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A model is developed in which the inflaton potential experiences a sudden small change in its second
derivative (the effective mass of the inflaton). An exact treatment demonstrates that the resulting density
perturbation has a quasiflat power spectrum with a break in its slope (a step in ns). The step in the spectral
index is modulated by characteristic oscillations and results in large running of the spectral index localized
over a few e-folds of scales. A field-theoretic model giving rise to such behavior of the inflationary
potential is based on a fast phase transition experienced by a second scalar field weakly coupled to the
inflaton. Such a transition is similar to that which terminates inflation in the hybrid inflationary scenario.
This scenario suggests that the observed running of the spectral index in the WMAP data may be caused
by a fast second order phase transition which occurred during inflation.
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I. INTRODUCTION

The present decade appears to have ushered in a golden
age for precise cosmological observations. Observations of
the cosmic microwave background (CMB), most recently
by the WMAP satellite, combined with measurements of
the matter power spectrum from large scale structure, weak
lensing surveys, and Ly-� absorption, permit parameters
of the ‘‘standard cosmological model’’ to be determined to
great accuracy. A consensus appears to be emerging that
the late time behavior of this model is ‘‘close to’’ LCDM
with an approximately scale-invariant primordial spectrum
for density perturbations such as those predicted by the
simplest inflationary models. Indeed, the inflationary para-
digm has been remarkably successful in providing explan-
ations for some well-known properties of the Universe
including its spatial flatness. It also provides a mechanism
for seeding galaxies by generating an approximately flat
(scale-invariant) primordial perturbation spectrum. Both
these predictions of the inflationary scenario have received
considerable observational support from measurements of
anisotropies in the CMB as detected by WMAP and other
CMB experiments [1–3].

However, it is well known that, although primordial
fluctuations spectra expected from inflation are likely to
be approximately flat, or scale invariant (ns�k� �
d lnPR�k�=d lnk ’ 1), exact scale invariance (ns � 1) is
achievable only for a very specific class of models [4],
while a slightly red spectrum (ns & 1) appears to be a
generic prediction [5] of the simplest viable one-parameter
family of inflationary models including, in particular, R�
R2 as well as new and chaotic inflation [6]. More sophis-
ticated inflationary models belonging to the slow-roll class
may also have ns slightly exceeding unity, a notable ex-
ample being hybrid inflation [7]. Still for all these models
jns�k� � 1j � 1, and the running of the slope ~��k� �
dns�k�=d lnk is also expected to be small: j~��k�j �

jns�k� � 1j2 � 1 (tilde is used here to avoid confusion
with the Bogoliubov parameter below). Existing CMB
and other observational data are just approaching the level
of accuracy necessary to detect deviations from exact scale
invariance and to distinguish between different inflationary
models.

However, while on the one hand the recent WMAP data
provide the first evidence for ns being close to (but slightly
less than) unity [1] (this result is at present inconclusive,
see e.g. [8]), on the other, WMAP data [1] also suggest a
rather large value of the running j~��k�j � jns�k� � 1j, and
the existence of local spikes like the ‘‘Archeops feature’’ at
l� 40 (first found in the Archeops data [3] and subse-
quently confirmed by WMAP [1]) which may indicate that
inflation is altogether more complex than the simplest
paradigms presented above. Therefore, though it is not
yet clear if these features really exist in the primordial
perturbation spectrum and are not foreground effects or
statistical flukes, it is important to have a list of possible
local ‘‘features’’ such as bumps, wells, wiggles, or spikes,
superimposed on an approximately scale-invariant smooth
spectrum, which are expected in more complicated infla-
tionary models. In particular, the large value of the running,
if confirmed, should also be a local feature around the
present Hubble scale since its persistence until the very
end of inflation is incompatible with the requirement that
the inflationary epoch be of sufficient duration (i.e. the
number of e-folds N � 50) [9].

Such features in the primordial spectrum of fluctuations
are likely to be measured to great accuracy with next
generation CMB satellites such as Planck [10]. The precise
nature of the primordial spectrum is of great importance to
cosmology not only because it would lead to an in-depth
understanding of inflation but also because of its bearing on
the values of the remaining cosmological parameters.
(Cosmological parameters are usually estimated by means
of a procedure such as a Markov Chain Monte Carlo
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(MCMC) scheme which assigns probabilities to cosmo-
logical parameters in a multidimensional parameter space.
Better knowledge of one set of parameters values can
therefore significantly influence the probabilities for the
remaining.)

