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We have studied preheating of field perturbations in a 3-dimensional lattice including the effect of
scalar metric perturbations in two generic models of inflation: chaotic inflation with a quartic potential and
standard hybrid inflation. We have prepared the initial state for the classical evolution of the system with
vanishing vector and tensor metric perturbations, consistent with the constraint equations, the energy and
momentum constraints. The nonlinear evolution inevitably generates vector and tensor modes, and this
reflects on how well the constraint equations are fulfilled during the evolution. The induced preheating of
the scalar metric perturbations is not large enough to backreact onto the fields, but it could affect the
evolution of vector and tensor modes. This is the case in hybrid inflation for some values of the coupling g
and the height of potential V1=4

0 . For example with V1=4
0 ’ 1015 GeV, preheating of scalar perturbations is

such that their source term in the evolution equation for tensor and vector fluctuations becomes
comparable to that of the field anisotropic stress.
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I. INTRODUCTION

Cosmological observations, and, in particular, cosmic
microwave background (CMB) measurements [1–5], are
consistent with an early period of inflation, which among
other things accounts for the inferred flatness of the
Universe and gives rise to the primordial curvature pertur-
bation which would seed the large scale structure observed
today. The value of the primordial power spectrum at large
scales was first measured by the Cosmic Background
Explorer experiment [1], and it has been confirmed by all
subsequent CMB experiments. The spectrum is consistent
with a Gaussian, and practically scale-invariant spectrum,
although the latest data from the Wilkinson Microwave
Anisotropy Probe [5] seems to prefer a red-tilted spectrum
when no tensor and no other contributions are included,
showing a positive correlation between the tensor-to-scalar
ratio and the spectral index [6]. Nevertheless, present data
sets at most an upper limit on the level of the tensor
contribution and non-Gaussianity, which even if small,
could still be observed by the next generation of CMB
experiments, like European Space Agency’s Planck sur-
veyor satellite [7].

From the theoretical side, the quest now is for a realistic
particle physics model of inflation and a better understand-
ing of the inflationary and post-inflationary dynamics. In
order to allow for the conversion of the vacuum energy into
radiation at the end of inflation, the inflaton should couple
to other fields. In the standard picture, this process called
reheating takes place through the perturbative decay of the
inflaton into light degrees of freedom, which thermalize

into radiation. Nevertheless, previous to the perturbative
decay, the evolution of the system may be dominated by
nonperturbative effects as those of preheating [8,9], i.e.,
parametric amplification of quantum field fluctuations in a
background of oscillating fields. Through parametric reso-
nance, field mode amplitudes grow exponentially within
certain resonance bands in k space, this being a more
efficient and faster way of transferring vacuum energy
into radiation than the standard reheating mechanism.
This process and its consequences for the subsequent
cosmological evolution has been extensively studied in
the literature for different kinds of models [10–13]. The
first stages of preheating can be studied within linear
perturbation theory at first order [8], but soon after the
resonance develops one would need to improve on the
perturbative expansion in order to take into account back-
reaction and rescattering effects. Backreaction effects can
be partially incorporated by using the Hartree-Fock ap-
proximation [14,15]. However, in order to take fully into
account rescattering effects, i.e., mode-to-mode couplings,
one has to resort to nonperturbative tools, like lattice
calculations [16–20]. Preheating, although a very fast
process compare with the cosmological scales, lasting at
most only a few e-folds of expansion, may lead to a very
rich phenomenology having to do, among others, with
production of massive relics [21], baryogenesis and lepto-
genesis [22,23], and black hole production [20,24].

In addition, in a cosmological framework metric pertur-
bations might also be parametrically amplified during pre-
heating. This has been studied, for example, using linear
perturbation theory [25,26], up to second order [27], and
with the Hartree-Fock approximation [28]. A relevant
question is whether or not this nonadiabatic excitation of
field fluctuations leads to the amplification of super-
Hubble curvature fluctuations [29–31]. This may happen
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in the presence of an entropy/isocurvature perturbation
mode, not suppressed on large scales during inflation,
which sources the curvature perturbation when parametri-
cally amplified during preheating [32]. Another approach
for the study of nonlinear super-Hubble cosmological per-
turbations during inflation relies on a gradient expansion,
by assuming that the spatial derivatives are small compared
to the time derivative [33,34]. And more recently a cova-
riant formalism has been developed, which would allow
one to study the full nonlinear evolution of cosmological
perturbations. It was also shown that the nonlinear cova-
riant generalization stays constant on super-Hubble scales
in the absence of a nonadiabatic source [35].

Besides the amplification of the scalar perturbations, the
nonlinear nature of the preheating process can also induce
some level of primordial non-Gaussianity in the spectrum,
to the level detectable by the Planck mission [27,36]. In
addition, it could enhance the tensor perturbations, giving
rise to a stochastic background of gravitational waves
within the reach of the future planned gravitational observ-
atories [37,38].

Therefore, preheating after inflation can potentially alter
the inflationary predictions. In many cases, like searching
for non-Gaussianity or gravitational waves, we are after
very small effects resonantly enhanced during preheating.
These are by default at least second order in perturbation
theory, for which the mixing of the different kinds of
perturbations, scalar, vector, and tensor, is unavoidable.
For example, beyond linear perturbation, tensors are
seeded not only by scalars but also by vectors [39,40],
the latter in turn being generated by the scalars. Aside
from preheating effects, it has been shown [39] that sec-
ondary vector and tensor modes could induced a nonvan-
ishing B-mode polarization in the CMB. And this effect
becomes comparable or even dominates over that of pri-
mary gravitational waves for a primordial tensor-to-scalar
ratio r � 10�6. This is, for example, the predicted ratio for
models with an inflationary energy scale of the order of
O�1015� GeV, i.e., 1 order of magnitude below the typical
grand unification scale [41]. Given the relevance, for infla-
tionary model building, of the detection of a background of
gravitational waves, it is important therefore to take into
account all possible generating and/or amplifying mecha-
nisms of the B-mode polarization during cosmological
evolution. In particular, it would be interesting to include
in the nonlinear simulations of preheating the effect of
scalar, vector, and tensor metric perturbations all together.
Although the backreaction effect on the fields might be
quite small, as expected, they could, for example, back-
react onto each other, affecting the final tensor spectrum.

