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The presence of inhomogeneities modifies the cosmic distances through the gravitational lensing effect,
and, indirectly, must affect the main cosmological tests. Assuming that the dark energy is a smooth
component, the simplest way to account for the influence of clustering is to suppose that the average
evolution of the expanding Universe is governed by the total matter-energy density whereas the focusing
of light is only affected by a fraction of the total matter density quantified by the � Dyer-Roeder
parameter. By using two different samples of SNe type Ia data, the �m and � parameters are constrained
by applying the Zeldovich-Kantowski-Dyer-Roeder luminosity distance-redshift relation for a flat
(�CDM) model. A �2-analysis using the 115 SNe Ia data of the Astier et al. sample (2006) constrains
the density parameter to be �m � 0:26�0:17

�0:07 (2�) while the � parameter is weakly limited (all the values
2 �0; 1� are allowed even at 1�). However, a similar analysis based the 182 SNe Ia data of Riess et al.
(2007) constrains the pair of parameters to be �m � 0:33�0:09

�0:07 and � � 0:42 (2�). Basically, this occurs
because the Riess et al. sample extends to appreciably higher redshifts. As a general result, even
considering the existence of inhomogeneities as described by the smoothness � parameter, the
Einstein-de Sitter model is ruled out by the two samples with a high degree of statistical confidence
(11:5� and 9:9�, respectively). The inhomogeneous Hubble-Sandage diagram discussed here highlights
the necessity of the dark energy, and a transition deceleration/accelerating phase at z� 0:5 is also
required.

DOI: 10.1103/PhysRevD.77.023519 PACS numbers: 98.80.�k, 95.35.+d, 95.36.+x

I. INTRODUCTION

The Hubble-Sandage diagram for type Ia supernovae
(hereafter SNeIa), as measured by the Supernova
Cosmology Project [1] and the High-z Supernova Search
Team [2], provided the first evidence that the present
Universe is undergoing a phase of accelerating expansion
driven by an exotic component with negative pressure (in
addition to the cold dark matter), usually called dark
energy.

The idea of a dark energy-dominated universe is a direct
consequence of a convergence of independent observatio-
nal results, and constitutes one of the greatest challenges
for our current understanding of fundamental physics [3].
Among a number of possibilities to describe this dark
energy component, the simplest and most theoretically
appealing way is by means of a cosmological constant �,
which acts on the Einstein field equations as an isotropic
and homogeneous source with a constant equation of state,
w � p=� � �1.

Although cosmological scenarios with a � term might
explain most of the current astronomical observations,
from the theoretical viewpoint they are plagued with at
least a fundamental problem, namely, it is really difficult to
reconcile the small value of the vacuum energy density
required by observations ( ’ 10�10 erg=cm3) with esti-
mates from quantum field theories ranging from 50–120
orders of magnitude larger [4]. This problem, sometimes

called the cosmological constant problem, has inspired
many authors to propose decaying � models [5] and other
alternative approaches for describing dark energy [6].
Nevertheless, the present cosmic concordance model
(CCM) which is supported by all the existing observations
is a flat �CDM cosmology with a matter fraction of
�m � 0:26 and a vacuum energy contribution of �� �
0:74 [7–10].

On the other hand, the real Universe is not perfectly
homogeneous, with light beams experiencing mass inho-
mogeneities along their way thereby producing many ob-
servable phenomena. For instance, light lines traversing in
the Universe are attracted and refracted by the gravitational
force of the galaxies on their path, which bring us the signal
of lensing, one of which is the multiple images of a single
far galaxy [11,12]. Nowadays, gravitationally lensed qua-
sars and radio sources offer important probes of cosmology
and the structure of galaxies. The optical depth for lensing
depends on the cosmological volume element out to mod-
erately high redshift. In this way, lens statistics can in
principle provide valuable constraints on the cosmological
constant or, more generally, on the dark energy density and
its equation of state [13–15].