A generic way to obtain local deviations from the ap-
proximately flat spectrum in the inflationary scenario is to
add additional scalar fields to the inflaton, either explic-
itly—which leads to multiple inflation [11–13] or implic-
itly, through a rapid change in the effective potential of the
inflaton [14]. In both cases, at least one of these additional
scalar fields should not be in the slow-rolling regime,
otherwise the spectrum remains approximately flat [15].
In this paper we further investigate the second case with the
aim of finding new characteristic features being grafted on
the primordial inflationary spectrum which are less pecu-
liar than those investigated previously (in view of the
observational fact that there is not too much room for
such features).

So, let some scalar field which is weakly coupled to the
inflaton experience a fast phase transition during inflation,
by fast is meant that its characteristic time is much less
than the Hubble time H�1�t�. This phase transition may
be induced by the coupling of the scalar either to the
inflaton directly, or to slowly changing space-time
curvature. This requirement usually implies that the second
field be much heavier than the inflaton as well as H.
Then, assuming that this transition occurs adiabatically
and the second field is always in the state of local thermo-
dynamical equilibrium for fixed external values of the
inflaton and space-time curvature, it can be integrated out
leaving only some correction to the inflaton effective po-
tential V�’� that may be nonanalytic (see e.g. [16] for
detailed derivation).

Following the classification in [17], let us consider
possible local nonanalytic features of V�’� arising at the
point ’ � ’0 when the fast phase transition discussed
above occurs during inflation. These features can be dis-
continuities (jumps) either in V�’� itself or in one of its
derivatives. We denote by 	
 a jump in the relevant quantity,
so that 	A
 � A�’0 � 0� � A�’0 � 0�. The first three most
interesting cases placed in the order of their decreasing
peculiarity are:

(1) 	V
 � 0—a step in the effective potential V�’�.
This feature is the most peculiar one. Note that it
may not arise from a fast quasiequilibrium phase
transition since that would contradict energy (more
precisely, free energy) conservation. The only way
to obtain such a feature is to assume that the dura-
tion of the phase transition is comparable to H�1, so
it is not too fast actually.
Not unexpectedly, this results in a nonuniversal form
of the corresponding local feature in the adiabatic
perturbation spectrum which depends on detailed
dynamics of the phase transition. In the most generic

case, a bump modulated by strong oscillations ap-
pears in the power spectrum [14,18]. Significant
bumps in the observable part of the spectrum are
excluded though one may introduce them at very
large k, close to the end of inflation, to obtain a
significant number of primordial black holes (PBH),
see e.g. [19,20]). If the size of the step is very small,
the bump disappears and only a burst of oscillations
remains. The latter case was studied in [21].
However, the most recent analysis shows that there
is no definite evidence for such a feature in the
observable part of the spectrum [22].

(2) 	V
 � 0; 	V 0
 � 0. A kink in the potential V�’�
leads to a step in its slope V 0�’�. The resulting
feature in the power spectrum has a universal form
which does not depend on the details of the fast
phase transition, namely, a step with superimposed
oscillations which are not as pronounced as in the
previous case [14]. As pointed in [17], to produce
such a discontinuity in V�’�, the phase transition
should be of first order.
Though initially such a feature was used to describe
an apparent excess in the rich cluster power spec-
trum at k� 0:05h�1 Mpc�1 [23] (h is the present
Hubble constant in terms of 100 km s�1 Mpc�1 and
the present value of the scale factor is taken as
unity), it seems now that the only place where
such a feature with a significant value of the step
in the primordial spectrum may still exist is in the
vicinity of the present Hubble scale [24]. Also, as in
the previous case, such a feature may be introduced
at scales close to the end of inflation to produce PBH
[25].

(3) 	V
 � 	V 0
 � 0, 	V 00
 � 0, and j	V00
j � H2. A
sudden small change in the slope of the potential
(a kink) leads to a step in its second derivative
V 00�’�. This, mildest of all discontinuities, can be
caused by a fast second order phase transition during
inflation [17]. The last inequality guarantees that
slow-roll inflation continues during and after the
phase transition, in contrast to the case of the hybrid
inflation, or the case j	V00
j �H2 considered in [13]
where a second phase transition with the opposite
sign of V 00 had to be introduced to restore inflation
after a short break (that required much fine-tuning,
of course). As a result, in contrast to previous cases,
corrections to the primordial power spectrum P�k�
arise in the next to leading order only (at the same
order as the Stewart-Lyth correction [26] in case of a
smooth inflaton potential). However, due to the
feature in V���, corrections to �ns�k� � 1� appear
to be of the same order as the standard leading ones
while corrections to the running of ns�k� dominate
the smooth part of ~��k� over a few e-fold interval of
scales around the feature. As in the previous case,

MINU JOY, VARUN SAHNI, AND ALEXEI A. STAROBINSKY PHYSICAL REVIEW D 77, 023514 (2008)

