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Braneworlds, understood here as double domain wall spacetimes, can be described in terms of a linear
harmonic function, with kinks at the locations of the boundary branes. In a dynamical setting, there is
therefore the risk that the boundary brane of negative tension, at whose location the value of the harmonic
function is always lowest, can encounter a zero of this harmonic function, corresponding to the formation
of a singularity. We show that for certain types of brane-bound matter this singularity can be avoided, and
the negative-tension brane can shield the bulk spacetime from the singularity by bouncing back smoothly
before reaching the singularity. In our analysis we compare the 5- and 4-dimensional descriptions of this
phenomenon in order to determine the validity of the moduli space approximation.
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I. INTRODUCTION

Recently, a solution to the classical equations of motion
of heterotic M theory was found, which describes a ‘‘non-
singular’’ collision of the two boundary branes [1]. By
nonsingular we mean here that the volume of the internal
Calabi-Yau manifold, as well as the scale factors on the
branes remain finite and nonzero at the collision, with only
the orbifold dimension shrinking to a point. Since domain
wall solutions are usually described in terms of a linear
harmonic function, one might however expect on general
grounds that in a time-dependent context a zero of the
harmonic function and thus a spacetime singularity might
be encountered at some other point in the evolution. This is
indeed the case. The zero of the harmonic function in fact
corresponds to a timelike naked singularity, which the
negative-tension brane runs into in the absence of matter
on the branes. This is the instability described by Gibbons
et al. [2] and by Chen et al. [3].1

However, in the presence of a small amount of certain
types of brane-bound matter, the negative-tension brane
bounces off the naked singularity without touching it. This
behavior is only possible due to the peculiar properties of
gravity on a brane of negative tension, and in a sense one
can say that in these cases the naked singularity acts
repulsively with respect to the negative-tension brane.
Thus, and perhaps paradoxically, the negative-tension
boundary brane can have a stabilizing effect by shielding
the bulk spacetime from the naked singularity that corre-
sponds to the zero of the harmonic function (note that
because the negative-tension brane corresponds to a
troughlike kink, it is always the negative-tension brane,
rather than the positive-tension one, which will be the

closest to a zero of the harmonic function). It was shown
in [5] that from a 4d effective point of view, the bounce of
the negative-tension brane corresponds to a reflection of
the solution trajectory off a boundary of moduli space. This
reflection has the consequence of converting entropy per-
turbations into curvature perturbations [6], and is thus
rather significant in the context of ekpyrotic [7] or cyclic
[8] cosmological models. In the present paper we study the
conditions for such a bounce to occur in greater generality.
What we find is that a certain inequality, involving the trace
of the brane matter stress-energy tensor and its coupling to
the scalar supporting the domain walls, has to be satisfied
in order for a bounce to be possible.

We will study the conditions for a bounce both in 5
dimensions and using the 4d moduli space approximation.
In the study of higher-dimensional braneworlds, it is often
useful to resort to a 4d effective description, since higher-
dimensional settings are often quite far removed from
one’s intuition. It is therefore crucial to determine the
validity of the effective theory. We will do this by compar-
ing the description of the bounce of the negative-tension
brane from a 5-dimensional point of view with the descrip-
tion of the same phenomenon in the 4-dimensional moduli
space approximation, in the presence of various types of
brane-bound matter.

II. DOMAIN WALLS IN 5 DIMENSIONS

We will consider scalar-gravity theories with an expo-
nential scalar potential. The action is given by

 S �
Z

5d

�������
�g
p

�
R�

1

2
�@��2 � 6�2�3�2 � 2�e2��

�

� 12�
Z

4d;y��1

�������
�g
p

e�� � 12�
Z

4d;y��1

�������
�g
p

e��;

(2.1)

where � is a positive constant that can be adjusted by a
shift in the scalar � (we will choose a convenient value
later on) and� determines the self-coupling of�. Theories
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1It was shown in [4] that static Hořava-Witten braneworlds are

stable subject to perturbations of finite energy. However, the
time-dependent configurations described in [1,3] differ from the
static configuration by a homogeneous, infinite-energy
perturbation.
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of this type are well motivated in a supergravity context,
where they can arise after flux compactification à la
Scherk-Schwarz; see for example [9]. Typically, the do-
main wall action is given by a worldvolume-weighted
superpotential

 �
Z

4d;y��1

�������
�g
p

W���; (2.2)

where here W��� � 12�e��. This superpotential is then
related to the potential V��� � 6�2�3�2 � 2�e2�� by the
usual supergravity relationship

 V �
1

8

��
@W
@�

�
2
�

2

3
W2

�
; (2.3)

see [10] and the appendix of [11] for more details. The case
� � �1 corresponds to heterotic M theory in its simplest
consistent truncation [12–15]; e� then parameterizes the
volume of the internal Calabi-Yau manifold.

