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We investigate the role of nonperturbative, bubblelike inhomogeneities on the decay rate of false-
vacuum states in two- and three-dimensional scalar field theories. The inhomogeneities are induced by
setting up large-amplitude oscillations of the field about the false vacuum, as, for example, after a rapid
quench or in certain models of cosmological inflation. We show that, for a wide range of parameters, the
presence of large-amplitude bubblelike inhomogeneities greatly accelerates the decay rate, changing it
from the well-known exponential suppression of homogeneous nucleation to a power-law suppression. It
is argued that this fast, power-law vacuum decay—known as resonant nucleation—is promoted by the
presence of long-lived oscillons among the nonperturbative fluctuations about the false vacuum. A phase
diagram is obtained distinguishing three possible mechanisms for vacuum decay: homogeneous nuclea-
tion, resonant nucleation, and crossover. Possible applications are briefly discussed.
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I. INTRODUCTION

Since the seminal results by Coleman [1], which can be
viewed as an extension of Langer’s theory of homogeneous
nucleation (HN) [2] in condensed matter systems to rela-
tivistic field theories, there has been a large amount of
work dedicated to vacuum decay at both zero and, inspired
by Linde’s work [3], finite temperatures [4]. Several text-
books and review articles describe the topic in detail [5].

In high energy physics, the interest in false-vacuum
decay comes from the fact that models describing the
fundamental interactions of matter fields often possess
metastable states. For instance, it is still unclear if the
quark-hadron transition is or is not at least weakly first
order [6]. Within models of electroweak symmetry break-
ing, several extensions of the standard model, supersym-
metric or not, support metastable states [7]. It is hoped by
many that results from the Large Hadron Collider will shed
light on this issue, as they may reveal the fundamental
mechanism of mass generation. As we move toward the
early universe, many models of inflation, including the
original old inflation and many others, make use of poten-
tials with metastable states [8]. The same is true of grand
unified theories. It is thus of great interest to examine under
what conditions the predictions from HN theory, which are
widely used in the literature, can be trusted. In this work,
we will explore the mechanisms by which a false vacuum
can decay. As we hope to convince the reader, the effective
decay rate is sensitive to the properties of the initial state:
the mechanism of false-vacuum decay reflects its previous
history. Thus, having information about the decay mecha-
nism may help us reconstruct the conditions prevalent at an
earlier epoch, when the system under study was still in its
metastable state.

This paper is organized as follows: in the next section,
we introduce our model and review basic results from
false-vacuum decay theory. We also briefly review the
properties of oscillons, long-lived, time-dependent non-
perturbative field configurations, as they play a key role
in the present work. We complete the section by describing
the Hartree effective potential and the details of our 3d
lattice implementation. In Sec. III, we explore the different
mechanisms of vacuum decay, emphasizing the departures
from HN. We describe in detail how a power-law decay
rate is operative for a wide range of parameters controlling
the properties of the initial state and the field interactions.
We construct a phase diagram encompassing the three
roads toward vacuum decay: HN, resonant nucleation
(characterized by power-law decay), and fast crossover.
We conclude in Sec. IV, with a summary of our results
and possible applications. We include an appendix, de-
scribing how to obtain analytically the scaling factor con-
trolling the dependence of the results on lattice spacing.

II. THE MODEL

We are interested in �d� 1�-dimensional scalar field
theories with conservative dynamics defined by the
Hamiltonian

 H��� �
Z
ddx

�
1

2
�@t��2 �

1

2
�@i��2 � V���

�
; (1)

where the tree-level potential energy density is written for
convenience as

 V��� �
m2

2
�2 �

�
3
�3 �

�
8
�4: (2)

We use units where @ � c � kB � 1. The parametersm,�,
and � are positive definite and temperature independent.
With the rescaling, �0 � �

����
�
p
=m, x0� � x�m, and �0 �

�=�m
����
�
p
�, the potential can be written as V��� �

�m4=��V��0�, with
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while the Hamiltonian in Eq. (1) becomes H��� �
�m=��H��0�. Henceforth we will drop the primes. Note
that for � � 0 the model is Z2 symmetric, while for � �
3=2, V��� is a symmetric double well. For �> 3=2 the
minimum at� � 0 becomes the false vacuum, and the true
vacuum is at�� � ��

���������������
�2 � 2
p

. In Fig. 1, we show V���
for several values of �.