023514-2



they have a universal form, too.1

Most recent observational constraints on the inflaton
potential V��� and the Hubble function H��� obtained
using only the assumption that these functions may be
Taylor-expanded up to the third order in the range of �
corresponding to the observable cosmological window of
scales (1–104 Mpc) show that the first two slow-roll pa-
rameters � and � (defined in Sec. II below) are really small
but the validity of the slow-roll expansion beyond them is
not established, see [28] and references to previous papers
therein. The last, third type of peculiarity is just the one
satisfying these conditions. That is why in this paper we
study it in detail and find the universal form of the corre-
sponding feature. We shall show that a small step in V00

leads to a small step in the primordial spectral index ns
accompanied by oscillations with a decreasing amplitude.

The plan of the rest of the paper is as follows. In Sec. II
small corrections to the background behavior due to a jump
in V00��� are calculated and their contribution to the
Sasaki-Mukhanov equation for scalar perturbations is
found. In Sec. III an exact solution for the resulting feature
in PR�k� is obtained. A microscopic model that can pro-
duce such a feature in the effective potential is considered
in Sec. IV, and the required values of its parameters are
found. Section V contains conclusions and discussion.

II. BACKGROUND COSMOLOGY NEAR A
FEATURE IN THE POTENTIAL

As discussed in the previous section, we shall examine a
model in which the potential passes through a steplike
discontinuity in its second derivative at time t0 when
’�t0� � ’0. In practice the discontinuity will be smoothed
in a small neighborhood of ’0 which we denote by ". In
order to study the influence of this feature in V�’� on
quantities such as H�t� and ’�t�, we Taylor expand these
quantities around t0,

 H�t� � H0 � t _H0 �
t2

2!
�H0 �

t3

3!
H
:::
� � � � � ; (2.1)

similarly

 ’�t� � ’0 � t _’0 �
t2

2!
�’0 �

t3

3!
’:::� � � � � ; (2.2)

 V 0�’� � V 0�’0� � t _’0V00� � � � � (2.3)

for simplicity we have shifted the origin of the time scale to
t0 � 0. The suffix� denotes the value of a quantity at t �
t0 � " � �".

The equation of motion of the inflaton is

 �’� 3H _’� V 0�’� � 0; H2 �
8�G

3

�
_’2

2
� V�’�

�
:

(2.4)

The first of these equations leads to

 ’:::� � �3H0 �’0 � 3 _H0 _’0 � V 00� _’0: (2.5)

Next consider the slow-roll parameters �, �, �2 which are
usually defined as

 � � 4�G
�

_’
H

�
2
; � �

�’
_’H

; �2 �
1

H2

�
’:::

_’
�

�’2

_’2

�
;

(2.6)

equivalently

 3� � � 8�G
V

H2 ; �� 3 � �
V 0

H _’
;

9� �2 � 8�G
3V

H2 �
3V0

H _’
�

V02

H2 _’2 �
V00

H2 ;

(2.7)

where the last equation can be rewritten as

 �2 � 3�� 3�� �2 �
V 00

H2 : (2.8)

The slow-roll condition �� 1 leads to

 _’ ’ �
V0

3H
: (2.9)

However the presence of a feature in the inflaton potential
will result in small corrections to this equation close to ’ ’
’0. Denoting by � _’ the correction to (2.9) we find
 

� _’ � � _’0

�
�0

3
� tH0

�
�0 � �0 �

�0�0

3
�
V00�
3H2

0

�

�
t2H2

0

2

��
3�0 � 3�0 � 2�2

0 � 2�0�0

�
2

3
��0��0 � �0�

�

� �3� 2�0 � �0�
V00�
3H2

0

�

����������
2�0

8�G

s
V 000�
3H2

0

��
; (2.10)

where �0, �0 are the slow-roll parameters evaluated at t0.
The correction to (2.9) are therefore quite small.

Next we estimate corrections to the slow-roll parame-
ters, which are found to be
 

��t� � �0 � tH0	2�
2
0 � 2�0�0
 � t

2H2
0�0

�
3�0 � 3�0

� 3�2
0 � 6�0�0 � �2

0 �
V 00�
H2

0

�
; (2.11)

1The second-order phase transition considered in [27] occurs
during a time period �t�H�1 that results in the temporal
breaking of slow-roll during the transition, in a more peculiar
behavior of the effective mass in Eq. (3.1) for �k and in a steplike
or even bumplike behavior of the perturbation spectrum similar
to those that occurred in the cases 1 and 2.
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��t� � �0 � tH0