In most of the previous studies of preheating, fields are
evolved in a background metric, i.e., neglecting the effect
of metric perturbations themselves on the evolution of the
fields. It is argued that the backreaction effect of these
perturbations on the field evolution is small, and the ap-

proximation should hold to a good extent when dealing
with scalar perturbations. Other studies take into account
metric variables in a one-dimensional system [42], or re-
ducing the system to a one-dimensional system by the use
of symmetries, either planar [43] or radial [44]. These one-
dimensional studies also focus on scalar metric fluctua-
tions, without vectors or tensors, integrating the system in a
lattice with N sites. While using lattice techniques allows
for a full nonlinear treatment of the problem, the procedure
has its own limitations when dealing with an expanding
universe. By discretizing the space and putting the system
in a box of length L, one introduces both a comoving
ultraviolet and infrared cutoff in the system. Because of
the expansion of the Universe, the physical momentum is
redshifted and the resonance bands during preheating
move towards higher values of the comoving wave number.
Therefore, in order to keep the comoving ultraviolet cutoff
larger than the effective cutoff for preheating, we need a
large ratio N=L. On the other hand, if we were interested in
super-Hubble perturbations, the infrared cutoff would have
to be smaller than the Hubble rate of expansion at least at
the beginning of the evolution, which implies taking L as
large as possible. However, limitations on computer mem-
ory and CPU resources prevent one from working with too
big lattices. The advantage of effectively reducing the
problem to a one-dimensional system lies on the possibility
of considering large enough lattices, and therefore super-
Hubble modes, with less computing time cost. We have
extended these effectively one-dimensional studies to a 3-
dimensional system, without using any explicit symmetry.
We are going to consider preheating of inflaton fluctuations
including scalar metric perturbations in a cubic 3-
dimensional spatial lattice with N3 sites, and length L.
By considering L large enough would allow to include
super-Hubble modes, but at the expense of quickly loosing
the resonance bands during the evolution; unless we incre-
ment N accordingly, which is not viable in our case.
Therefore, as a first step we focus on the possible effect
of sub-Hubble metric perturbations during preheating.

In writing down the evolution equations for the scalar
field in general relativity, we need first to choose a coor-
dinate space-time �t;x�. The choice of coordinates defines
a threading of space-time (fixed x) and a slicing into
hypersurfaces (fixed t). In the Arnowitt-Deser-Misner for-
malism [45], the space-time line element is given by:

 ds2 � g��dx�dx�

� N2dt2 � �ij�dx
i � Nidt��dxj � Njdt�; (1)

with N the lapse function, Ni the shift vector field, and �ij
the spatial metric. A choice of N and Ni fixes the gauge.
Einstein equations plus the conservation of the stress-
energy tensor can be split into a set of four constraint
equations, the Hamiltonian and momentum constraints,
and a set of evolution equations for the spatial metric and
matter fields. The initial conditions for matter and metric
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variables must satisfy the constraint equations, and cannot
be freely specified. This is the well-known initial-value
problem in general relativity [46]. Once the constraint
equations are imposed on the initial slide at t � 0, they
are fulfilled at any time t by the evolved quantities.1 We
will work in the synchronous gauge, which means null shift
vector Ni � 0 and lapse function N � 1. As a first step, we
will only follow the evolution of scalar metric perturba-
tions, neglecting vector and tensor modes. That is, we will
choose initial conditions to ensure that the initial vectors
vanish and the tensors are negligible, and later check to
which extent they are generated by the nonlinear evolution,
i.e., to which extent the constraint equations are fulfilled.

On the matter side, we have studied two different and
characteristic types of inflationary models with scalar
fields minimally coupled to gravity: chaotic models with
a quartic potential ��4, and standard supersymmetric
hybrid models. Preheating in both of them has been ex-
tensively studied in the literature, including lattice simula-
tions. For the chaotic quartic model the resonance starts in
a single, narrow resonance band [10] at a fixed value of the
comoving wave number, but later on due to rescattering the
resonance spreads to several bands in momentum space,
until finally the spectrum is smoothed out [16]. In hybrid
models due to the tachyonic instability at the end of
inflation [12] the lower momentum modes are quickly
amplified, and in a few oscillations of the background
fields the whole process ends [18,19].

In Sec. II we give the set of equations for metric and field
variables to be integrated in the lattice and discuss the issue
of the initial conditions. In Sec. III we present the results
for the chaotic model with a quartic potential; results for
the hybrid model are given in Sec. IV. In both cases, we
compare the evolution with and without scalar metric
perturbations. The summary of our results is given in
Sec. V.

II. EVOLUTION EQUATIONS AND INITIAL
CONDITIONS

Our choice of gauge reduces the metric given in Eq. (1)
to the line element:

 ds2 � e2��t;x�dt2 � e2��t;x� ~�ijdxidxj; (2)

where we have defined the lapse function N � e�, and the
spatial metric �ij � e2� ~�ij, with Det�~�� � 1. Although
we are going to work in the synchronous gauge and later
set N � e� � 1, we will keep the dependence on the lapse
function explicit in this section for the sake of generality.
The matter content is given in general by a set of scalar
fields �I�t; x�, with the Lagrangian and stress-energy ten-
sor

 L �
1

2
r��Ir��I � V��I�; (3)

 T�� � r��Ir��I �
1

2
g��

�
r��Ir��I � 2V��I�

�
;

(4)

where the index I counts the number of fields and summa-
tion is understood over repeated index; V��I� is the po-
tential for the fields considered, and r� the covariant
derivative for the metric g��. With this choice, the evolu-
tion equation for each scalar is given by