A. False-vacuum decay

Although our results could be extended to models at zero
temperature and, thus, with false-vacuum decay controlled
solely by quantum tunneling, we will treat here mostly
finite-temperature models. We use a finite-temperature
description merely for its convenience in setting the prop-
erties of the initial state, which we will take to be a state of
thermal equilibrium prepared in the potential above with
� � 0. But before we describe our procedure, it is conve-
nient to briefly review some relevant results from HN.

Consider a model with an asymmetric double-well po-
tential, such as the one of Eq. (3) with �> 3=2. The field is
initially in thermal equilibrium with only small-amplitude
fluctuations about the metastable minimum at �m � 0.
One then computes the free energy F � �T lnZ, where
Z is the partition function, given by the path integralR
D��� exp��F���=T�. At finite temperature, F��� is

the Euclidean free-energy functional of the configuration
�, which may contain temperature and quantum correc-
tions to the tree-level theory defined in Eq. (1). To lowest
order in perturbation theory, these corrections are included
in the effective potential. At T � 0, one should use the

�d� 1�-dimensional Euclidean effective action S���, as
opposed to F���=T, in the exponent [3,4].

The calculation proceeds as follows: first, one identifies
the stationary points of F���, given by the solutions to the
equations of motion. There are two for generic asymmetric
double-well potentials, such as the ones in Fig. 1: the false
vacuum at �m, and the spherically symmetric bounce or
critical bubble �b�r�, found by solving

 @2
r��

�d� 1�

r
@r� �

@V
@�

; (4)

where d is the number of spatial dimensions. The solution
must satisfy the boundary conditions, �b�0� � �0,
@r�b�0� � 0, and limr!1��r� � �m. Second, adopting
the semiclassical approximation where the path integral
is dominated by small fluctuations about the classical
paths, one sums over quadratic fluctuations about the sta-
tionary points of the free energy using the saddle-point
approximation to the Gaussian path integral. The calcula-
tion is completed by summing over the contribution from
many bubbles, which makes use of the ‘‘dilute gas’’ ap-
proximation, where the nucleating bubbles are assumed to
be far enough away from each other so as not to overlap,
thus being treated as independent events. The end result,
the probability per volume per unit time of nucleating a
bubble of ‘‘true’’ vacuum within the false-vacuum back-
ground for a system at temperature T, is

 �� T�d�1� exp��F��b�=T�: (5)

The quotes are a reminder that the nucleating bubbles are
not initially at the true vacuum, only close to it (�0 � ��).
The sums over bubbles and over quadratic fluctuations
about the stationary points give rise to a prefactor which
can be roughly approximated by T�d�1� or, in quantum
tunneling, by Md�1, where M is the relevant mass scale.
Here, we will be mainly interested in the exponential factor
which, in most scenarios, dominates the false-vacuum
decay rate. Summarizing, the calculation of false-vacuum
decay in HN relies on two key assumptions: small (qua-
dratic) fluctuations about the false vacuum and about the
critical bubble, and the dilute gas approximation.

B. Thin-wall approximation

Although the equation describing the critical bubble,
Eq. (4), does not, in general, have exact solutions, an
estimate of the energy of a critical bubble can be obtained
in the ‘‘thin-wall’’ approximation [1,5]. Essentially, when
the potential V��� is nearly degenerate, the critical bubble
will have a spatial extension, or ‘‘radius,’’ �Rb�much larger
than the thickness of the wall separating its interior from its
exterior, defined as the region where � changes abruptly
from �0 ’ �� at r � 0 to �m at r! 1. There are thus
two main contributions to the free energy (or Euclidean
action) of the critical bubble: the wall (r� Rb), and the