�
3�0 � 3�0 � �0�0 � �

2
0 �

V00�
H2

0

�
�
t2H2

0

2

�
9�0 � 9�0 � 6�2

0 � 3�0�0 � 9�2
0 � 2�2

0�0

� 2�3
0 � �3� 2�0 � 2�0�

V 00�
H2

0

�

����������
2�0

8�G

s
V 000�
H2

0

�
; (2.12)

 

�2�t� � 3�0 � 3�0 � �
2
0 �

V 00�
H2

0

� tH0

�
�9�0 � 9�0 � 6�2

0 � 9�2
0 � 3�0�0 � 2�0�

2
0 � 2�3

0 � �3� 2�0 � 2�0�
V 00�
H2

0

�

����������
2�0

8�G

s
V 000�
H2

0

�
�
t2H2

0

2

�
27�0 � 27�0 � 18�2

0 � 63�0ait
2 � 45�0�0 � 18�3

0 � 6�2
0�0 � 36�0�

2
0 � 6�2

0�
2
0

� 36�3
0 � 4�0�

3
0 � 6�4

0 �

�
9� 12�0 � 24�0 � 6�2

0 � 8�2
0 � 4�0�

2
0 �

V 000�
H2

0

�
V000�
H2

0

� �3� 4�0 � �0�

����������
2�0

8�G

s
V 000�
H2

0

�
2�0

8�G
V0000�
H2

0

�
: (2.13)

It is well known that the perturbations in the inflaton field
and perturbations in the space-time metric can be reduced
to a single equation either for the gravitational potential �
[29] or the quantity � [30]. We shall use the latter and
remind the reader that � � �’� _’

6H ���	�, where � and
	 describe scalar perturbations of the metric in the syn-
chronous reference frame [31]. The evolution of the
Fourier component �k during inflation is described by the
equation

 

��k � 3H _�k �
�
k2

a2 �m
2
eff

�
�k � 0; (2.14)

where the effective mass m2
eff is

 m2
eff �

d2V

d’2 � 8�G
_’
H
dV
d’
�H

d
dt

� _H

H2

�
: (2.15)

Using the results obtained earlier in this section and omit-
ting lengthy intermediate steps, we find the following
expression for the effective mass

 

m2
eff�t�

H2
0

�
V00�
H2

0

� tH0

����������
2�0

8�G

s
V 000�
H2

0

� 2�0�3� �0 � 2�0�

� 4�0tH0

�
�3�0 � �2

0 � 3�0�0 � �2
0� �

V 00�
H2

0

�
:

(2.16)

The leading term in the right-hand side of the above
equation for t! 0��! �0� which is of the first order in
�, � is V 00�=H

2
0 � 6�0. The perturbation equation,

Eq. (2.14), with m2
� � V00� � 6�0 when t < 0 and m2

� �
V 00� � 6�0 when t > 0 (so that 	m2
 � 	V 00
 since �0 is
continuous at t � 0), therefore provides an excellent ap-
proximation to the dynamics. This is the main result of this
section.

III. PERTURBATION SPECTRUM AND SPECTRAL
INDEX

As demonstrated in the previous section, the jump in the
effective mass is equal to the jump in the second derivative
of the inflaton potential: 	�m2

eff
 � 	�V
00
. Next consider

the motion of the inflaton as it rolls down its potential. If
the feature is crossed by the inflaton at t0, then at t� t0 as
well as t
 t0 the slow-roll condition jV 00j � 24�GV
remains valid, which permits us to solve (2.14) as if the
effective mass were constant. In terms of the conformal
time coordinate
 �

R
dt=a�t�Eq. (2.14) acquires the form

 �00k � 2
a0

a
�0k � �k

2 �m2
effa

2��k � 0; (3.1)

where the derivatives are with respect to 
. The trans-
formation �k � �k=a results in an oscillator-type equation
in which the frequency is time dependent

 �00 �
�
k2 �m2

effa
2 �

a00

a

�
� � 0; (3.2)

where we have dropped the suffix k in �k for simplicity. In
passing note that Eq. (3.2) is equivalent to

 �00 �
�
k2 �

z00

z

�
� � 0; where z �

a _�
H
; (3.3)

which implies that on large scales �k2 � z00=z�, �=z!
constant. In the following discussion we assume that the
discontinuity in the second derivative of the potential is
reached by the field ’�t� at the time t � t0 (
 � 
0). The
normalized solution to (3.2) corresponding to the adiabatic
vacuum at early times (t� t0, equivalently 
� 
0) is

 �in�
� �
��������
�

p

2
H�2�	1 �k
�; (3.4)

whereH�2�	 �k
� is the Hankel function and	1 �
3
2�

V00�
3H2

0
�

3�0, where V 00 � d2V
d’2 . (We assume that the expansion of
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the Universe is quasiexponential.) The behavior of pertur-
bations after the feature is crossed (t
 t0, 

 
0) will
be described by a superposition of positive and negative
frequency solutions of (3.2), namely

 �out�
� �
��������
�

p

2
��H�2�	2 �k
� � �H

�1�
	2 �k
��; (3.5)

	2 �
3
2�

V00�
3H2

0
� 3�0, and �, � are the Bogoliubov coeffi-

cients. Note the following relationship between 	 and the
scalar spectral index n:

 	1;2 � 2�
n1;2

2
; (3.6)

where n1�n2� is the spectral index in the ‘‘in’’ (‘‘out’’)
region.