The static vacuum of the theory above is given by a
domain wall spacetime of the form

 ds2 � h2=�6�2�1��y��B2��d�2 � d~x2� � A2dy2	;

e� � A�1=�h�6�=�6�2�1��y�;

h�y� � ��6�2 � 1�y�D;

(2.4)

where A, B, and D are arbitrary constants and h�y� is a
linear harmonic function. The y coordinate is taken to span
the orbifold S1=Z2 with fixed points at y � �1. In the
‘‘upstairs‘‘ picture of the solution, obtained by Z2 reflect-
ing the solution across the branes, there is a downward-
pointing kink at y � �1 and an upward-pointing kink at
y � �1. These ensure the junction conditions are satisfied,
with the negative-tension brane being located at y � �1
and the positive-tension brane at y � �1. The coordinate
system used above is only a good coordinate system when

 �2 > 1
6; (2.5)

and we will restrict our analysis to this range of � (as
discussed recently in [16], for certain physical properties
there are qualitative differences when 0 
 �2 
 1

6 ).
The Ricci scalar is proportional to h�12�2=�6�2�1� and

thus the spacetime is singular at h�y� � 0. If we had only a
positive-tension brane, with a roof-type kink, this singu-
larity would be at a finite proper distance from the brane,
and the spacetime would therefore have a naked singular-
ity. Usually, one avoids this problem by cutting the space-
time off with a negative-tension brane placed in between
the positive-tension brane and the singularity, thereby ren-
dering the spacetime well behaved, as we have already
anticipated by including two brane actions of opposite
tension in the action (2.1); see also Fig. 1. In a time-
dependent context however, where the slope and the height
of the harmonic function can vary, there is still the risk that
the harmonic function can become zero at the location of

the negative-tension brane, thus causing a spacetime sin-
gularity to form [2,3]. In the next section we will see that,
in the presence of certain types of brane-bound matter, this
singularity can be avoided, with the negative-tension brane
bouncing back before it reaches the singularity.

III. GENERAL CONDITIONS FOR A BOUNCE OF
THE NEGATIVE-TENSION BRANE

In general, we add the following matter action at the
location of the negative-tension brane (at y � �1), i.e. we
add to Eq. (2.1) the term

 �
Z

4d;y��1
L�g;�; . . .�; (3.1)

where the dots represent the matter contribution and we are
allowing for a coupling to the scalar �. The junction
conditions, which we are only writing out here for the
negative-tension brane, read (in this section 0 � @

@y and _�
@
@t )

 a0 � �en��� � 1
6e
nT 0

0jy��1; (3.2)

 n0 � �en��� � 1
3e
nT 0

0 �
1
6e
nT i

ijy��1; (3.3)

 �0 � �6��en��� � 1
2e
nT �jy��1; (3.4)

where we have defined

 T �� �
�1�������
�g
p

�L
�g��

; (3.5)

 T � �
�1�������
�g
p

�L
��

; (3.6)

with� a brane worldvolume index. Since the brane as well
as the brane-bound matter are kept at the fixed coordinate
position y � �1, we have T �y � 0.

+1−1S y

h(y)

FIG. 1. The harmonic function h�y�, where y is the coordinate
on an S1=Z2 orbifold. In the absence of a negative-tension brane
at y � �1, there would have been a singularity at y � S.
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We are only interested in whether or not the negative-
tension brane will bounce off the singularity, even if the
bulk is perturbed in the vicinity of this bounce. Therefore
we will choose a general metric and scalar field ansatz,
which however respects cosmological symmetry on the
brane worldvolumes, so that, on the branes, we have spatial
homogeneity and isotropy:

 d s2 � e2n�t;y���dt2 � dy2� � e2a�t;y�d ~x2; (3.7)

 e� � e��t;y�: (3.8)

With this metric ansatz we need T 0i � 0 for the 0i
Einstein equation to be satisfied.