FIG. 1 (color online). The tree-level potential V��� for � �
0:0, 1.5, 1.6.
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interior of the bubble (r < Rb), where one writes �b�r� �
��. The approximate expression for the bubble energy is

 Etw ’ CdRd�1

�
��

R
d
j�Vj

�
; (6)

where j�Vj � jV���� � V��m�j, and Cd �
2�d=2=��d=2� is related to the volume of a
d-dimensional sphere of radius R by Vd � Cd

Rd
d . Also,

� �
R
dr�12 ��

0
b�

2 � V��b�� is the surface tension.
Minimizing with respect to R gives

 Rb �
��d� 1�

j�Vj
; (7)

and the nucleation energy barrier in the thin-wall approxi-
mation is

 Etw � Cd
�d� 1�d�1

d
�d

j�Vjd�1
: (8)

Within the thin-wall approximation, the bounce solution
may be approximately parametrized by ��r� ’ ��

2 	

�1� tanh�12 �r� Rb���. Using a scaling argument, we can
equate the magnitudes of the surface and potential contri-
butions in the surface tension integral. The surface tension
can then be written as � �

R
dr�@r�b�

2, which allows us
to integrate � using the ansatz for � to obtain

 � ’ lim
Rb
1

�2
�

3

e2Rb�3� eRb�

�1� eRb�3
�
�2
�

3
: (9)

The volume contribution from the potential is only a
function of the asymmetry �V � 1

2� �
2 � 2

3�
���������������
�2 � 2
p

�
1
3 ��

4 � �3
���������������
�2 � 2
p

�. It is convenient to write � ’ 3=2�
��, where ��� 1 in the thin-wall approximation. Then,
expanding the expressions for the energy, Eq. (8), and the
radius, Eq. (7), about �� � 0, we can obtain approximate
analytical expressions for both as follows:

 Etw �
Cd
3

�d� 1�d�1

22d�3d

�
1

��d�1
�
d� 3

��d�2

�
�O���3�d�;

(10)

 Rb �
d� 1

4

�
1

��
� 1� 7��

�
: (11)

Although these expressions breakdown quite quickly as ��
increases, they provide the dominant scaling of energy and
radius with the coupling �.

C. Oscillons: A brief review

Alongside with the critical bubble or bounce, oscillons
will play a key role in the mechanism for fast vacuum
decay. In fact, the title of this work alludes to their presence
in the metastable minimum and their effect on the decay
rate. As such, it is useful to briefly review their properties.
In their simplest form, oscillons are spatially extended,

very long-lived, time-dependent solutions of the nonlinear
Klein-Gordon equation [9], or of other partial differential
equations with amplitude-dependent nonlinearities [10].
Their properties have been extensively studied during the
past decade in two [11], three [12], and higher [13] spatial
dimensions, and, more recently, in U(1) Abelian-Higgs
models [14] and in SU�2� 	 U�1� models [15]. However,
it is fair to say that a more fundamental understanding of
their existence and longevity is still lacking.

In the context of relativistic scalar field models, oscil-
lons are characterized by large-amplitude oscillations
about the vacuum state. Assuming spherical symmetry, it
has been shown [13] that they only exist if these fluctua-
tions probe beyond the inflection point (�inf) of V���,
although they may be more general [16]. The reader may
consult the references cited for more details.

Scalar field oscillons have been found by two methods.
The first, and simpler, method makes use of an initial
condition ��0; r� that resembles the oscillon solution, for
example, ��0; r� � �0 exp��r2=R2�, for V��� of Eq. (3).
For values of R 
 Rmin, and �0 >�inf , the field will
evolve into the oscillon configuration, where it will remain
for a lifetime that is sensitive to the values of �0, Rmin, and
d. Rmin can be estimated analytically for degenerate and
nondegenerate polynomial potentials for an arbitrary num-
ber of spatial dimensions [13].