In order to determine � and � we match �in � �out and
�0in � �0out at 
 � 
0 to obtain
 

�� � � �
i��

2
H�2�	1 �k
0�J	2

�k
0�

�
i�k
0

2
	H�2�	1�1�k
0�J	2

�k
0�

�H�2�	1 �k
0�J	2�1�k
0�
; (3.7)

 

�� � �
��

2
H�2�	1 �k
0�Y	2

�k
0�

�
�k
0

2
	H�2�	1�1�k
0�Y	2

�k
0�

�H�2�	1 �k
0�Y	2�1�k
0�
; (3.8)

 j�j2 � j�j2 � 1; (3.9)

where � � 	2 �	1. The quantity j�j2 corresponds to the
number of scalar particle pairs carrying momenta ~k, � ~k
created due to the rapid variation in V 00 as the inflaton ’
crosses the feature at 
 � 
0. However, the quantity of
interest is related to the late time behavior of �k�t! 1�,
namely �k�
! 0� � �out�
!0�

a / ��� ��, which contrib-
utes to the growing mode of scalar adiabatic perturbations.
The corresponding power spectrum for the curvature per-
turbations is simply PR�k� � �

H
_�
�2j�k�
!0�j

2. It is impor-

tant to note that

 PR�k� / PR0
�k� � j�� �j2; (3.10)

where PR�k� / kns�1 and PR0
�k� is the power specrum of

the background model on which the transfer function j��
�j2, describing the feature, has been overlaid. In our case
PR0
�k� / kn2�1 where n2 is the spectral index in the ‘‘out’’

region; see (3.6). Now, substituting H�2�	 �z� ’ �H
�1�
	 �z� ’

i
���	��z2�

�	 as z! 0, into (3.5) we get

 P R0
�k� �

22	2�3

�3 �2�	2��1� ��2	2�1

�
H2

j _�j

�
2
��������aH�k

;

(3.11)

when 
! 0. It is clear that the above expression is in
agreement with Eq. (60) of [26] (Stewart-Lyth correction).
The transfer function j�� �j2 differs from unity by terms
of order 	2 �	1 only. Indeed, from (3.9) one readily
finds, for the transfer function

FIG. 1. The transfer function j�� �j2 is shown as a function of x � k=k0. The exact expression for j�� �j2 given in (3.12) is
represented by the solid line in the left and right panels while the asymptotic expression (3.13) is shown dot-dashed in the right panel
which shows the oscillations in the transfer function in greater detail. Note that the asymptotic expression provides an excellent
approximation to the results for x � k=k0 * 2. The feature associated with the step in V00��� occurs at x� 1. The relevant values of
the parameters are 	1 � 1:49, 	2 � 1:52.
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4

�2 j���j
2 � �2J2

	2
�Y2
	1
� J2

	1
� � �k
0�

2

� fJ2
	2
�Y2
	1�1� J

2
	1�1� � J

2
	2�1�Y

2
	1
� J2

	1
�

� 2J	2
J	2�1�Y	1

Y	1�1� J	1
J	1�1�g

� 2��k
0�J	2
fJ	2
�Y	1

Y	1�1� J	1
J	1�1�

� J	2�1�Y
2
	1
� J2

	1
�g; (3.12)

where the Bessel functions are evaluated at x � k=k0, k0 is
the mode just leaving the Hubble radius at the time of the
transition in V00. The functional dependence of j�� �j2 on
x is shown in Fig. 1 for model parameters 	1 � 1:49,
	2 � 1:52. The expression for j�� �j2 in (3.12) has the
following useful asymptotic forms:

(1) For x � k=k0 
 1

 j�� �j2 ’ 1�
3�	2 �	1�

2x2

�
cos�2x� �

sin�2x�
x

�
;

(3.13)

(2) For 0:01 & x & 1

 �� � ’ 1� �	2 �	1�

�
log

�
x
2

�
�

1

3
�  �5=2�

�
;

(3.14)

here  �z� is the digamma function,  �z� � d
dz �

log��z�,  �5=2� � 8
3� 2 log2� 
, where 
 ’

