term dominant.
Hence, the situation, H 2 � �02, m2a2�2 � �02, is real-
ized. Thus, Eqs. (5) and (6) become

 a2�02 � 3H 3�0 � 0; (8)

 �2H 0 � 3H 2��0 �H ��00 �H�0� � 0: (9)

The scalar field � rolls down from the negative side
towards zero according to the above Eqs. (8) and (9).
Now, it is easy to solve Eqs. (8) and (9) as

 � � �
�������������
15=16

p
��
�5=6; a�
� � ��
��1=6;

H �
1

��6
�
; 
 < 0:

(10)
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We note that the superinflation H0 > 0 is realized in this
phase. Here, H �H =a is the Hubble parameter. As the
scalar field rolls down, the Gauss-Bonnet term decreases.
Eventually, the conventional Hubble friction overcomes
the Gauss-Bonnet effect and the slow-roll inflation com-
mences. A typical evolution of the spacetime is shown in
Fig. 1. In the superinflationary phase H0 > 0, the weak
energy condition is violated. Hence, the system may
show the instability. Of course, as you can see in Fig. 1,
this instability is a transient one. To make this point clear,
we rewrite the equations of motion (7) as the autonomous
system for � and H and plot the phase flow diagram in
Fig. 2. This diagram shows that the superinflationary phase
will be followed by the standard phase where the Hubble
parameter is decreasing.

In the next section, we will show that the transient
superinflation phase gives rise to the circular polarization
of gravitational waves.

B. Action for gravitational waves

In this subsection, we will deduce the quadratic action
for the gravitational waves from the action (1). Let us
consider the tensor perturbation

 d s2 � g��dx�dx� � a2�
���d
2 � �	ij � hij�dxidxj�;

(11)

where hij satisfies the transverse-traceless conditions
hij;j � hii � 0. Substituting the metric into the Einstein
action with the Gauss-Bonnet term, we obtain the quadratic
action [15,19,20]
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In addition to these terms, the parity violating Chern-
Simons term gives
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where the stem j denotes a derivative with respect to the
spatial coordinates. Here, we have used the convention

0ijk � �
ijk with 
123 	 1. It is convenient to expand
hij by plane waves
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2
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X
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where we have introduced the circular polarization tensor
pAij (A � R;L) defined by

 pR
ij 	

1��
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p �p�ij � ip



ij �; pL
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1��
2
p �p�ij � ip



ij �: (15)

Here, the polarization tensors p�ij and p
ij are the plus and
cross modes, respectively. The polarization tensors are
normalized as p�Aij p

B
ij � 2	AB. The circular polarization

has the property
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A�pri�
A; A � R;L; (16)

where �R 	 �1 and �L 	 �1 represent the right and left-
handed circular polarizations, respectively. This makes the
action of the Chern-Simons term diagonal.

Putting above results together and defining a new vari-
able �A

k 	 zAk 
A
k, we obtain
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FIG. 1. A typical evolution of the background spacetime is
numerically calculated and displayed. A short period of the
superinflationary phase is followed by a long period of the
slow-roll inflationary phase.
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FIG. 2. Phase diagram around � ’ 0 is drawn. The thick line
in the diagram denotes the trajectory corresponding to Fig. 1.
This tells that the asymptotic solution breaks down before reach-
ing � � 0, and thus the singularity is avoided.
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where we have defined
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Thus, the equation of motion becomes
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The term z00A=zA can be interpreted as the effective poten-
tial. The coefficient of the wave number k may be inter-
preted as the square of the speed of sound waves.

In the long wavelength limit, we have the solution

 �A
k � GzAk �Dz

A
k

Z d


zA2
k
; (20)

where G, D are the constants of integration. In the con-
ventional inflationary scenario, the first term corresponds
to the growing mode which is actually constant when we
translated back to the metric perturbations. Hence, the
primordial gravitational waves are frozen on superhorizon
scales. However, in the presence of Gauss-Bonnet and
Chern-Simons terms, the role of the growing and decaying
modes are interchanged. This gives rise to an interesting
effect on the polarization.