The second method, which is more general, shows that
oscillons emerge, under very general conditions, when
large-amplitude fluctuations about a given vacuum state
with sufficient thermal (or quantum) noise are present. In
the context of 2d models, Gleiser and Howell showed that
they emerge after a quench from a single-well to a double-
well potential [17]. In the model of Eq. (3) this would
correspond to a change from � � 0 to � � 1:5.

Inspecting Fig. 1, one can see qualitatively that the
quench induces coherent oscillations of the field’s zero
mode, ���t� � �1=V�

R
ddx��x; t� about the metastable

minimum at � � 0 due to a ‘‘widening’’ of the potential
there. Other mechanisms may induce large-amplitude os-
cillations of the zero mode, producing similar results. This
happens, for example, in the context of reheating in certain
models of cosmological inflation [18,19]. Another possi-
bility is a symmetry-breaking interaction that changes the
shape of the potential from single to double well, as in the
case of the quench above, or one that simply ‘‘widens’’ the
curvature of the potential about the vacuum.
Quantitatively, the energy from these coherent oscillations
is transferred to higher k modes via parametric amplifica-
tion and triggers the emergence of oscillons. We refer the
reader to Ref. [17] for details. Not surprisingly, the same
behavior ensues in 3d: a quench induces oscillations of the
field’s zero mode, as can be seen in Fig. 2. The results were
obtained in a cubic lattice of volume L3 � 643 with peri-
odic boundary conditions, lattice spacing dx � 0:5, and �
changed from � � 0 to � � 1:5. The initial thermal state
was prepared at T � 0:29.
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In Fig. 3, we show snapshots of the field, displaying the
appearance of bubblelike oscillons. Shown are the isosur-

faces at � � f0:75 �blue�; 1:0 �red�; 1:5 �green�g (colors on-
line only). The long-lived, localized oscillations which
emerge in synchrony are the oscillon configurations.

D. The Hartree potential and lattice implementation

As mentioned above, the initial state is prepared as a
thermal state centered at � � 0 in the potential of Eq. (3)
with � � 0. The thermal fluctuations will induce changes
in the potential for �, which, in leading order in perturba-
tion theory, may be approximated by the homogeneous
Hartree approximation (HHA). An excellent account of
the HHA, using successive truncations within the hierarchy
of correlation functions to obtain corrected equations of
motion, can be found in Ref. [20].

The HHA assumes that the fluctuations of the field and
its associated momentum remain Gaussian throughout its
evolution. Thus, the approximation works well just prior
and just after the quench for all temperatures, and for low
temperatures at all times. The Hartree potential can be
derived as follows: write the field as � � ��� ��. Then,
VH��� � hV� ��� ���i, where hi means an average over
all fluctuations ��, with h��i � 0 and h��2i � �. h��2i

FIG. 3 (color online). Snapshots of a 3d scalar field simulation after a quench from a single-well to a symmetric double-well
potential (� � 0! 1:5). The oscillatory bubblelike configurations which emerge in synchrony are identified as oscillons. The lattice
parameters were dx � 0:5, T � 0:29, and L3 � 643. Plotted are the � � f0:75; 1:0; 1:5g isosurfaces in blue, red, and green,
respectively. The plots are snapshots at t � f45:5; 51:5; 54:5; 60:5; 62:0194:5g, respectively, increasing from left to right and top to
bottom. Note that oscillons can be tracked over a period of oscillation as they reappear in approximately the same place about t�
9m�1 later. For example, the top right corners of the first, second, fourth, and fifth slices show the same oscillon. The last snapshot
shows oscillons still present at late times. They eventually disappear as thermal equilibrium is restored.

FIG. 2 (color online). The volume-averaged field, or order
parameter, h��t�i � ���t� which corresponds to Fig. 3.
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is the translationally invariant mean-square variance of the
field, which, in thermal equilibrium (the initial state), is
constant and proportional to T. We then obtain (suppress-
ing the bar)

 VH��� � �����
�

1�
3

2
�
�
�2

2
� �

�3

3
�
�4

8
: (12)

In thermal equilibrium, the momentum and field modes
in k space satisfy

 hj ���k�j2i � T; (13)

 hj ���k�j2i �
T

k2 �m2
H

; (14)

where the Hartree mass is defined as m2
H � V 00H�0�.