In this context, one of the most important issues in the
modern cosmology is to quantify from the present obser-
vations the influence of such inhomogeneities on the evo-
lution of the Universe. An interesting possibility to account
for such effects is to introduce the smoothness parameter �
which represents the magnification effects experienced by
the light beam. When � � 1 (filled beam), the Friedmann-
Robertson-Walker (FRW) case is fully recovered; �< 1
stands for a defocusing effect; � � 0 represents a totally
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clumped universe (empty beam). The distance relation that
takes the mass inhomogeneities into account is usually
named Dyer-Roeder distance [16], although its theoretical
necessity had been previously studied by Zeldovich [17]
and Kantowski [18]. In this way, we label it here as the
Zeldovich-Kantowski-Dyer-Roeder (ZKDR) distance for-
mula (for an overview on cosmic distances taking into
account the presence of inhomogeneities, see the paper
by Kantowski [19]).

Several studies involving the ZKDR distances in dark
energy models have been published in the past few years.
Useful analytical expressions for �CDM models have
been derived by Kantowski et al. [20,21] and Demianski
et al. [22]. Working in the empty beam approximation
(� � 0), Sereno et al. [23] investigated some effects of
the ZKDR distance for a general background. By assuming
that both dominant components may be clustered, they also
discussed the critical redshift, i.e., the value of z for which
dA	z
 is a maximum [or �	z
 minimum], and compared to
the homogeneous background results as given by Lima and
Alcaniz [24], and further discussed by Lewis and Ibata
[25]. Demianski and co-workers derived an approximate
solution for a clumped concordance model valid on the
interval 0 � z � 10. Additional studies on this subject are
related to time delays [25,26], gravitational lensing
[27,28], and even accelerated models driven by particle
creation have been investigated [29].

In a previous paper [30], we have applied the ZKDR
equation in the framework of phantom cosmology in order
to determine cosmological constraints from a sample of
milliarcsecond compact radio sources. By assuming a
Gaussian prior on the matter density parameter, i.e., �m �
0:3� 0:1, the best fit model for a phantom cosmology with
! � �1:2 occurs at �m � 0:29 and � � 0:9 when we
marginalize over the characteristic size of the compact
radio sources. Such results suggested that the ZKDR dis-
tance can give important corrections to the so-called back-
ground tests of dark energy. In this article, the pair of
cosmic parameters, �m � 1��� and �, are constrained
from supernovae observations by applying the ZKDR
distance-redshift relation for a flat (�CDM) model. As
we shall see, the � parameter is not well constrained by
the 115 SNe observed by Astier et al. (2006). However, the
182 SNe type Ia sample of Riess et al. (2007) constrains the
pair of parameters to be �m � 0:33�0:09

�0:07 and � � 0:42
(2�). As a general result, even considering the existence
of inhomogeneities described by the � parameter, the
Einstein-de Sitter model is ruled out by the two samples
with a high degree of statistical confidence (11:5� and
9:9�, respectively).

The paper is organized as follows. In Sec. II, we present
the basic equations and the distance description taking into
account the inhomogeneities as described by the ZKDR
equation. In Sec. III, we determine the constraints on the
cosmic parameters from the two supernovae samples.
Finally, we summarize the main conclusions in Sec. IV.

II. ZKDR EQUATION FOR LUMINOSITY
DISTANCE

In a clumpy universe model, the local geometry is
inhomogeneous, but its global aspect can be described by
the FRW type geometry (c � 1)

 ds2 � dt2 � R2	t
	dr2 � r2d�2
; (1)

where R	t
 is the scale factor and d�2 denotes the metric in
the 2-sphere.