0:5772 is Euler’s constant. And,
(3) For x� 1

 j�� �j2 ’
�
x
2

�
2�	2�	1�

: (3.15)

The effective spectral index ns�k� � d lnPR�k�=d lnk can
be determined from the power spectrum, (3.10) as follows:

 ns�k� � 1 � n2�k� � 1�
d log�j�� �j2�

d logk
; (3.16)

where the asymptotic forms for j�� �j2 in (3.13), (3.14),
and (3.15) lead to the following useful approximations:

(1) For x � k=k0 
 1

 

d log�j�� �j2�
d logk

’ �
3�	2 �	1�

x

�
sin�2x�

�
2 cos�2x�

x

�
: (3.17)

From (3.6), (3.11), and (3.17) we find, for the spec-
tral index

 ns�k� ’ 1� 4�0 � 2�0 � 3�	2 �	1�
sin�2x�
x

:

(3.18)

(2) For x� 1

 

d log�j�� �j2�
d logk

’ 2�	2 �	1�; (3.19)

so that

 ns ’ n2 � 2�	2 �	1� � n1: (3.20)

The preceding discussion has been quite general. In order
to explore our model in more detail we need to give values
to its parameters. Accordingly we set 	1 � 1:49, 	2 �
1:52 which correspond to n1 � 1:02, n2 � 0:96—see
Eq. (3.6). The functional form of ns�k� for this model is
shown in Fig. 2. Our choice of the spectral indices is largely
for a descriptive purpose, other values can easily be ac-
commodated by the model. In the final analysis, a judicious
choice of n1 and n2 must stem from a comparison of this
model with observations that lies outside the scope of the
present paper. From Fig. 2 we see that a discontinuity in the
second derivative of the inflaton potential (a step) leads to a
step in the spectral index, which in our case drops from
ns � 1:02 at k=k0 � 1 to ns � 0:96 at k=k0 
 1. The step
in ns is accompanied by ‘‘ringing’’—slowly decreasing
oscillations in ns about the mean (asymptotic) value of
ns � 0:96. From (3.18) we also find the following expres-
sion for the running of the spectral index

 ~� �
dns
d logk

�
dn2

d logk
� 6�	2 �	1� cos�2x�;

x �
k
k0

 1:

(3.21)

From Fig. 2 we find that the running ~� is of the order of

FIG. 2. The primordial spectral index ns is shown as a function
of x � k=k0 for an inflationary model in which the potential has
a sudden change in its second derivative. Such a discontinuity in
V00 leads to a step in ns at x� 1 which is followed by oscillations
with decreasing amplitude described by (3.18). The parameters
of our model are 	1 � 1:49, 	2 � 1:52 which correspond to
n1 � 1:02, n2 � 0:96.

MINU JOY, VARUN SAHNI, AND ALEXEI A. STAROBINSKY PHYSICAL REVIEW D 77, 023514 (2008)

023514-6



ns � 1 at x� 1. For x
 1 Eq. (3.21) informs us that ~� has
two components, of which the second is of order ns � 1 but
oscillates, while the first is smooth and of order �ns � 1�2,
as is usually the case in the slow-roll regime. The following
simple relationship between the CMB multipole ‘ and the
comoving wave number k helps relate the feature in our
potential with a corresponding angular scale �

 ‘� ��1 ’ k�
0 � 
ls�; (3.22)
where

 
0 � 
ls �
c
H0

Z zls

0

dz
h�z�

; (3.23)

and zls is the redshift of the last scattering surface. This
leads to

 k ’ ‘� 10�4h Mpc�1; (3.24)
in a spatially flat LCDM cosmology with �m ’ 0:3 and
�� ’ 0:7.

IV. INFLATIONARY MODEL WITH A STEPLIKE
DISCONTINUITY IN THE EVOLUTION OF THE

EFFECTIVE MASS

As an example of a microscopic field-theoretic model
which can give rise to the feature in the inflaton potential
discussed in this paper, let us consider the standard model
used in many occasions, in particular, in the hybrid infla-
tionary scenario [7]:

 V� ;�� �
1

4�
�M2 � � 2�2 �

1

2
m2�2 �

g2

2
�2 2: (4.1)

From (4.1) we find that, near  � 0, the effective mass of
the field  is given by

 m2
 �

d2V

d 2 � g2�2 �M2; (4.2)

so that m2
 > 0 if �>�c and m2

 < 0 if �<�c, where
�c � M=g is the critical value of the field � at which the
curvature of the potential V� ;�� along the  direction
vanishes. The change in the sign of m2

 is a crucial ingre-
dient of this model: m2

 > 0 ensures that at early times the
field  rolls towards  � 0, whereas m2

 < 0 at late times,
destabilizes the  � 0 configuration resulting in a rapid
cascade (waterfall) of  towards the minimum of its po-
tential. Thus, just before the (weakly second order) phase
transition, �>M=g,  � 0 so that