Because of the dependence of hj ���k�j2i on the wave
number k, a lattice implementation of the field theory
will introduce a lattice spacing (�x) dependence [21]. We
thus write, for an UV cutoff �, � � a#dT, where the
constant a#d, which changes in different spatial dimen-
sions, can be obtained numerically by comparing the lat-
tice results with Eq. (14). It can also be obtained
analytically, as shown in the Appendix. For example, for
�x � 0:2, we obtain, through this method, a2d � 0:518
and a3d � 1:194, in two and three spatial dimensions,
respectively. These values agree very well with the numeri-
cal estimate. (See the Appendix for details.)

In Fig. 4, we plot on the left the ensemble-averaged two-
point correlation functions for the field (green squares,

bottom) and its related momentum (blue squares, top).
The black lines are the analytical formulas of Eq. (14).
On the right, we take the logarithm of the initial data set for
the two-point correlation function for the field (green
squares and black line), and compare to its value during
the simulation. The red squares are the data at every half
time unit for the time interval 360< t < 400, when ���t� is
well settled in the potential minimum (check Fig. 2). The
blue squares correspond to the same data, but after apply-
ing a thermal filter. One can clearly distinguish two pop-
ulations of modes: low-k, oscillon-related modes far from
equilibrium (for k & 1:5), and modes that remain in ther-
mal equilibrium for all times (k * 1:5).

Introducing � allows us to relate models with different
temperatures and lattice spacings with a single parameter.
From now on, we will refer to � as the effective lattice
temperature. In Fig. 5, we plot VH��� for various values of
� and � � 1:6. The interpretation of � as an effective
temperature should be apparent.

The initial state was prepared by thermalizing the field
using standard Langevin techniques on the differential
equation [22]

 

��� 	 _��r2� � �@V=@�� 
 (15)

where 
 is a Markovian noise with a two-point correlation
function obeying the fluctuation-dissipation relation,

 h
�x; t�
�x0; t0�i � 2	T��x� x0���t� t0�: (16)

The initial state is solely determined by the temperature of

FIG. 4 (color online). The radially averaged two-point field and momentum correlation functions. On the left, we show the results for
the thermal initial conditions. The black continuous lines correspond to hj ���k�j2i � T��x��3 (top) and to hj ���k�j2i � T�x�3=fk2 �
m2

Hg � c0

���
k
p

(bottom). (The small constant c0 � 0:024 used to fit the analytic prediction with the lattice results is due to the abrupt
lattice cutoff introduced by �x.) The blue and green squares are from the simulation. On the right, we plot the logarithm of the two-
point correlation function for the field. The black line and green squares correspond to the thermal initial state plot on the left. The red
squares are the data plotted at every half time unit (m�1) for the time interval 360< t < 400. The blue squares are also the data, after
applying a thermal filter. One clearly distinguishes two populations of modes: the oscillon-related, low k modes (k & 1:5), which
sharply depart from the thermal spectrum, and the purely thermal modes, which remain in thermal equilibrium throughout the
simulation (k * 1:5). These figures were generated using the data from the same run as in Fig. 3.
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the bath T. Note that this thermalization is simply a device
to set an initial distribution for the field modes satisfying
Eq. (14). This thermalization is done on the bare potential,
and after the system is thermalized both 	 and 
 are set to
zero. One could have used alternative T-independent meth-
ods to set up initial conditions. Ours is in tune with the
more conventional statement that vacuum decay initiates
from a metastable thermal state. This initial thermalization
was verified by compliance with equipartition, such that
the average kinetic energy of each mode was T=2.

We used a standard leapfrog algorithm [23] on cubic
lattices with volume V � L3 � �256 � dx�3 with periodic
boundary conditions. We verified that our results do not
show any relevant dependence on L. The lattice was
evolved in time steps of �t � 0:025. We checked that the
Hamiltonian evolution conserves energy to O��t2�.