III. A MECHANISM TO PRODUCE CIRCULAR
POLARIZATION

In this section, we present a mechanism to produce the
circular polarization of primordial gravitational waves.
The interplay between the instability induced by the
Gauss-Bonnet term and the parity violation due to the
Chern-Simons term is essential for the mechanism. The
mechanism is efficient and generic in the sense that both
terms are ubiquitous in string theory.

Now, let us quantize the gravitational waves and calcu-
late the degree of polarization. What we should do is
promote �A

k to the operator and expand by mode functions
uAk�
� as

 �A
k � aAku

A
k � a

yA
k u�Ak ; (21)

where u�Ak is the complex conjugate of uAk and aAk and ayAk
denote the annihilation and creation operators. The mode
functions uAk satisfy the same equation for �A

k. Once the
positive frequency mode uAk is specified, the vacuum is
defined by

 aAkj0i � 0: (22)

Then, we can calculate the vacuum fluctuations

 h0jj�A
kj

2j0i � juAkj
2: (23)

Here, we focus only on the gravitational waves which
leaves the horizon during the superinflationary phase, be-
cause the gravitational waves still under the horizon when
superinflation ends are the same as those of the slow-roll
inflation.

During the stage prior to the slow-roll inflation, zA can

be approximated as zA �
���������������������������������������������
�H�0=2� �Ak!0=2

p
. In spite

of this simplification, it is still difficult to solve the equa-
tion of motion analytically. Hence, we solve the equation at
superhorizon scale and subhorizon scale, separately. After
that, we connect these solutions smoothly at the horizon
crossing.

First, let us consider the subhorizon scale, H � k or
�k

 1=6. Leaving the terms up to the order of
1=��k
�, we obtain the equation

 �uAk�
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�k


�
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This can be solved analytically by using confluent hyper-
geometric functions. Instead of doing that, we estimate the
degree of the polarization approximately. The initial con-
dition can be set by imposing the Bunch-Davies vacuum.
More precisely, we choose the positive frequency mode

 uAk �
1�����
2k
p e�ik
 (25)

in the asymptotic past. Namely, deep inside the Hubble
horizon, both the left and right polarization modes are
simply oscillating. At the time�k
 � 8=3, the asymmetry
shows up. After that time, �k
 < 8=3, we can approxi-
mate the solutions as
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where we have used WKB approximation which is valid
for the period we are considering. To determine the con-
stants of integration A1 and A2, we have to match solutions
smoothly at �k
� 8=3 as
 

uAk�
�j
<8=3 � uAk�
�j
>8=3;

�uAk�
0�
�j
<8=3 � �u

A
k�
0�
�j
>8=3:

(27)

Apparently, both A1 and A2 are not zero. Hence, for the
left-handed circular polarization modes �L � �1, the so-
lution shows damping oscillation. While, for the right-
handed circular polarization mode �R � 1, the solution
grows rapidly. It is this instability due to the Gauss-
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Bonnet term that produces the difference between the left
and right-handed circular polarization modes. The ratio
can be quantified by

 

juRj
2

juLj
2
�

exp��8=3�

exp��32=3�
� 2980: (28)

Thus, we can expect the fully polarized gravitational
waves.

To make the analysis more accurate, we need the solu-
tions to continue to the superhorizon scale, H 
 k or
�k
� 1=6. On the superhorizon scales, the solution can
be obtained as

 �uAk�
00 �

2

9
k2 1

��k
�2
uAk � 0: (29)

This can be solved easily as

 uAk � B1��k
�
1=3 � B2��k
�

2=3; (30)

where B1 and B2 are constants of integration. To determine
the constants B1 and B2, we have to match solutions
smoothly at �
cross � 1=�6k� as
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(31)

What we want to calculate is the degree of the circular
polarization defined as the difference between the power of
right and left-handed circularly polarized gravitational
waves at the end of the superinflation phase:

 ��k� 	
juR

k�
end�j
2 � juL

k�
end�j
2

juR
k�
end�j

2 � juL
k�
end�j

2 ; (32)

where 
end represents the time when the superinflation
ends. We have performed a matching analysis and dis-
played a numerical result in Fig. 3. Because of the behavior
just before the horizon crossing, namely, the right-handed
circular polarization mode is growing and the left-handed

circular polarization mode is decaying, consequently the
net polarization is produced. The resultant polarization is
sufficiently large and hence detectable by BBO or
DECIGO.