 V��� �
M4

4�
�
m2�2

2
; (4.3)

and @2V=@�2 � m2. Introducing the parameter � �
2�m2=g2M2, we write V��� at the instant of transition as

 V��c� �
M4

4�
�1� ��: (4.4)

A large value � > 1 implies that the correction from the

m2�2 term to the vacuum energy density V�0; 0� � M4=4�
is significant, while the opposite is true for � < 1. As we
shall discover, � & 1 will be more relevant to the scenario
which we are considering. It is easy to see that prior to the
transition the slow-roll condition jV00j=H2 � 1 implies

 M2 


�������
3�
2�

s
mmP

�1� ��1=2
; (4.5)

where m2
P � G�1. Soon after the transition, �<M=g,

 2 � �M2 � g2�2�=�, and

 V��� �
1

2

�
m2 �

g2M2

�

�
�2 �

g4�4

�
: (4.6)

The requirement that slow-roll remain valid immediately
after the transition gives

 M
 gmP: (4.7)

The product of (4.5) and (4.7) results in the following
constraint

 M3 


�������
3�
2�

s
gmm2

P�������������
1� �
p : (4.8)

Unlike the field � which slowly rolls down the potential
V��; �, the motion of  is rapid and the condition
j@2V=@ 2j

H2 
 1 is valid all the time apart from a very small
interval �t� H�1 around the transition if

 M3 �
�mm2

P

1� �
: (4.9)

It is easy to see that (4.8) and (4.9) imply g2 � � in our
model, i.e. self-coupling of the  field should be much
more than its coupling to the inflaton �. The value of the
spectral index before (n1) and after (n2) the transition can
be determined quite simply, by applying the well-known
formula

 n� 1 � �
3m2

P

8�

�
V0

V

�
2
�
m2
P

4�

�
V 00

V

�
; (4.10)

to (4.3) and (4.6). Consequently

 n1 � 1 �
1

2�

�
gmP

M

�
2 ��1� 2��

�1� ��2
; (4.11)

 n2 � 1 � �
1

2�

�
gmP

M

�
2 4� 3�� 2�2

�1� ��2
: (4.12)

From (4.11) we find that the inflationary spectrum on large
scales has a red (blue) tilt if � > 1=2 (� < 1=2); � � 1=2
results in precise scale invariance for the initial spectrum:
n1 � 1. The total change in the spectral index during the
course of the transition is given by

 �n � n1 � n2 �
2

��1� ��

�
gmP

M

�
2
: (4.13)
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Clearly, in order to make contact with observations the
value of � must not be too large since otherwise n1 ’ n2,
and it will be difficult to test the predictions of this model
rigorously. From (4.11) and (4.12) we find that n1 and n2

are completely determined if we know the value of � ( �
2�m2=g2M2) as well as gmP=M. � and gmP=M are also
related to the number of inflationary e-folds which take
place after the phase transition has occurred,

 N � �
�
M
gmP

�
2
�

1�
�

1�
�
2

�
log

2� �
�

�
: (4.14)

The exact value of N can be chosen as one of free
parameters of the model. It is uniquely defined by the
preferred location k0 of the feature and the length of the
reheating period after inflation. Below we use N � 60 as
an estimate which roughly corresponds to k0 being of the
order of the inverse present Hubble scale, leaving the
determination of the most probable location of k0 needed
to explain running in the WMAP data for future work. As
follows from Fig. 2 the transition, from the slope value
ns � n1 to ns � n2, mainly occurs in the range k � �1�
3�k0 (neglecting small oscillations for higher values of k).

We plot the behavior of the spectral index as a function
of � for two different values of N in Figs. 3 and 4. Values
of parameters (M, m, g) in our model can be very simply
estimated by comparing the inflationary curvature fluctua-
tion on large scales with the observed CMB fluctuation
measured by COBE or WMAP. The perturbation spectrum
can be approximated as

 PR�k� �
128�

3m6
P

V3

V 02
�

8�
3

g4

�

�
M
gmP

�
6 �1� ��3

�2 ; (4.15)

which is related to the dimensionless density contrast
�H�k� via

 �2
H�k� �

4

25

�
g��m�

�m

�
2
PR�k�; (4.16)

where [32]

FIG. 4 (color online). Spectral indices for perturbations gen-
erated just before (n1) and immediately after (n2) the phase
transition in hybrid inflation are shown. Note that distinct values
of the pair fn1; n2g correspond to different values of the parame-
ter �, as shown in Fig. 3. Results are shown for two possible
number of e-folds after the phase transiton: N � 50 (red, solid
line) and N � 60 (blue, dashed line).