 �00I � 3�0�0I �DiDi�I � VI �Di�Di�I � 0; (5)

where now Di is the spatial covariant derivative given by
the spatial metric �ij, and we have defined

 �0I � e��@t�I �0 � e��@t�: (6)

In the covariant formalism [48], these are the covariant
time derivatives along the unit four velocity u� �
dx�=ds � �e��; 0; 0; 0�, with f0 � u�r�f for any scalar
quantity. The volume expansion is then given by r�u� �
3�0, and the acceleration vector by a� � u�r�u� �
�0; Di��. Given the four vector u�, the stress-energy tensor
can be decomposed as

 T�� � ��� P�u�u� � g��P� q�u� � q�u� ����;

(7)

where �, P, q�, and 	�� are, respectively, the energy
density, pressure, momentum, and anisotropic stress in
the frame defined by u�, and given by

 � �
1

2
��0I�

I0 �Di�IDi�I� � V�
I�; (8)

 P �
1

2

�
�0I�

I0 �
1

3
Di�IDi�I

�
� V�
I�; (9)

 qi � ��0IDi�
I; (10)

 �ij � Di�
IDj�I �

1

3
�ijDk�

IDk�I: (11)

Einstein equations give the evolution of the spatial metric
components, plus 2 constraint equations. With our choice
of gauge, the evolution equation for � reduces to

 3�00 � 3��0�2 �DiD
i� � �

�
2
��� 3P� � AijA

k
i ; (12)

where � � 8	GN � 1=m2
P, with mP � 2:42� 1018 GeV

the reduced Planck mass, and Aij is the traceless part of the
extrinsic curvature Ki

j [45], which in our case is given by

 Ki
j �

e��

2
�ik@t�kj � �0�ij � A

i
j; (13)

where Aij � ~�ik ~�0kj=2. The latter contains the vector, ten-
1Although the discretization procedure will invariably intro-

duce deviations from the constraints during the evolution [47].
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sor, and the traceless scalar mode, while �0 gives the local
expansion rate. The equation for Aij reads
 

Ai0j � 3�0Aij � e��
�
DiDje� �

�ij
3
DkDke�

�

�

�
�3�Rij �

�ij
3
�3�R

�
� �

�
�i
j �

�ij
3

�
�
;

(14)

where �3�Rij,
�3�R are the Ricci tensor and scalar with

respect to the spatial metric. For example for a flat spatial
metric with an inhomogeneous scale factor, ��ij � e2��ij,
we have
 

�3� �Rij �
�ij
3
�3� �R � e�2�

�
@i�@j�� @i@j�

�
�ij
3
�@k�@k�� @

k@k��
�
; (15)

while the field source term is given by

 �i
j �

�ij
3

� � e�2�
�
@i�@j��

�ij
3
@k�@k�

�
: (16)

The Hamiltonian and the momentum constraint are given,
respectively, by

 6�0
2
��3� R� AijA

j
i � 2��; (17)

 2Di�
0 �DjA

j
i � ���0IDi�

I: (18)

The full set of Eqs. (5), (12), and (14) have been inte-
grated in a lattice in Ref. [49] for a chaotic inflation model,
where it was shown the viability of inflation starting with
inhomogeneous initial conditions. We will instead follow
the evolution starting just at the end of inflation. However,
due to the complexity of the problem, as a first step we will
only keep the effect of the scalar metric variable �, assum-
ing that vector and tensors are subdominant and negligible.
Afterward we will cross-check the consistency of this
approximation. Therefore, keeping only the � dependent
terms the final set of equations to be integrated is given by
 

�00I � 3�0�0I � e
�2�@i@i�I � VI

� e�2��@i�� @i��@i�I ’ 0; (19)

 3�00 � 3��0�2 � e�2��@i@i�� @
i�@i�� @

i�@i��

’ �
�
2
��� 3P�: (20)

The initial conditions for �, �0, �, �0 must be compat-
ible with the constraints. For the fields we follow the
standard procedure, with the quantum field theory being
replaced by an equivalent classical field theory. Equivalent
in the sense that the expectation values of quantum varia-
bles are equal to the average values of the classical ones.

The classical to quantum transition takes place during
inflation, when interactions of the quantum fields can be
neglected. Therefore, the field initial conditions for the
subsequent classical evolution can be obtained from the
linear theory of quantum-to-classical transition [50].

The field is expanded in Fourier modes in a spatial
lattice of volume L3 with periodic boundary conditions.
The zero mode corresponds to the homogeneous value of
the field given by its average value in the lattice, ��t� �
h��t; x�i. The nonzero modes are expanded in k space as

 �I�t; x� �
1

V

X
k

qI�t; k�eikx; (21)

 @t�I�t; x� �
1

V

X
k

@tqI�t; k�e
ikx: (22)

The initial vacuum state q�0; k� for sub-Hubble modes
corresponds to a complex Gaussian distribution with a
random phase for each mode k, and root mean squared

 jq�0; k�jrms ’
1���������
2!k
p ; (23)

where !k �
������������������
k2 � VII

p
is the initial frequency of each k

mode. The initial time derivative for the field is then given
by @tq�0; k� � �i!k�0�q�0; k�.