To calculate the spectrum of the polarization of gravita-
tional waves which is directly observed today, we have to
connect solutions from the superinflation phase to the
slow-roll inflation, radiation dominant, and matter domi-
nant phase. This part of calculations is standard and does
not alter the polarization.

Finally, we should mention a subtle point in the calcu-
lation. From the definition of zA (18), it is obvious that
there is a point 
sing where zA � 0. That occurs close to the
time when the left-handed circular polarization mode
crosses the horizon. There, the solution behaves as

 uL
k � C1

�����������������������
j
� 
singj

q
� C2

�����������������������
j
� 
singj

q
ln�j
� 
singj�;

(33)

where C1 and C2 are constants of integration. We can see
that uL

k ! 0, in the limit 
! 
sing, so it causes no problem
to solve Eq. (19). However, the relevant quantity is the
physical amplitude  L

k, rather than uL
k, namely,

  L
k �

uL
k

zL
� C1 � C2 ln�j
� 
singj�: (34)

Apparently, the physical amplitude diverges at 
! 
sing.
In the previous work [7,8], this issue was serious, because
this divergence means the breakdown of the linear analysis.
It suggests that we should take into account the nonlinear
effect which is not available. In our case, the relevant mode
is the right polarization mode which has no divergence
problem. As the breakdown of the linear analysis occurs
just at the horizon crossing, the nonlinear effects work
almost instantaneously. Hence, it is reasonable to assume
that the nonlinear effect for the left-handed circular polar-
ization mode hardly affects the evolution of the right-
handed circular polarization mode. Therefore, we believe
the consequence about the degree of polarization does not
change.

IV. DETECTABILITY OF CIRCULAR
POLARIZATION OF GRAVITATIONAL WAVES

First of all, we should emphasize that the analysis done
in the previous section is explanatory. The frequency range
where the circular polarization is created will change
depending on when the superinflation occurs. In this sec-
tion, we will discuss the indirect detection through cosmic
microwave background (CMB) and the direct detections by
the interferometer.

As to the indirect detection of circular polarization
through the CMB radiation, the required degree of circular
polarization has been obtained as j�j * 0:35�r=0:05��0:6

[21], where r is the tensor-to-scalar ratio. The relevant
frequency in this case is around f� 10�17 Hz. As to the

1. 10 6 0.0001 0.01 1
wave number k

0.9955

0.996

0.9965

0.997

0.9975

Π

FIG. 3. The degree of the polarization ��k� as a function of
wave numbers k is shown. As expected, the gravitational waves
are almost 100% circularly polarized.
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direct detection of circular polarization, the required de-
gree of circular polarization has been estimated as ��
0:08��GW=10�15��1�SNR=5� around the frequency f�
1 Hz [22,23], where �GW is the density parameter of the
stochastic gravitational waves and SNR is the signal to the
noise ratio. Here, 10 years observational time is assumed.
Of course, for the isotropic component of circular polar-
ization of stochastic gravitational waves, one needs to
break the symmetry of the detector configuration.