As it is widely known, the idea of a clumpy universe is
still an ill-defined notion since we do not have a clear
mathematical recipe to separate the global properties
from the local inhomogeneous aspects of the Universe.
After Dyer and Roeder [16], it is usual to introduce a
phenomenological parameter, � � 1� �cl

h�mi
, called the

‘‘smoothness’’ parameter. Such a parameter quantifies the
portion of matter in clumps (�cl) relative to the amount of
background matter which is uniformly distributed (�m). In
general, due to the structure formation process, it should be
dependent of the redshift, as well as on the direction along
the line of sight (see, for instance, [14,30] and references
therein). However, in the majority of the works � is
assumed to be a constant parameter. From a mathematical
viewpoint the treatment is based on the optical-scalar
equation for light propagation in the so-called geometric
optics approximation [11,31]

 

����
A
p

00 � 1
2R��k

�k�
����
A
p
� 0; (2)

where a prime denotes differentiation with respect to the
affine parameter �, A is the cross-sectional area of the light
beam, R�� the Ricci tensor, and k� the photon four-
momentum. In this form, it is implicit that the influence
of the Weyl tensor (shear) can be neglected. This means
that the light rays are propagating far from the mass
inhomogeneities so that the large-scale homogeneity im-
plies that their shear contributions are canceled. The pro-
portionality factor between the cross-sectional length A1=2

and the angular distance dA can be defined to be constant.
Actually, the above optical-scalar equation is usually writ-
ten in terms of the dimensionless angular-diameter dis-
tance DA � H0dA. Further, by recalling the existence of
a simple relation between the luminosity distance, and the
angular-diameter distance (from Etherington principle
[32], dL � 	1� z
2dA), it is easy to show that the ZKDR
(dimensionless) luminosity distance for �CDM cosmol-
ogy satisfies the following differential equation [20–
23,26]:

 	1� z
2F
d2DL

dz2 � 	1� z
G
dDL

dz
�HDL � 0; (3)

which satisfies the boundary conditions:

 

(
DL	0
 � 0;
dDL
dz j0 � 1:

(4)
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where F , G, and H are functions of the cosmological
parameters, expressed in terms of the redshift by
 

F � �m � 	1��m
	1� z
�3;

G �
�m

2
� 2	1��m
	1� z


�3;

H �

�
3�� 2

2

�
�m � 2	1��m
	1� z


�3;

(5)

where as remarked before, the � parameter appearing in
the H expression (here assumed to be a constant) quan-
tifies the clustered fraction of the pressureless matter.

III. SAMPLES AND RESULTS

The standard FRW models contain only homogeneously
and isotropically distributed perfect fluid gravity sources,
and the present CCM is assumed to represent both the
‘‘large-scale’’ geometry of the Universe and the matter
content. However, the Universe appears homogeneous
only in a statistical sense, when one is describing the
largest scales. Therefore, although making very useful
predictions, our cosmological models are somewhat inade-
quate at small and moderate scales. This means that rela-
tions like �	H0;�m;�; z
, the distance modulus for a
standard candle, commonly assumed to be valid on average
can be incorrect even for observations including SNe Ia. In
particular, if the underlying mass density approximately
follows luminous matter (i.e., associated with bounded
galaxies), the effects of inhomogeneities on relations like
�	H0;�m;�; z
 must be taken into account.

In Fig. 1, we display the effects of the inhomogeneities
in the reduced Hubble-Sandage diagram for the Astier
et al. (2006) and Riess et al. (2007) samples for some
selected values of the smoothness parameter. The plots

correspond to several values of �m and � as indicated in
the panels. The difference between the data and models
from an empty universe case (OCDM) prediction is also
displayed there. For the sake of comparison, we also show
the Einstein-de Sitter model, i.e. �m � 1 and � � 1, as
well as the present cosmic concordance (�m � 0:26,
�� � 0:74, � � 1). Note that the � parameter contributes
in the right direction i.e., the SNe type Ia become dimmer
when it increases on the allowed range. In what follows, a
�2 minimization will be applied for the two sets of SNe
data with the parameters �m and � spanning the interval
[0,1] in steps of 0.01, for all numerical computations.

A. Astier et al. sample (2006)

Let us now discuss the bounds arising from SNe Ia
observations on the pair of parameters (�m, �) defining
the ZKDR luminosity distance.