As a minimal requirement for a bounce to occur, there
should be a solution in which the negative-tension brane is
momentarily stationary (i.e. for which all first time deriva-
tives are zero at the location of the negative-tension brane),
and in which the second time derivative of the scale factor
on the negative-tension brane is positive. The yy bulk
Einstein equation, which is an equation for the acceleration
of the scale factor a, is given by

 3 �a� 3 _a _n�1
4

_�2 � 6 _a2 � 3a02 � 3a0n0 � 1
4�
02

� 9�2�6�2 � 1�e2n�2��:

(3.9)

We can set first time derivatives to zero, since we are only
interested here in the moment of the bounce. Apart from
the ty Einstein equation (which is trivially satisfied at y �
�1 since every term involves a first time derivative), this
equation is the only one that involves only first derivatives
with respect to y, and so we can evaluate it at the location
of the negative-tension brane at the moment of the putative
bounce by substituting in the junction conditions (3.2),
(3.3), and (3.4):
 

3 �a �
�
2
e2n����T �

� � 3�T ��

�
e2n

48
�4�T 0

0�
2 � 4T 0

0T
i
i � 3�T ��

2	jy��1;bounce:

(3.10)

The first line is proportional to �, and would therefore flip
sign on the positive-tension brane (where there would be
additional first time derivative terms involved). The first
line also involves the trace of the matter stress-energy
tensor. The second line is proportional to the matter density
squared, and can thus be regarded as small compared to the
first line. The second line generally gives a negative con-
tribution (it certainly does so when the strong energy
condition is satisfied).

If we want to have a bounce on the negative-tension
brane, there must be a positive contribution to �a from the
first line in (3.10), i.e. a necessary condition (but not
sufficient in general) is that

 T �
� � 3�T � > 0: (3.11)

This condition is not particularly difficult to satisfy; we
will give a few examples (and counter-examples) in the
next section. If Eq. (3.11) is satisfied, then one also has to
check that this contribution is dominant over the second
line in (3.10), which it is if the matter density is sufficiently
small. And one would of course have to extend the solution
to the rest of spacetime, which we simply assume here to
be feasible.

IV. SOME EXAMPLES

Scalar field.—Using the above equations, one can see
that for a scalar matter Lagrangian

 L � �
�������
�g
p 1

2�@��
2C���; (4.1)

where we allow for a coupling C��� and where we take �
to depend only on time (because of the assumed cosmo-
logical symmetry), we get a positive contribution to (3.10)
when

 C� 3�C;� > 0: (4.2)

Thus for a scalar field that does not couple to �, i.e. for
which C � 1, we can expect a bounce; however, there will
also be corrections to the geometry. Scalars of this latter
type are present in heterotic M theory [15]. We will discuss
the heterotic M theory examples in more detail in Sec. VI.

Gauge field.—A vector gauge field localized on the
brane is represented by the Lagrangian

 L � �
�������
�g
p

C���F��F
��: (4.3)

Here we assume the gauge field to be Abelian, and we use
the usual electric-magnetic decomposition

 F0i � Ei Fij � 	ijkB
k: (4.4)

This leads to a stress-energy tensor

 T 00 � �g00�E
2 � B2�C���; (4.5)

 T 0i � 2	ijkE
jBkC���; (4.6)

 T ij � ��2EiEj � 2BiBj � gij�E
2 � B2�	C���; (4.7)

where we have denoted B � �BiB
i�1=2. We can immedi-

ately see that the stress-energy tensor is traceless,

 T �
� � 0: (4.8)

We also have

 T � � C;���2E2 � 2B2�: (4.9)

The oi Einstein equation implies that T 0i, and thus the
Poynting vector, has to be zero. This will be the case if we
have an electric or a magnetic field only. Thus, from (3.11),
we can expect a bounce if
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 �C;� < 0 and Bi � 0 (4.10)

or if

 �C;� > 0 and Ei � 0: (4.11)

On the other hand, it is easy to see that radiation alone,
for which the Poynting vector is zero on average, does not
give rise to a bounce, since then2

 hE2i � hB2i: (4.12)

In that case the condition (3.11) cannot be fulfilled, as we
now have T �

� � 3�T � � 0. However, radiation also does
not lead to a collapse; to first order in the matter density it
simply has no effect at all on whether we have a bounce or
not. It is only at second order in the energy density that
radiation contributes towards a collapse, as can be seen
from Eq. (3.10).