Thus, in order to know if we can detect polarized gravi-
tational waves, we need the degree of the polarization, the
intensity of the gravitational waves �GW or the tensor-to-
scalar ratio r, and also the spectrum around the relevant
frequency ranges. As we have shown already, we can get
the polarization �� 1 easily. Moreover, it is not difficult
to get the required �GW or r provided standard model
parameters. We can calculate the spectrum numerically
assuming the Bunch-Davis vacuum. We have presented a
numerical result in Fig. 4. This result can be understood
analytically. In fact, the initial mode function behaves
/ 1=

���
k
p

inside the horizon which should match to the
growing mode B1��k
�1=3 on the superhorizon scales.
Matching the condition at �k
� 1 gives the k depen-
dence of the coefficient B1 as B1 / 1=

���
k
p

. Thus, we have
uk / k

1=3�1=2 � k�1=6. Consequently, the power spectrum
for the gravitational waves becomes k3jukj

2 / k8=3. Since
the spectrum has the blue index n� 2:66, the polarization
would be detectable even in the low intensity case. Now,
the point is the frequency range, namely, the time when the
polarization is created. In the following discussion, we will
mainly focus on this issue.

In the case of the single inflaton model we have dis-
cussed, the frequency where the circular polarization is
significant lies around the CMB scale f� 10�17 Hz.
Hence, there is a possibility for the circular polarization
to be indirectly detected through the CMB observation,

more precisely, through the temperature and B mode or E
mode and B mode correlations [4,21,24]. In a recent paper
[21], it is argued that a high degree of polarization is
necessary for the polarization to be detected in the future
observations. The high degree of polarization can be at-
tainable by the mechanism we have found in this paper.
However, in this simple model, we have to worry about the
curvature perturbations which is also expected to have the
blue spectrum during the superinflation. One possible way
out of this problem is to assume the curvature perturbation
created by the inflaton is negligible and to resort to the
curvaton scenario [25–27] as is common to the pre-big-
bang type models [28–31]. However, it is not clear if the
concrete realization of this kind of model is possible.
Moreover, one may feel that introducing the curvaton
mechanism into the scenario is not appealing even if it
exists. Fortunately, there exists another interesting possi-
bility. We will devote the remaining part of this section to
the model which is consistent with observational
constraints.

To circumvent the problem of the curvature perturba-
tions, we propose a two-field inflation model defined by the
action
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where the potential V��;�� is assumed to take a hybrid
type. The main difference between our model and the
conventional inflation model is simply the Gauss-Bonnet
and Chern-Simons term. In the first stage, the field � drives
the slow-roll inflation. During this stage, the field� takes a
constant large field value. Hence, both the Gauss-Bonnet
and the Chern-Simons terms are decoupled from the sys-
tem. During this conventional inflationary period, the tem-
perature fluctuations of CMB are created. And the
spectrum of the fluctuations is almost flat. Then, at some
point, the motion in the direction of � is triggered and the
Gauss-Bonnet and Chern-Simons terms take part in the
dynamics. In this second stage, the � field rolls down the
hill rapidly and the Gauss-Bonnet term induces a super-
inflationary phase. During this stage, the circular polariza-
tion of the primordial gravitational waves is produced
through the parity violation of the Chern-Simons term.
Subsequently, the second standard slow-roll inflation
driven by the same field � takes over.

1. 10 6 0.0001 0.01 1
wave number k

1.25

1.5

1.75

2

2.25

2.5

n

FIG. 4. The numerical result of the spectral index n for the
power spectrum of primordial gravitational waves as a function
of wave numbers k is shown. In the relevant frequency range, we
have obtained the spectral index n � 2:66 numerically.
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Here, we present an example. The potential function is

 V��;�� � Vp����4 � 1�
�
�2=�m�

2�����m=2�2

� ��m=2�2�
�

2
�

1

2
m2
��2 �

�
�
�m

�
2
Vm; (36)

where the parameters are set as

 �m � 3000; Vm � 10�8; Vp � 0:235;

�� � 102; m� � 10�6:
(37)

This potential is shown in Fig. 5. Coupling � and ! are the
same as those of the single-field model, namely � � ! �
16�4. We have calculated the evolution of the Hubble
parameter numerically (see Fig. 6).