FIG. 3 (color online). The spectral index just before (n1) the phase transition in hybrid inflation and immediately after it (n2), is
shown as a function of the parameter � � 2�m2=g2M2 in the left and right-hand panel of this figure. The red (solid) line corresponds to
50 e-folds of inflationary expansion occurring after the phase transition in hybrid inflation, while the dashed (blue) line corresponds to
60 e-folds.
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 g��m� �
5

2
�m

�
1

70
�

209�m ��2
m

140
��4=7

m

�
�1
; (4.17)

and the 4 yr COBE data implies, for a LCDM universe
[33,34],
 

�H � 1:91� 10�5 exp	1:01�1� n�
�������������������������
1� f��m�r

p ��0:8�0:05 log�m
m

� f1� 0:18�1� n��� � 0:03r��g; (4.18)

where the ratio of tensor to scalar power spectrum denoted
by r ’ 16�0, f��m� � 0:75� 0:13�2

�. Substituting, for
V��� from (4.3) we obtain, after setting N � 60 in
(4.14), and � � 0:1, for a spatially flat LCDM universe
with �m � 0:26 and �� � 0:74, parameter values �, g,
M, m given in Table I. We therefore conclude that, for this
model, the value of M lies in the grand unified theory
(GUT) range while the inflaton mass m� M is of the
order of (though slightly less than) that in the simplest
inflationary model with V � m2�2=2. Note that for these
values of parameters, all inequalities (4.5), (4.7), and (4.9)
are satisfied (actually, in the case of (4.7) the quantity that
should be sufficiently large is the number of e-folds after
transition N (4.14)).

V. CONCLUSIONS AND DISCUSSION

The rapid advance and sophistication of cosmology
experiments, most notably those associated with measur-
ing fluctuations in the cosmic microwave background and
which purport to throw light on the physics of the very
early universe, necessitate a close examination of different
possibilities for the generation of primordial fluctuations
responsible for the CMB signal. In this paper we have
demonstrated the possibility of a new kind of perturbation
spectrum generated during inflation. We have shown that,
if during inflation, the effective mass of the inflaton
changes rapidly, then this change results in a universal
local feature being imprinted onto the primordial spectrum
of density perturbations. Namely, a sudden change in m2

eff
satisfying the condition j	m2

eff
j � H2 leads to a break in
the spectral slope—equivalently—to a step in the value of

the primordial spectral index ns. This break is accompa-
nied by rapid oscillations decaying both in PR�k� and ns�k�
away from the transition point. These oscillations are
rather small in magnitude as compared to all exact solu-
tions for perturbation spectra with features considered
before. The amplitude of the running of the spectral index
is rather large,��ns � 1�, at the transition point but decays
away from it, too. The precise location of the step in ns and
its amplitude are free parameters of this model whose
values must be set after comparing the predictions of this
scenario with observations. Note also we have not specified
the form of the background power spectrum PR0�k� on
which our feature is superimposed. The form of PR0�k�
must clearly be derived from a concrete physical model.
(One might even conjecture, for arguments sake, that
PR0�k� could contain additional features generated by
other physical effects such as the existence of a radiative
epoch prior to inflation, etc.) We have also demonstrated
that a field-theoretic model which can give rise to a step in
V00��� is similar to that used to end inflation in the hybrid
inflationary model, though different values of its parame-
ters are required in our case which should satisfy the
inequalities (4.5), (4.7), and (4.9). It describes a fast
second-order phase transition during inflation that occurs
in some other scalar field weakly coupled to the inflaton.
Some estimates of the values of the spectral index in this
model are given and analytical formulae relating ns to the
fundamental parameters in the inflationary potential are
derived; see (4.11) and (4.12). The reader may also like to
note that while the treatment in Sec. III is quite general and
allows the running of the spectral index to be positive ( ~�>
0) as well as negative ( ~�< 0), the microphysical model in
Sec. IV favors ~�< 0 which is suggested by (4.13). To
conclude, the scenario discussed in this paper suggests
that the observed running of the spectral index in the
WMAP data may be caused by a fast second order phase
transition which occurred during inflation. A detailed com-
parison of this model with observations remains an impor-
tant problem for further study.
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TABLE I. Typical parameter values for the hybrid inflationary
model (4.1) with a step in the spectral index.

� g M=mp m=mp

1 3� 10�4 8� 10�4 5:3� 10�7

0.5 2:9� 10�4 7:2� 10�4 3:3� 10�7

0.25 2:6� 10�4 6:1� 10�4 1:8� 10�7
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