Perfect fluid and cosmological constant.—A perfect
fluid with energy density 
 can be described by the
Lagrangian

 L � �
�������
�g
p


C���; (4.13)

which leads to the stress-energy tensor [17]

 T 00 � �g00
1
2
C���; (4.14)

 T ij � gij
1
2pC���; (4.15)

and

 T � � 
C;�; (4.16)

where p denotes the fluid’s pressure. With an equation of
state p � w
 and 
 > 0, we get a bounce if

 �C;� >
1� 3w

6
C: (4.17)

Note that due to the coupling to the scalar �, radiation
should not be represented as a perfect fluid withw � 1

3 , but
rather as a gauge field, as above. In fact, for that same
reason, it is doubtful to what extent the perfect fluid
effective description is accurate in general, except in the
case of a cosmological constant, which we write out ex-
plicitly here.

For a brane-localized cosmological constant �, we
would consider

 L � �
�������
�g
p

2�C���: (4.18)

Then

 T �� � ��g��C (4.19)

and the condition (3.11) is satisfied for

 ���C;� �
2
3C�> 0: (4.20)

Thus, for a positive cosmological constant �> 0 we can
expect a bounce if the coupling is

 ec� with �c> 2
3: (4.21)

If we have a negative cosmological constant, we can have a
bounce if the coupling is

 ec� with �c< 2
3: (4.22)

Note that when C � e��, the addition of a cosmological
constant corresponds to a detuning of the brane tensions,
since it effectively changes the value of � in the brane
action at y � �1 in Eq. (2.1).

V. THE MODULI SPACE DESCRIPTION

For many reasons, not least because of our lack of
intuition about higher-dimensional settings and in order
to make contact with what we can observe at present, it is
useful to have a 4-dimensional effective description of
higher-dimensional physics. An obvious question, how-
ever, is how much of the higher-dimensional dynamics a
4d effective description can capture. We will address this
question by looking at the 4d moduli space approximation
for the examples presented in the previous section. The
derivation of the moduli space action in this section will be
a generalization to arbitrary � of the derivation in [5],
where it was performed for the case � � �1.

To implement the moduli space approximation, we sim-
ply promote the moduli of the static solution (2.4) to
arbitrary functions of the brane conformal time �, yielding
the ansatz3:

 ds2 � h2=�6�2�1���; y��B2�����d�2� d~x2� �A2���dy2	;

e� � A�1=����h�6�=�6�2�1���;y�;

h��; y� � ��6�2� 1�y�D���; �1
 y
�1:

(5.1)

This ansatz satisfies the �y Einstein equation identically,
which is important, since otherwise the �y equation would
act as a constraint [18]. Having defined the time-dependent
moduli, we would now like to derive the action summariz-
ing their equations of motion. This is achieved by simply
plugging the ansatz (5.1) into the original action (2.1),
yielding the result (where we use the notation _� @=@�)

2In order to perform the averaging, we are assuming here that
C;� varies slowly.

3Note that the relationship between the coordinates ��; x; y�
used in this section and the coordinates �t; x; y� used in the
previous section is in general rather complicated. We will not
need the corresponding coordinate transformations in this paper.
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Smod � 6
Z

4d
AB2I3=�6�2�1�

�
1

12�2

� _A
A

�
2
�

� _B
B

�
2
�

_A _B
AB

�
3�2 � 2

�6�2 � 1�2
I��12�2�5�=�6�2�1�

I3=�6�2�1�

_D2

�
3

6�2 � 1

I��6�2�4�=�6�2�1�
_B _D

I3=�6�2�1�B

�
; (5.2)

where we have defined
 

In �
Z 1

�1
dyhn

�
1

�n� 1���6�2 � 1�
��D� ��6�2 � 1���n�1�

� �D� ��6�2 � 1���n�1�	: (5.3)

This action can be greatly simplified by introducing the
field redefinitions

 a2
4 � AB2I3=�6�2�1�; (5.4)

 e

��������
12�2

3�2�1

q
 
� A�I3=�6�2�1��

3�2=�3�2�1�; (5.5)