Having set the initial field’s values, we have to deal now
with the initial conditions for the metric variable, such that
the constraint equations are fulfilled at t � 0. Those are
given by

 3�0
2
� e�2��@k�@k�� 2@k@k�� � ��; (24)

 2@i�
0 � ���0I@i�

I: (25)

The main restriction comes from the momentum con-
straint: without including metric vector variables, the
right-hand side (RHS) of Eq. (25) must reduce to a gradient
term at least at t � 0. However, this is not the case in the
synchronous gauge when studying single field models with
initial conditions for the field as given in Eqs. (21) and (22).
In order to be consistent with our assumption of negligible
vector and tensor modes, we can take instead a homoge-
neous initial profile for the field velocity, given by its
background value, i.e, �0 � h@t��0; x�i. This will set our
choice of initial conditions for the chaotic model studied in
Sec. III. Another option often used in the literature could
be to add an extra, noninteracting scalar field [43]. Its
initial velocity can be adjusted such that the momentum
constraint is trivially satisfied [51]. The energy density of
the noninteracting extra field would behave as radiation
due to the gradient contribution in Eq. (8), and setting it to
be negligible at t � 0, it would remain so during the
evolution. We will use instead this choice for the hybrid
model in Sec. IV, where the role of the ‘‘extra’’ field is
played by the waterfall field already present in the model.

MAR BASTERO-GIL et al. PHYSICAL REVIEW D 77, 023520 (2008)

023520-4



Having adjusted the initial field velocities in order to
fulfill the momentum constraint, Eqs. (24) and (25) provide
the initial values of� and �0 at t � 0. For one-dimensional
systems (or effectively one-dimensional) this procedure is
consistent with neglecting vector and tensor perturbations,
and the constraints are preserved by the evolution.
However, in general this is not the case in 3 dimensions
without additional symmetries, and vectors and tensors
will be induced during the nonlinear evolution. There-
fore, the departure from zero of the momentum constraint
during the evolution may give us an estimation of the
amplitude, for example, of the vector perturbations gener-
ated during preheating.2 On the other hand, the scalar
perturbations we consider will contribute to the source
term for tensor perturbations, i.e, the RHS of Eq. (14),
and we can compare this to the pure anisotropic scalar field
source term, as those considered in [38], and check
whether or not they may become comparable during
preheating.

III. CHAOTIC MODEL

We first study the chaotic inflation model with potential
V � ��4=4. In this model, inflation takes place for values
of the background field larger than mP, and ends approxi-
mately when 
�t� � h��t�i ’ 2

���
3
p
mP. Following

Ref. [16], we start evolving the field when oscillations
begin, at a slightly smaller value 
0 � h��0�i �

���
3
p
mP.

Approximately this is the value at which the conformal
time derivative of the field vanishes. We rescale the field by
its initial value 
0, and time will be given in units of
1=

����
�
p

0. In program units, the initial background field

velocity is _
0 � h _��0�i � �1=
���
2
p

. The comoving wave
number is given in units of

����
�
p

0. With this rescaling the

coupling � does not appear in the equations of motion, but
it rescales the initial value of the fluctuations (the initial
spectrum). Given that the development of the resonance for
the inflaton fluctuations is not very sensitive to its value, we
will take � � 10�4 for convenience, although in a realistic
model it should be � ’ O�10�14� in order to match the
amplitude of the primordial spectrum with the observed
value.

The initial values for the field fluctuations are given by
Eqs. (21) and (23), and we adjust the initial value of the
field velocity in order to fulfill the momentum constraint at
t � 0, such that

 �0�0� � h@t��0�i: (26)

Finally, the initial profiles for the local scale factor e� and
expansion rate �0 are obtained from Eqs. (24) and (25),
with he��0�i � 1.

We have run the simulations in a lattice withN � 64 and
L � 10	, and periodic boundary conditions for the field.
In program units, the smaller comoving wave number is
k � 0:2, and the initial value of the average expansion rate
H0 � h�

0�0�i ’ 1=
���
2
p

. That means that at the beginning of
the simulation there are a few field modes that have crossed
the horizon before inflation ends, with k < a0H0, with
a0 � he��0�i, and have not yet reentered. For those modes
the amplitude of the spectrum has frozen around the time
k � a	H	, and therefore the initial value would be slightly
larger than Eq. (23) by a factor a0=a	 [52], given by

 ln
a0

a	
’

3

2

�
a0

a	
k� 1

�
; (27)

with k given in program units. In Fig. 1(a) is shown the
spectrum of field fluctuations ja�t��kj

2 at different times,
where a�t� � he�i is the averaged scale factor. We com-
pare the results obtained when including scalar metric
fluctuations (solid lines) with those obtained by evolving
the field with a background metric (dashed lines). At low
values of the comoving wave number k it can be seen the
initial enhancement of the amplitude for the superhorizon
modes, which is further amplified by the parametric reso-
nance. But the main features of the resonance in this model
are unchanged by the inclusion of superhorizon modes and/
or metric fluctuations, and have been well established in
the literature [10,16,17,53]. First, field fluctuations grow in
a narrow resonance regime, with the resonance peak lo-
cated at k ’ 1:27. At later times, rescattering effects lead to
the appearance of multiple peaks, until finally the spectrum
becomes smooth at small momentum, with an ultraviolet
cutoff increasing in time. It would be followed by a long
stage of thermalization, during which the transfer of power
from low to high momentum continues in the free turbu-
lence regime [53]. However, this stage is difficult to study
numerically because of the limitations of the lattice cutoff,
fixed by the choice of the lattice size, which soon becomes
smaller than the physical cutoff which is increasing with
the scale factor.

The main difference when including metric fluctuations
can be seen at smaller momentum during the first stages of
the resonance. The initial superhorizon modes tend to be
amplified at the same time than the main resonance peak,
and this effect is enhanced by the metric fluctuations. This
was already observed in Ref. [43] in the 1� 1 dimensional
system. Our simulations show that the effect prevails in
3� 1 dimensions. Nevertheless, at later times the tendency
seems to be reversed, and the amplitude of the long wave-
length modes starts to be smaller than when integrating the
system with a background metric. This might be an indi-
cation that due to the initial increase, the transfer of power
from long to short wavelengths starts before and it reaches
sooner the stage of free turbulence.