For this model, the duration of the first and second slow-
roll inflation is tunable. Hence, it is possible to have the
gravitational waves with the significant circular polariza-
tion in the BBO or DECIGO frequency range (see Fig. 7).
Since the spectrum is blue, even the ground based detectors
may find the circular polarization as is pointed out recently
[32].

To make a more precise prediction of the polarization of
gravitational waves, we need a more complete analysis. In
particular, we should calculate the spectrum of the curva-
ture perturbations of this model. We leave these details for
future publications [33].

V. CONCLUSION

We have studied a mechanism to produce the circular
polarization of gravitational waves in the string-inspired
cosmology. It turned out that the circularly polarized gravi-
tational waves are ubiquitous in string cosmology. The
point we have observed is that there are two key terms in
string theory, namely, the Chern-Simons term and the
Gauss-Bonnet term. The Chern-Simons term violates the
parity invariance, therefore it makes a room for the circu-
larly polarized gravitational waves to be produced.

3000
2000

1000

0
φ 4
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χ
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2000
4000
6000

V

FIG. 5 (color online). Potential function for the two-field
model is depicted. Initially, the scalar field � is stuck to the
point � � �3000 and the other scalar field � slowly rolls down
to give rise to the inflation. At some point, � starts to roll down
toward � � 0. Then, the coupling to the Gauss-Bonnet term
induces the superinflation where the circular polarization of
gravitational waves is created. Subsequently, the standard
slow-roll inflation follows.
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FIG. 6. The time evolution of the Hubble parameter is numeri-
cally calculated. The curvature perturbations on the CMB scales
are produced during the slow-roll phase. Hence, this model is
consistent with CMB observations. The Gauss-Bonnet term
induces the superinflation around N ’ 50 where the circular
polarization would be created. It could be observed directly
through the interferometer detector.

FIG. 7 (color online). A schematic picture of the expected
spectrum is depicted. The frequency range where we can observe
the circular polarization depends on the model parameters. In
that range, the spectrum is blue. In other parts, the spectrum is
almost flat. The expected sensitivities of BBO and DECIGO are
also plotted.
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However, in the previous works [4,7,8], it had been shown
that there is no significant circular polarization of gravita-
tional waves within the conventional inflationary scenario.
In this paper, we have shown that the Gauss-Bonnet term
reversed the previous conclusion. The Gauss-Bonnet term
has changed the background evolution in such a way that
the superinflationary epoch appears during the conven-
tional inflationary stage. During the superinflation, there
exists an instability in the tensor modes. It is the instability
that produces a significant circular polarization �� 1. We
have also discussed the detectability of the polarization.
We have shown that the detectability depends on the
specific scenario of inflation. In the single-field inflation
model, the circular polarization would be observable at the
CMB scale. The consistency with the observation of the
temperature fluctuations requires the curvaton scenario in
this case. To circumvent the situation, we have also pro-
posed a two-field inflation model. In the two-field model,
the frequency range where the circular polarization is
produced depends on the parameter. It would be possible
to make a model to produce gravitational waves with
circular polarization in the BBO or DECIGO frequency
range. In this case, curvature fluctuations on large scales
are produced by the standard slow-roll inflation. Hence, we
do not need the curvaton scenario any more.

There are several directions to be explored. We should
investigate the two-field inflation model in detail [33]. In
particular, it is interesting to seek a concrete realization of
the model in the string landscape. It is also intriguing to
search other mechanisms to produce a circular polarization
of gravitational waves. One simple possibility is to con-
sider the nonvacuum initial state in the Lorentz violating
inflationary scenario [34]. The coupling to the Lorentz
violating sector could violate the parity invariance.
Hence, it is possible to take the asymmetric vacuum for
right and left-handed circular polarizations. In fact, the
Chern-Simons term already allows this possibility. There
may be other interesting mechanisms with noninflationary
origin, such as the turbulence [35] or the helical magnetic
fields [24,36]. The Chern-Simons term at present may
become an interesting subject in the light of the dark
energy [37–41].
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