 �6�2 � 1�� � �
Z

dD
��3�2 � 2�I��12�2�5�=�6�2�1�I3=�6�2�1� �

9
12�2�4

�I��6�2�4�=�6�2�1��
2	1=2

I3=�6�2�1�

: (5.6)

Note that a4 has the interpretation of being roughly the four-dimensional scale factor, whereas  and � are four-
dimensional scalars. The definition (5.6) can be rewritten as stating that

 

������������������
3�2 � 1

q
d� �

�dD

�D� ��6�2 � 1���3�
2�2�=�6�2�1��D� ��6�2 � 1���3��2�=�6�2�1�I3=�6�2�1�

: (5.7)

This expression can be integrated to yield

 D � ��6�2 � 1�

24�1� e2
�����������
3�2�1
p

���6�
2�1�=�3�2�1� � �1� e2

�����������
3�2�1
p

���6�
2�1�=�3�2�1�

�1� e2
�����������
3�2�1
p

���6�
2�1�=�3�2�1� � �1� e2

�����������
3�2�1
p

���6�
2�1�=�3�2�1�

35: (5.8)

In terms of a4,  , and � the moduli space action (5.2) then
reduces to the remarkably simple form

 

1

6
Smod �

Z
4d
�� _a4

2 � a2
4�

_ 2 � _�2�	: (5.9)

The minus sign in front of the kinetic term for a4 is
characteristic of gravity, and in fact this is the action for
gravity with scale factor a4 and two minimally coupled
scalar fields. Note that all the different 5d theories, with
different �, are thus described by the same 4d effective
theory to a first approximation. We will see shortly, how-
ever, that the inclusion of brane-bound matter lifts this
degeneracy.

Useful expressions relating 4d and 5d quantities at the
location of the negative-tension brane are given by

 

b� � ���6�2 � 2��1=�6�
2�2�a4

� e
�

��������
3�2

3�2�1

q
 
�� sinh

������������������
3�2 � 1

q
��1=�3�

2�1�; (5.10)

 

e�� � ���6�2 � 2���6�=�6�2�2�e

� �2=��

������������������
3�2

3�2� 1

s
 �� sinh

������������������
3�2� 1

p
��

� 6�=�3�2� 1�; (5.11)

where b� denotes the brane scale factor b� �
h1=�6�2�1���; y � �1�B���. Note that since b� is a positive
quantity, the range of � should be restricted to ��1; 0	. For
simplicity we will set � � 1=�6�2 � 2� in what follows;
this can be done by a shift in �. Also, in this section we
always assume the coupling function C��� to be of the
form

 C��� � ec�: (5.12)

In heterotic M theory (� � �1), where the volume of the
Calabi-Yau manifold is given by e�, this corresponds to the
brane-bound matter fields coupling to a power of the
volume of the internal manifold.

Before continuing, let us present a brief argument which
partially explains the simplicity of the moduli space action
(5.9). This arguments rests on the observation that the
original 5d action (2.1) is invariant under the global scaling
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symmetry

 gmn ! e2	gmn; (5.13)

 �! ��
1

�
	; (5.14)

where 	 is a constant parameter. Under this symmetry, the
moduli of the domain wall solution (5.1) transform as

 A! e	A; (5.15)

 B! e	B; (5.16)

 D! D: (5.17)

This in turn corresponds to the transformations

 a4 ! e3	=2a4; (5.18)

  !  �

������������������
3�2 � 1

12�2

s
	; (5.19)

 �! �: (5.20)

Thus we see that this symmetry induces the shift symmetry
in  . It is also interesting to note that the absence of an
implied shift symmetry in � is consistent with the fact that
the range of � is actually limited, as noted above, and that
the absolute value of � is a meaningful quantity.