The spectrum of the scalar metric fluctuation j�kj2 is
shown in Fig. 1(b). The initial spectrum (top solid line)

2Tensor perturbations, being transverse and traceless, do not
contribute to the momentum constraint.
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behaves like

 j�k�0�j
2 
 �

!k

k4 j�kj
2; (28)

for k > 1, showing the same enhancement at low k (super-
horizon) than that of the field. With time, the spectrum is
redshifted like the inverse squared of the average scale
factor a�t�, but it retains the resonance peak structure of
the field. The final spectrum (dot-dash-dashed line) is given
by the initial spectrum redshifted by a factor a�t��2, but
with the initial power at low k smoothed out, and showing
the same cutoff at large k. The field amplitude in this model
is redshifted like a�t��1, but the rescaled field mode a�t��k
exponential increases due to parametric resonance. This is
not the case for the metric fluctuation, where the fluctua-
tion is not really parametrically amplified.

When looking at the averaged values of fields, energies
and variance, the inclusion of scalar metric fluctuations has
a negligible effect. In Fig. 2(a) is shown the average total
energy density h�i with respect to the average scale factor.
The system behaves as radiation with h�i / a�t��4, and the
average value is the same than that obtained without metric
fluctuations. There is at the beginning a slight difference in
the gradient contribution of the field he�2�jr�j2i, but it
practically disappears once the resonance broadens due to
rescattering effects3 at around a�t� 
 50. The gradient

term of the metric fluctuation he�2�jr�j2i initially follows
that of the field, redshifted as a�4, but the resonance in the
field is not strong enough to keep this tendency and soon it
starts decreasing faster as a�6. In Fig. 2(b) we have in-
cluded the variance of the field h�2i � h�i2 (solid and
dashed lines) and metric fluctuation h�2i � h�i2 (solid
line). Although the variance is initially larger with an
inhomogeneous scale factor �, the difference again practi-
cally disappears when the resonance develops. The disper-
sion in� is larger at the beginning than that of the field, but
again it is less affected by rescattering effects.

Finally, we have checked to which extent metric vectors
fluctuations can be neglected in the field and scalar metric
evolution by checking the momentum constraint Eq. (25).
Although initially we set the vectors and tensor fluctuations
to zero, they are sourced by scalar perturbations. The fail-
ure to satisfy this constraint during the evolution can be
interpreted as an indication of their presence. This can be
seen in Fig. 3, where we have plotted, as a function of the
scale factor, CM defined by

 CM �
���������@i�0 �

�
2

�0@i�
��������

2
�

1=2
; (29)

which shows to which extend Eq. (25) is verified. This will
accounts for the terms neglected in Eq. (18), such that

 CM �
���������

1

2
DjA

j
i

��������
2
�

1=2
: (30)

We include for comparison also the result without scalar
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FIG. 1 (color online). Left-hand plot (a): Spectrum of inflaton field fluctuations, normalized by the initial value of the field,
a�t�2j�kj
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3For comparison with the times at which the power spectrum is
plotted, we have the standard time dependence of a radiation
dominated universe, with a�t� �

��
t
p

.
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metric fluctuations, i.e., with a homogeneous scale factor.
Although when including � the constraint CM seems to be
better fulfilled by an order of magnitude with less disper-
sion, in either case it just follows the behavior of the field
fluctuation, with CM decreasing initially like h�0@i�i /
a�t��3 until the exponential increase due to the resonance
of the field. Indeed the behavior of CM indicates that also

the gradient of the local Hubble parameter follows that of
the field, with h@i�0i / a�t��3 instead of being redshifted
like a�t��2. We have checked that the behavior ofCM is not
a numerical artifact due to discretization by integrating the
system for other choices of L and N.

Therefore, vectors (and by extension tensors) could be
generated with an initial amplitude similar to that of scalar
fluctuations. However, due the behavior of the gradient
term for � in Fig. 2(a), the source term in their evolution
Eq. (14) will be soon dominated by the contribution of the
scalar field. Given that the resonance is not strong enough
to be fully transferred from the fields to the scalar metric
fluctuations, we might anticipate that the same would
happen for the other kinds of perturbations. Nevertheless,
scalar metric fluctuations affect the field spectrum at the
start, although their effects are quickly redshifted, and
vectors and tensors may lead to a similar effect. It would
be interesting to study to which extent metric fluctuations
apart from the scalar ones help to enhance the power of the
lower modes, whether this process lasts for longer or just
speeds up the transfer of power through the spectrum, but
this is beyond the scope of the present work.

IV. HYBRID MODEL

Preheating effects strongly depend on the model consid-
ered, and models with an stronger resonance will lead to
different conclusions also about metric perturbations.
Because of that, we study now a different kind of model,
a standard supersymmetric hybrid model of inflation,
where it is known that the field resonance is stronger and
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driven in what is called the tachyonic regime [12,18,19].
The potential is given by:

 V � V0 �
g2

4
N4 � g2�����c ������c �N

2 �
1

2
m2

�2;

(31)

where as before � is the inflaton field, with a small mass
m2

, and N is the waterfall field which triggers the phase

transition at the end of inflation. Inflation takes place in the
false vacuum, with hNi ’ 0 and V ’ V0. When the inflaton
field overcomes the critical value ��c , the squared field
dependent mass for N becomes negative, due to the ta-
chyonic instability field fluctuations grow exponentially,
and both fields move towards the global minimum of
the potential at 
0 � ��

�
c ���c �=2 and N0 �

���c ���c �=
���
2
p

. The potential in (31) reduces to the stan-
dard supersymmetric hybrid model when ��c � ���c , but
it also includes other supersymmetric hybrid potentials
when the soft trilinear term is included [54]. Here on we
will take ��c � 2
0, and ��c � 0; other choices of these
parameters will only shift the background values of the
fields at the global minimum, without affecting the evolu-
tion of fields and field fluctuations. The vacuum energy V0

driving inflation is adjusted such that the potential energy

vanished at the global minimum, i.e., V0 ’ g2N4
0=4 �

g2
4
0. As before, in order to eliminate the coupling from

the evolution equations we rescale the fields by 
0, the
potential and energy density by g2
4

0, time will be given in
units of 1=�g
0�, and wave number in units of g
0. The
value of the coupling then sets the initial value of the
fluctuations.