The current data from Supernova Legacy Survey
(SNLS) collaboration correspond to the first year results
of its planned five-year survey. The total sample includes
71 high-z SNe Ia in the redshift range 0:2< z< 1 plus 44
low-z SNe Ia as published by Astier et al. [7]. Although in a
better agreement with WMAP 3-year results [8] than the
gold sample [9] (for a more detailed discussion see e.g.,
Jassal et al. [33]), the most distant SNe Ia of these 115
events has redshift smaller than unity.

Following standard lines, the maximum likelihood esti-
mator, LSNIa / exp���2

SNIa	z; p
=2�, is determined by a �2

statistics

 �2
SNIa	zjp
 �

X
i

	�	zi; p
 ��0;i

2

�2
�0;i
� �2

int

; (6)

where p � 	H0; �;�m
 is the complete set of parameters
that we want to fit, ��0;i

, �int are, respectively, the errors

FIG. 1 (color online). The �-effect on the residual magnitudes. In (a) we show the 115 supernovae data from Astier et al. [7], and the
predictions of the ZKDR luminosity distance for several values of � relative to an empty model (�m � 0, �� � 0, and � � 1). In (b)
we show the same graph but now for the 182 SNe type Ia from the Riess et al. sample [9]. For comparison, in both panels we see (black
curves) the prediction of the cosmic concordance model (�m � 0:26, �� � 0:74, � � 1).
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associated with the observational techniques in determin-
ing the distance moduli (includes a peculiar contribution)
and the intrinsic dispersion of SNe Ia. The corresponding
errors are reported in the paper by Astier et al. [7].

Marginalizing our likelihood function over the nuisance
parameter, H0, we obtain the likelihood function for the
�m � � plane. In order to determine the cosmological
parameters (�m, �), a �2 minimization for the range of
[0,1] in steps of 0.01 has been applied. The 68.3%, 90.0%,
and 95.4% confidence levels are defined by the conven-
tional two-parameters �2 levels 2.30, 4.61, and 6.17, re-
spectively. It is very important to note that we do not
consider any prior in �m, as usually required by the SNe
Ia test. The basic results are shown in Figs. 2(a)–2(c).
From Fig. 2(a) we see that all of the range for � is
accepted, while a �m  0:3� 0:1 is obtained. In
Fig. 3(b) we see the likelihood for the smoothness parame-

ter. The best fit adjustment occurs for values of � � 1:0
and �m � 0:26 with �2

min � 113:3 and � � 113 degrees of
freedom (�2=� � 1), thereby showing that the model pro-
vides a good fit to these data. It is also interesting that, for
any � value, we also find no evidence for a high �m
parameter as required by a flat Einstein-de Sitter universe
(�� � 0). Actually, the Einstein-de Sitter scenario has a
very small statistical significance �2 � 244:9 (11:5� out-
side). However, since the Astier et al. data are not restric-
tive for the � parameter, let us now consider the enlarged
SNeIa sample observed by the High-z Supernovae Search
Team [9].

B. Riess et al. sample (2007)

The so-called gold sample from the HZS team [9] is a
selection of 182 SNe Ia events distributed over the redshift
interval 0:01 & z & 1:755, and constitutes the compilation

FIG. 3 (color online). (a) Confidence contours on the (�m, �) plane for flat �CDM models as inferred from 182 SNe Ia
measurement by Riess et al. [9]. (b) The likelihood function for the � smoothness parameter. We see that at 2� the smoothness
parameter is restricted on the interval (0:42 � � � 1:0). (c) Probability of the matter density parameter. In this case a comparatively
small region is permitted 0:25 � �m � 0:44 with (2�) confidence level.