Scalar field.—For a scalar field � coupling to the scalar
� via ec�, with c an arbitrary real number, we get an
addition to the effective theory (5.9) of

 �
�������
�g
p

ec�g00 _�2jy��1 (5.21)

 � a2
4e
�2�c=��1�

��������
3�2

3�2�1

q
 
�� sinh

������������������
3�2 � 1

q
����6�c�2�=�3�2�1� _�2

:

(5.22)

The equation of motion for� can be solved immediately to
give

 _� �
�0

a2
4

e
2�c=��1�

��������
3�2

3�2�1

q
 
�� sinh

������������������
3�2 � 1

q
���6�c�2�=�3�2�1�;

(5.23)

where �0 is a constant. Also, the equation of motion
 

�a4

a4
� � _ 2 � _�2 �

�2
0

a4
4

� e
2�c=��1�

��������
3�2

3�2�1

q
 
�� sinh

������������������
3�2 � 1

q
���6�c�2�=�3�2�1�

(5.24)

together with the constraint4 (Friedmann equation)

 

_a4
2

a2
4

� _ 2 � _�2 �
�2

0

a4
4

e
2�c=��1�

��������
3�2

3�2�1

q
 

� �� sinh
������������������
3�2 � 1

q
���6�c�2�=�3�2�1� (5.25)

leads to

 a4 � �1=2: (5.26)

If we then define a new time variable

 T � ln�; (5.27)

the remaining equations of motion can be expressed as

  ;TT �
�2

0

2
V; � 0; (5.28)

 �;TT �
�2

0

2
V;� � 0; (5.29)

or, equivalently, by the action

 

Z
4d
 2
;T � �

2
;T � �

2
0V� ; ��: (5.30)

The effective potential is given by

 V � e
2�c=��1�

��������
3�2

3�2�1

q
 
�� sinh

������������������
3�2 � 1

q
���6�c�2�=�3�2�1�:

(5.31)

Therefore, as �! 0 the effective potential blows up and
becomes repulsive if

 �c< 1=3: (5.32)

Thus the solution trajectory effectively gets reflected off
the � � 0 plane which means that the scale factor on the
negative-tension brane starts increasing again [see
Eq. (5.10)], i.e. the negative-tension brane bounces.
Condition (5.32) is the same as that derived above from
the 5d point of view in Sec. IV.

Gauge field.—By adding a vector gauge field with
Lagrangian

 L � �
�������
�g
p

ec�F��F��jy��1; (5.33)

we obtain an effective theory described by the action
 

S �
Z

4d
�� _a4

2 � a2
4�

_ 2 � _�2�

� e
�2�c=��

��������
3�2

3�2�1

q
 
�� sinh

������������������
3�2 � 1

q
���6�c=�3�2�1�

� ��
���F��F
�	: (5.34)

Then we have the constraint

4This constraint arises from the time reparameterization in-
variance of the action or, equivalently, from the 00 Einstein
equation.
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_a4
2

a2
4

� _ 2 � _�2 �
1

a2
4

e
�2�c=��

��������
3�2

3�2�1

q
 

� �� sinh
������������������
3�2 � 1

q
���6�c=�3�2�1��2E2 � 2B2�

(5.35)

together with the equations of motion

 

�a4

a4
� � _ 2 � _�2; (5.36)

 

� � 2
_a4

a4

_ �
1

a2
4

@
@ 
�e
�2�c=��

��������
3�2

3�2�1

q
 

� �� sinh
������������������
3�2 � 1

q
���6�c=�3�2�1�	��E2 � B2� � 0;

(5.37)

 

��� 2
_a4

a4
_��

1

a2
4

@
@�
�e
�2�c=��

��������
3�2

3�2�1

q
 

� �� sinh
������������������
3�2 � 1

q
���6�c=�3�2�1�	��E2 � B2� � 0;

(5.38)

 

@��F��e
�2�c=��

��������
3�2

3�2�1

q
 
��sinh

����������������
3�2�1

q
���6�c=�3�2�1�	�0:

(5.39)

The last equation, supplemented by the Bianchi identity

 	��
�@�F
� � 0; (5.40)

leads to

 E � E0e
2�c=��

��������
3�2

3�2�1

q
 
�� sinh

������������������
3�2 � 1

q
��6�c=�3�

2�1�;

(5.41)

 Bi � Bi;0; (5.42)

where E0 and Bi;0 are constants. The equations of motion
for  and � can then be rewritten as

 

� � 2
_a4

a4

_ �
1

a2
4

V; � 0; (5.43)

 

��� 2
_a4

a4
_��

1

a2
4

V;� � 0; (5.44)

with the effective potential

 V � E2
0e

2�c=��

��������
3�2

3�2�1

q
 
�� sinh

������������������
3�2 � 1

q
��6�c=�3�

2�1�

� B2
0e
�2�c=��

��������
3�2

3�2�1

q
 
�� sinh

������������������
3�2 � 1

q
���6�c=�3�2�1�:

(5.45)

Thus we can see that near � � 0 the effective potential
blows up and leads to a bounce of the negative-tension
brane if we either have an electric field and

 �c< 0; (5.46)

or if we have a magnetic field and

 �c> 0: (5.47)

This is in agreement with the 5d description of Sec. IV.
Also, if we consider radiation, for which

 hE2i � hB2i; (5.48)

it is immediately apparent from Eqs. (5.35), (5.36), (5.37),
and (5.38) that it plays no role whatsoever in the 4d
description. This is again consistent with the 5d results
derived earlier.