Working only with the background fields during infla-
tion, i.e., 
 � h�i, the Cosmic Background Explorer am-
plitude of the primordial spectrum is given by:

 P1=2
R ’

�
H
_


��
H
2	

�
’

g

4	
���
3
p



�

0

mP

�
; (32)

with 
 � m2

=�3H

2� one of the slow-roll parameters,
which also gives the tilt of the spectrum with the spectral
index nS ’ 1� 2
. Depending on the values of the pa-
rameters in the potential, the coupling g and the mass m2


,
the scale of hybrid inflation can range from the unification
scale, with

���
g
p

0 ’ O�1015 GeV�, down to the supersym-

metric breaking scale O�1 GeV�. Numerically, a too low
value of the scale means a lower value of the Hubble rate of
expansion and requires more integration time until the
fields start oscillating. Therefore we will work here with
models near the grand unified theory scale and start with

0 � 0:005mP ’ 1:2� 1016 GeV, g � 0:01, 
 � 0:05,
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FIG. 4 (color online). (a) Left-hand plot: average total energy density h�i, potential hVi, kinetic h _�2 � _N2i=2, and gradient
he�2���r��2 �rN�2��i=2 energy density, versus time (solid lines). The average gradient contribution of the scalar metric fluctuation
he�2�jr�j2i=2 (solid gray/green line), scale by a factor of 100, is also shown. The dashed lines show the contributions without metric
perturbations, total energy density, potential and field gradient energy density. Field quantities are given in units of the initial energy
density g2
4

0, that of the metric fluctuation in units of g2
4
0=m

2
P. (b) Right-hand plot: variance of the fields (solid lines), and scalar

metric fluctuation scaled by a factor of 100 (solid gray/green bottom line). The field variance without metric fluctuations (dashed lines)
is also shown for comparison. The dot-dashed lines are the average field oscillations scaled by a factor of 10�2. Field quantities are
given in units of 
2

0, that of the metric variable in units of �
0=mP�
2. We have taken: 
0 � 0:005mP, � � 0:01, 
 � 0:05.
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and V1=4
0 ’ 1:2� 1015 GeV. With these values of the pa-

rameters4 we have P1=2
R ’ 5� 10�5 and a very small

tensor-to-scalar ratio r ’ 8� 10�6.
We begin the evolution of the system just before the end

of inflation, i.e., some fraction of e-fold Ne ’ 0:05 before
the end with the value of the background inflaton field just
above the critical value h��0�i � ��c e


Ne . We use the
slow-roll condition to set the initial value of the back-
ground velocity given by h _��0�i ’ �2

0=mP in pro-
gram units. The background value of the waterfall field hNi
would be around zero, although fluctuations very quickly
drive this to a nonzero value. Numerically, it does not make
much difference if we take a nonvanishing initial value,
and we have set hN�0�i ’ 10�8 and h _N�0�i � 0. The initial
values of the inflaton fluctuations are given by Eqs. (21)–
(23). But now, in order to fulfill the momentum constraint
at t � 0, we adjust the initial value of the N fluctuations,
identifying this field as the extra field considered in [51].
Therefore, we have taken:

 N�0� � ��0� � h��0�i � hN�0�i; (33)

 

_N�0� � h _��0�i � _��0�; (34)

and the momentum constraint at t � 0 is given by

 2@i�
0 � ��h _��0�i@i��0�: (35)

With the choice of parameters given above, the Hubble rate
of expansion is rather small and practically the expansion
effects are going to be negligible during the tachyonic
resonance. In particular, in program units we have H�0� �
h�0�0�i � 
0=�

���
3
p
mP� ’ 3� 10�3. This also means that at

the beginning of the evolution all modes considered are
well inside the Hubble radius.

As before, we integrate the system in a cubic lattice with
N3 � 643 sites and L � 10	, and periodic boundary con-
ditions for the fields. Preheating in this model proceeds
through the exponential growth of the waterfall field fluc-
tuations due to the tachyonic instability in the potential,
which makes those of the inflaton to grow at the same rate
[12,18] and those of any other field coupled to it [23,54].
This lasts only a few oscillations of the fields, depending
on parameter values, during which the energy density ends
more or less equally distributed among potential, kinetic,
and the gradient contribution of the fields. The tachyonic
instability ends when the field fluctuations of � and N
render the effective squared mass for N always positive

during the oscillation, i.e., when the variances of the fields
become O�
0�. Following this there would be a period of
bubble collisions [19] and then a stage of turbulence with
the transfer of momentum towards the ultraviolet, and
finally the thermalization of the system. As with the pre-
vious chaotic model, we concentrate here in the first two
stages without really following the system into the turbu-
lence regime. These can be seen in Figs. 4, where in the
left-hand side (LHS) we have plotted the total energy
density, potential, kinetic, and gradient, and in the RHS
the variance of the fields. All quantities are given in pro-
gram units, i.e., energy densities are normalized to the
initial vacuum energy V0, and the variances to the field
value 
0. We include for comparison the results with no
metric perturbations. There is no qualitative difference
between both cases, except for a slight shift in time. In
the RHS plot we have also included the averaged gradient
term for the scalar metric perturbation he�2�jr�j2i, re-
scaled by a factor of 100. This term is always negligible
with respect to the field contributions, and therefore metric
perturbations has little or no effect on the evolution of the
fields. However, in this case the metric fluctuations are also
exponentially amplified, following the same resonance
pattern than that of the fields. This can be seen in Fig. 5.
On the LHS it is shown the evolution with time of the
waterfall field spectrum jNkj2 and in the RHS that of j�kj2.
Both spectra behave during the resonance as e2�k�t, with a
growth index �k � 0:3 for the lowest modes, slightly
larger for �k. In addition, the size of our lattice L � 10	
is small enough to keep the physical ultraviolet cutoff in
momentum for the fields, with the largest momentum mode
kept outside the resonance band and being hardly en-
hanced. But this is not the case for the scalar metric
fluctuations, for which all modes are preheated. The initial
scalar metric spectrum is derived from the energy con-
straint Eq. (24), and therefore j�kj2 / O��
0=mP�

2�. The
exponential growth is not enough, being only slightly
larger than that of the field, to make the scalar metric
contribution in the evolution equations comparable to
that of the fields. In particular in the evolution equation
for the traceless metric components, Eq. (14), the source
term due to the scalar metric fluctuations would be of the
order O�e�2�jr�j2�, and therefore suppressed by a factor
O��
0=mP�

2� with respect to the field source term. For the
same reason, the traceless components Aji would be of the
order �e�2�jr�j2 �O��
0=mP�

2, and their contribution
to the evolution of fields (5), and scalar metric fluctuation
(12), negligible.

However, given that the main suppression of the scalar
metric terms with respect to those of the fields is due to
factors of the order of O�
0=mP�, we have checked
whether this scenario changes when increasing the rate of
expansion and/or decreasing the value of 
 and the
coupling g. In particular, we want to check whether or
not the source term due to metric perturbations in the

4Strictly speaking we also have a blue tilted spectrum with a
rather large tilt, nS ’ 1:1, excluded by observations [5,6] when
the tensor contribution is negligible. We could always take a
smaller value for both the coupling and 
 and satisfy all
constraints. Our choice of 
 for this value of the inflationary
scale is motivated by numerical considerations, in order to
shorten the first stage of the integration from the end of inflation
up to the point when fluctuations starts growing.

NONLINEAR PREHEATING WITH SCALAR METRIC . . . PHYSICAL REVIEW D 77, 023520 (2008)

023520-9



evolution equation for the traceless modes Eq. (14) can be
comparable to that of the fields. In Fig. 6 we have plotted
the averaged value of the field’s gradient and that of the
scalar metric variable �, normalized by the initial vacuum
energy density, for different choices of the parameters. In
all of them we have increased the rate of expansion by an
order of magnitude, with 
0=mP � 0:05 and then H0 ’
3� 10�2 in program units. Keeping first the other two
parameters the same than in the previous plots, 
 �
0:05 and g � 0:01, we have already that the scalar metric
contribution becomes comparable to that of the fields
(solid lines). In this case, due to the larger Hubble expan-
sion rate, tachyonic preheating ends during the first oscil-
lation of the fields. Decreasing the value of
 � 0:01, i.e.,
making the inflaton potential flatter, slightly delays the
beginning of the oscillations and the start of the resonance
(dashed lines), but qualitatively the behavior of the gra-
dient terms remain the same with 
 � 0:05. The same
occurs when decreasing the value of the coupling, with
g � 0:001 and 
 � 0:01 (dot-dashed lines). By lowering
the value of the coupling we decrease the initial value
(relative to the total energy density) of the fluctuations.
Until the fields start oscillating, they behave approximately
like massless fields, and the gradient terms are redshifted
like a�t��4, with the effective scale factor a�t� � he�i.
When further decreasing 
 (dot-dot-dashed lines), the
initial value for the gradient terms is further decreased,
but the relative enhancement during the resonance
remains the same. However in this case the gradient of
the fields decreases faster after the tachyonic resonance
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FIG. 5 (color online). (a) Left-hand plot: time variation of the waterfall field spectrum jNkj2, in program units. (b) Right-hand plot:
same for the scalar metric fluctuation j�kj2. We have taken:
0 � 0:005mP, � � 0:01, 
 � 0:05. In both plots, the curves are ordered
by their comoving momentum, increasing from top to bottom by �k � 2	=L � 0:2, starting with k � 0:2 (top curve) up to k � 10:8
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0 � 0:05mp.

MAR BASTERO-GIL et al. PHYSICAL REVIEW D 77, 023520 (2008)

023520-10



than that of �, such that the latter soon dominates after the
resonance.

Nevertheless, when increasing the scale of inflation we
loose the physical cutoff in our lattice, in the sense that the
highest momentum mode is further enhanced once ta-
chyonic reheating ends. In this case, it just takes less
than one oscillation for the variance of the fields to grow
enough to render the effective squared mass of the water-
fall field positive. From the numerical simulations we have
that for g � 0:01 and 
 � 0:05 this happens when a�t� ’
2:3; for g � 0:01 and 
 � 0:01 when a�t� ’ 3:5; and for
g � 0:001 and 
 � 0:01 when a�t� ’ 5:6. Therefore,
practically all modes have been redshifted inside the reso-
nance band by the time the fields hit first the global
minimum. In order to check the dependence of the results
on the lattice cutoff, we have run a simulation with N �
128 and L � 10	, i.e., doubling the maximum value of the
comoving momentum, when g � 0:001 and 
 � 0:01,
such that still at the end of the resonance there are modes
left outside the resonance band. This is shown in Fig. 6 by
the dotted lines. The values of the gradients behave the
same than before, and they do not differ by more than a
factor O�2�.