FIG. 2 (color online). (a) The �m � � plane for flat �CDM models obtained from 115 SNe Ia data Astier et al. [7]. Note that the �
parameter is not well constrained by the data. (b) The likelihood for the � smoothness parameter. We see that even at 1� the
smoothness parameter is poorly restricted (all its admissible values are allowed). (c) Probability of the matter density parameter. We
see that 0:19 � �m � 0:43 with 2� confidence level.
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of the best observations made so far by them and by the
Supernova Cosmology Project events observed by the
Hubble Space Telescope (HST). As before, constraints on
the cosmological parameters (�m, �), are determined from
a �2 minimization within the range of [0,1] spanned by
such parameters.

In Fig. 3(a), one can see that 0:42 � � � 1:0 and 0:25 �
�m � 0:44 with 90% statistical confidence. The best fit
adjustment occurs for values of �m � 0:33 and � � 1
with �2

min � 158:6 and � � 180 degrees of freedom the
reduced (�2=�� 0:9). Therefore, the model provides a
very good fit to the Riess et al. sample. In Fig. 3(b) we
see the likelihood for the smoothness parameter. As pre-
viously remarked, the Riess et al. data set is much more
restrictive for the smoothness parameter than the Astier
et al. sample. Within 2�, the allowed range for the � falls
on the interval 0:42 � � � 1:0 (cf. Fig. 2(a)]. In Fig. 3(c)
we show the probability for the density matter parameter.
In this case a small region is permitted 0:25 � �m � 0:44
with of the confidence level (2�). In the analysis for the
Einstein-de Sitter universe (�m � 1:0, �� � 0:0), the
�2 � 255:8 is too bad (9:9� C.L. outside for 1 degree of
freedom), and guarantees us to exclude this model with
high confidence.

IV. COMMENTS AND CONCLUSIONS

Cosmology is in an exciting period. A considerable set
of rather sophisticated experiments, until a few years ago
regarded as futuristic, have now been completed with
spectacular success. The results of the first observations
almost one decade ago have been confirmed what was long
surmised, namely, that most of the matter is nonbaryonic
and that we live in an accelerating expanding universe
dominated by dark energy.

In this article, we have discussed the influence of in-
homogeneities on the expansion rate of the Universe, and,
in particular, if the smoothness � parameter could be con-
strained through a statistical analysis involving two large
sets of SNe Ia data. As we have seen, in the case of the
Astier et al. sample, the entire interval of � is allowed
while a �m  0:3� 0:1 is obtained. Within the existing
uncertainties, these results are consistent with the con-
straints obtained from the angular diameter of compact
radio sources with a basis on the Gurvits et al. data
[30,34]). Therefore, although in close agreement with

rather different analysis, this SNe data set is incapable of
constraining the smoothness parameter. Actually, at this
moment, the sample of Riess et al. provides a more strin-
gent constraint with the allowed range for � falling on the
interval 0:42 � � � 1:0 (2�). Basically, this occurs be-
cause the Riess et al. sample extends to appreciably higher
redshifts. In general, both analyses suggest that a large
range for � is permitted, and that the Einstein-de Sitter
model is strongly excluded (11:5� and 9:9�, respectively).
As we have seen, the necessity of the dark energy and a
transition from deceleration to an accelerating phase is
maintained even when one takes into account the clustering
phenomenon. However, at the level of the SNe Ia observa-
tions discussed here, these results suggest that the clumpi-
ness of matter distribution can mimic at least a small
fraction of the dark energy component.

Finally, we would like to stress that measurements from
SNe Ia combined with the ZKDR inhomogeneous ap-
proach adopted here may provide an independent and
more rigorous cosmological test for the cosmic concord-
ance model in the near future. In this concern, it should be
very important to investigate whether the � parameter can
be constrained using independent observations, among
them: the cosmic microwave background anisotropies,
the physics of galaxies clusters, Sunyaev-Zeldovich effect,
time delay, and statistical of gravitational lensing. Some
studies along these lines will be presented in a forthcoming
communication. The present results based only on the
Hubble-Sandage diagram show that the Riess et al. sample
is more restrictive than the Astier et al. sample, thereby
reinforcing the interest to observe more supernova events
at higher redshifts.
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