Cosmological constant.—We can repeat the above
analysis in the case of a brane-localized cosmological
constant �, also coupling to the scalar �. In that case the
effective action receives an additional contribution of

 �
�������
�g
p

ec�2�jy��1 (5.49)

 

� �a4
4e
�2�c=��2�

��������
3�2

3�2�1

q
 

� �� sinh
������������������
3�2 � 1

q
����6�c�4�=�3�2�1�2�: (5.50)

Therefore, the effective potential is

 V ��e
�2�c=��2�

��������
3�2

3�2�1

q
 
�� sinh

�����������������
3�2� 1

q
����6�c�4�=�3�2�1�

(5.51)

and as �! 0, we get a bounce if

 �c> 2=3 ��> 0�: (5.52)

This is exactly the same requirement as that obtained from
the 5d point of view for a positive cosmological constant.

However, the case of a negative cosmological constant
cannot be reproduced within the 4d effective theory, as the
effective potential is negative in that case.

VI. HETEROTIC M THEORY EXAMPLES

Heterotic M theory corresponds to the special case � �
�1, with the scalar � parameterizing the volume of the
internal Calabi-Yau manifold [14]. It is in this theory that
the colliding branes solution [1], which was briefly dis-
cussed in the introduction and which motivated the present
work, was derived. The solution was described in a coor-
dinate system in which the bulk is static and the branes are
moving. The boundary conditions used correspond to re-
quiring the brane scale factors and the Calabi-Yau volume
to be nonzero and finite at the collision of the branes. This
turns out to be equivalent to imposing the relationship [1]

 � � 6a: (6.1)
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This condition relates the volume of the Calabi-Yau to the
brane scale factors, while reducing the number of indepen-
dent fields to two. This last feature enables one to derive a
Birkhoff-like theorem,5 which determines the bulk metric
to be given by a one-parameter time-independent family of
metrics (the parameter being the relative rapidity of the
branes at the collision), with the branes moving in this
background geometry according to their junction condi-
tions. It is easy to see from the junction conditions (3.2),
(3.3), and (3.4) that we can keep the requirement that � �
6a, and thus the Birkhoff-like theorem mentioned above,
only if

 T 0
0 �

1
2T �: (6.2)

Thus we can see that in general a very specific coupling
C��� to the Calabi-Yau volume scalar is required if we
want the bulk spacetime to remain unaltered by the pres-
ence of brane-bound matter (the brane trajectories will of
course be modified in any case).

For a brane-bound scalar, it is straightforward to see that
the bulk geometry is unaltered only if the coupling is

 C � e�: (6.3)

As shown in Sec. IV, there will also be a bounce in this
case, and the entire evolution can be described exactly,
since the bulk spacetime is given by the solution described
in [1]. From the moduli space point of view, we can note
that the effective potential (5.31) is independent of  only
for C � e�, which coincides with the condition for the
bulk geometry to be unaltered. This can be understood by
the fact that, if the effective potential is independent of  ,
the scalar field space trajectory reflects off the effective
potential with the same final angle as the incident angle, in
a smoothed-out version of a ‘‘brick wall’’ reflection at � �
0, and therefore the background trajectory is unchanged
except for this symmetric rounding off of the trajectory
near the bounce of the negative-tension brane. Thus, for
scalar field matter, the 4d and 5d points of view are in
perfect agreement. This can be traced back to the fact that
we are simply extending the moduli space by one dimen-
sion, by adding an extra kinetic term, and therefore the
moduli space description should remain a good
approximation.

Note that the scalars arising from the dimensional re-
duction of the E8 gauge fields in heterotic M theory do not
couple to the Calabi-Yau volume, i.e. they have C � 1
[15]. Scalars of this type also make the negative-tension
brane bounce. However, the bulk geometry will be altered
in this case, which is why it might be of interest to calculate
the resulting deformed geometry.