In any case, during the short period of the resonance all
long wavelength modes are excited, and immediately after
it seems to start a very effective transfer of momentum
from the infrared to the ultraviolet. This can be seen in
Fig. 7, where as an example we have plotted the spectrum
of the waterfall field jNkj2 (LHS plot) and that of j�kj2

(RHS plot), for 
0 � 0:05mp, g � 0:01, 
 � 0:01. On

the latter, it can be seen more clearly the point at which the
tachyonic resonance ends at around t ’ 30 when the high-
est modes stop to be exponentially amplified and the restart
of the enhancement of the highest modes at around t ’ 40.
The same happens for the other model parameters consid-
ered in Fig. 5 at different time intervals. Given that the
growth of the gradients practically ends with the tachyonic
resonance as expected, we do not expect their evolution to
be much affected by the lack of high momentum modes. As
in the standard case without metric fluctuations, the reso-
nance will be followed by the turbulence regime, which
study we do not pursue here but it would be necessary in
order to see the scaling followed by the metric perturbation
terms there. In Fig. 5 the� terms decay as fast as that of the
field, if not slower, but this tendency remains to be further
checked. But we would like to stress that, even if nonlinear
metric perturbations are not preheated enough to affect the
evolution of the fields, they may become comparable to the
field source term in their own evolution equation, depend-
ing mainly on the scale of inflation. Our first study here
indicates that this is the case when 
0=mP > 0:05, which
sets the effective rate of expansion during the numerical
evolution, and it does not depend much on the value of the
coupling g, neither on that of the scale of inflation.
For example a hybrid model with 
0=mP � 0:05 and

 ’ 0:01, we will get the right amplitude of the primor-
dial spectrum with g ’ 10�4, which means a scale of
inflation V1=4

0 ’ 1015 GeV. The same scale is obtained
with g � 0:01 and 
0=mP � 0:005, but in the former
model we may expect preheating of the metric perturba-
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tions to be non-negligible, whereas in the latter we have
checked that this is not the case.

As it was mentioned in the introduction, we are re-
stricted to work with not that large lattices, such that
only sub-Hubble modes with k  2	=L can be taken
into account. The lattice size and resolution define both
the infrared and ultraviolet momentum cutoff. However,
the tachyonic resonance band for the hybrid model in-
cludes all modes with physical momentum less than a
few times mN �

���
2
p
gN0 [12,18], including super-Hubble

modes. We may expect therefore that the same happens for
the scalar perturbations, with �k following the same reso-
nance pattern than the field fluctuations. Nevertheless,
although the numerical simulations is in a sense incom-
plete, not considering the infrared part of the spectrum, at
the same time those are the less energetic, and therefore
they do not contribute much to the variance of the fields
and averaged energy densities. Given that the resonance
ends when the kinetic, potential, and gradient energy den-
sities of the fields become comparable, we do not expect
that including a larger fraction of modes with smaller
momenta will change the details of the resonance.
Neither will they contribute much to the gradient terms
of the scalar metric fluctuations in the RHS of Eq. (14).
Because of that, we do not expect that the results will
qualitatively change when including also the super-
Hubble modes.

V. SUMMARY

We have studied the first stages of preheating following
inflation in a 3 dimensional spatial lattice, including both
field and metric perturbations. This extends previous one-
dimensional studies of the problem as those of Refs. [42–
44]. We have worked in the synchronous gauge, starting
the evolution of the system immediately after inflation. The
set of evolution equations for fields and metric variables
are given by Eqs. (5), (12), and (14). During inflation,
vector modes decay, and tensor modes are subdominant
with respect to the scalar ones. Thus we have taken them,
vectors and tensors, initially to vanish. This means that we
have to take initial profiles for the field and field velocity
consistent with the momentum constraint Eq. (18). The
nonlinear evolution of the system couples all kinds of
modes to each other, and any of them will be inevitably
produced. Nevertheless, as a first step we have only fol-
lowed the evolution of the scalar metric perturbations and
their effect on the field fluctuations. We have studied two
different kinds of models of inflation, a chaotic model of
inflation and a standard hybrid one, which are representa-
tive of different patterns for the parametric resonance. In
the former, the resonance starts in the narrow resonance
regime with field mode fluctuations produced in a narrow
range of comoving wave number [8]. Later on, rescattering
effects redistribute the resonance among several bands, for

higher and lower comoving momentum values [16,17]. In
the hybrid model the resonance is driven by the tachyonic
instability in the waterfall field, and due to that it results in
a more explosive and faster production of particles
[12,18,19]. In both cases, scalar metric perturbations
hardly affect the evolution of field fluctuations, and the
evolution of the field resonance is practically unchanged.
For the chaotic model of Sec. II, however, there is an initial
enhancement of the field power at lower wave numbers that
was also observed in Ref. [43]. In addition, we have also
included the effect of superhorizon modes in our simula-
tions with larger initial amplitudes. Looking at the end of
the integration range in time, there might be also some
indication that this initial transfer of power towards lower
modes helps in entering earlier the stage of free turbulence,
where the effect is reverse. But given the size of our
numerical simulations we cannot follow the system fully
into that regime, and further studies would be required in
order to confirm this tendency.

Although the field resonance does not feel the presence
of metric fluctuations, even in the nonlinear regime, the
scalar metric perturbations follow the same resonance
pattern than the field, as seen in Fig. 1(b) for the chaotic
model and Fig. 5(b) for the hybrid model. In the case of the
chaotic model the amplitude of metric perturbations is not
really amplified above the initial value, and the power
spectrum of the metric fluctuations simply reproduced
the peak structure seen for the field. This means that for
the chaotic model metric fluctuations are not really en-
hanced by the parametric resonance, they do not become
comparable to the field source terms in the evolution
equations, and we can safely neglect them. On the contrary,
in the hybrid model the scalar metric perturbations clearly
feel the tachyonic resonance of the waterfall field, in a
similar way to any other field coupled to it like the inflaton
field. The scalar metric initial amplitude is amplified by
approximately the same factor �e�k�t than the amplitude
of the field fluctuation, with �k � 0:3 being the growth
index. Although metric fluctuations never become large
enough to affect the field evolution, they may give rise to a
source term comparable to that of the field in the evolution
equation for the traceless modes, Eq. (14), depending on
the model parameters g and 
0=mP, with V1=4

0 �
���
g
p

0.

For example, this is the case for g � 10�4 and 
0=mP �

0:05, i.e., for a scale of inflation V1=4
0 ’ 1015 GeV.

Whether this term helps to enhance or not, for example,
the production of gravitational waves during preheating
[37,38], requires the study of the full set of evolution
equations for the metric perturbations, which is beyond
the scope of this paper and is left for further study.
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