For gauge fields, condition (6.2) shows that the bulk is
unaltered only if

 � �E2 � B2�C � ��E2 � B2�C;�: (6.4)

This can be satisfied either if we have an electric field only
(B � 0) with the coupling

 C � e� (6.5)

or if we only have a magnetic field (E � 0) and the
coupling

 C � e��: (6.6)

However, in both cases, the effective potential (5.45) in the
moduli space description is independent of  only if C �
1. While the moduli space approximation correctly pre-
dicts whether or not a bounce occurs, the detailed trajec-
tory followed in this description is not perfectly symmetric
about the bounce (when the coupling is such that the bulk
remains unaltered), and hence not a perfect rendition of the
5d solution.

In fact, the E8 gauge fields in heterotic M theory couple
with C � e� [15]. Their electric component therefore
contributes to a bounce, while also leaving the bulk ge-
ometry unaltered, while their magnetic component rather
contributes to a crunch (and a deformation of the bulk
geometry).

Again by inspection of (6.2), it is easy to see that a
brane-bound cosmological constant does not perturb the
bulk geometry if its coupling is given by C � e��. In this
case, we simply have a detuning of the brane tension. This
detuning leads to a bounce if the cosmological constant is
positive, whereas it leads to a crunch if it is negative. Note
that the moduli space description yields a potential (5.51)
that is independent of  only when C � e2�, which is in
disagreement with the 5d description.

VII. CONCLUSIONS

In a dynamical braneworld setting, the negative-tension
boundary brane can encounter a zero of the harmonic
function corresponding to the formation of a singularity.
However, we have shown that this catastrophic encounter
is avoided in the presence of a broad range of brane-bound
matter types and couplings to the scalar field supporting the
domain walls, which make the negative-tension brane
bounce off the naked singularity.6 This leads us to the
rather surprising conclusion that negative-tension branes
can stabilize braneworlds.

We have analyzed the bounce of the negative-tension
brane from two points of view: first, we have looked at the
5d equations of motion and junction conditions in the
vicinity of the bounce. And second, we have analyzed

5For the case of general �, a similar Birkhoff-like theorem can
be derived if one imposes � � �6�a. The discussion in the
present section can be generalized in a straightforward, but
unilluminating way to having arbitrary �.

6Thus, we could say that we have a bang if no observer is there
to hear it, but no sound in the presence of the right kind of
observer.
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the analogous situation using the moduli space approxima-
tion. For scalar fields, the two descriptions are in perfect
agreement. This is because adding a kinetic term is per-
fectly suited to the spirit of the moduli space approxima-
tion. For gauge fields and for a positive cosmological
constant, the moduli space approach correctly reproduces
the 5d results for the bounce. However, when the condi-
tions are fulfilled for the 5d bulk to remain unaltered and
we hence know that the 4d trajectory should be perfectly
symmetric about the bounce, the 4d effective theory does
not reproduce this behavior. And in the case of a negative
cosmological constant, the moduli space approach com-
pletely disagrees with the 5d results. It seems clear that in
case of a disagreement, we should rather trust the 5d
results. In fact, our results indicate that in the case of a
brane-bound gauge field or a cosmological constant, the
approximations used in deriving the moduli space action
are not really valid. In these cases, there are nonflat direc-
tions in configuration space which are easily accessible to
the system under study, and which are not described by the
moduli space approximation. Thus, even though the mod-
uli space description can give qualitatively correct results
in describing the effects of a gauge field or a positive
cosmological constant, the detailed quantitative analysis

can be rather misleading, and one should revert to a 5d
description.

The types of brane-bound matter that are naturally
present in heterotic M theory are scalar fields that do not
couple to the Calabi-Yau volume, and gauge fields with an
e� coupling. What we found is that for this specific cou-
pling, electric fields contribute towards a bounce, while
radiation has no effect and magnetic fields rather contribute
to a crunch. The scalars contribute towards a bounce, and
probably represent the best candidates for stabilizing the
heterotic M theory braneworld.

Finally, we would like to point out that it seems likely
that additional brane-bound matter will be produced by
quantum effects at the bounce of the negative-tension
brane, and it would be interesting to determine the prop-
erties of these new contributions.
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