III. POWER-LAW VACUUM DECAY

Within the framework of HN, the nucleation energy
barrier can be calculated numerically by integrating the
equation:

 @2
r��

�d� 1�

r
@r� � @�VH��; T�: (17)

In Fig. 6, we plot the energy barrier Eb��;�� as a function
of asymmetry � for several values of � for d � 3. For
reference, we also included the Euclidean bounce action
for quantum decay at T � 0. It is apparent that the different
curves are related by a �-dependent scaling,

 Eb��;�� ’ Eb��; 0�A���; (18)

where we found that A��� � �1� c���2, with c � 2:75
giving the best fit. In order to test this approximation, in
Fig. 7 we plot the ratio Eb��;��=�Eb��; 0�A����. It is clear
that the scaling holds to within 10% for the range of
parameters where resonant nucleation ensues. The scaling
allows us to relate the finite-temperature bounce action
computed with the Hartree approximation of Eq. (12)
with the tree-level bounce action computed with Eq. (3).

FIG. 7 (color online). Testing the scaling of the bounce energy
with �: we plot the ratio Eb��;��=�Eb��; 0�A���� versus � for
various values of �. The scaling holds well (dashed lines denote
10% accuracy) and worsens as � increases.

FIG. 6 (color online). The logarithmic energy of a 3d bounce
or critical bubble, ln�Eb��;���, for � � f0:0; 0:025; 0:05;
0:10; 0:125g as a function of �. There is a clear scaling with �
that worsens as � is increased. For � � 0, the bounce ‘‘energy’’
is the d � 4 Euclidean action.

FIG. 5 (color online). Hartree potential for � � 1:6 and sev-
eral values of � � 0, 0.1, 0.2, 0.4, 0.75.
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A. Computing the exponent in resonant nucleation

According to HN theory, the decay rate is given by
Eq. (5). Is this also true after an abrupt change in the
potential V���—promoted either by a quench, a new
interaction, or by a coupling to another field that induces
oscillations on ���t�, as in certain inflationary models
[18,19]? In Ref. [24] (GH), it was found that, in 2d,
changes that induce large-amplitude fluctuations of the
field’s zero mode may drastically alter the decay rate
from an exponential to a power law for a range of asym-
metries (�) and temperatures (T). In GH, it was argued that
the decay is triggered by the resonant nucleation of oscil-
lons, which may coalesce to form a critical bubble or that
simply become unstable and grow to become a critical
bubble themselves. This mechanism was dubbed resonant
nucleation (RN), and was found to lead to a power-law
decay per unit area

 �� T3�Eb=T�
�B; (19)

with B ’ 2:464� 0:134 for the range of parameters where
RN is operative. In Fig. 8 we display our results for the
exponent B in d � 2. The lattice spacing was �x � 0:2,
and the lattice size 20482. Results were averaged over 10
runs. Errors were smaller than boxes. (Note that this value
of B and the error bars are smaller than those quoted in
[24]. Also, we found that B is only weakly dependent on�.
This discrepancy is due to better statistics and to a more
precise method of distinguishing between RN and cross-
over transitions, to be explained below.)

In order to test if a power-law behavior holds in 3d, we
repeated the GH procedure for different values of the
asymmetry � and the lattice temperature parameter �.
The field is initially prepared in a thermal state in a single

well (� � 0). The potential is then changed to an asym-
metric double well, by setting �> 3=2. The subsequent
dynamics of the field is conservative; that is, we set 	 � 0
in Eq. (15). We then measured the volume-averaged value
of the field, ���t�. Results for � � 0:085 and several values
of the asymmetry � are shown in Fig. 9.

One can easily see that, for values of � close to degen-
eracy (towards the right of the figure), ���t� performs many
damped oscillations about the metastable minimum of
VH� ��� before irreversibly transitioning to the global mini-
mum. For clarity, we cut off the plot before the decay is
completed. As the asymmetry is increased (towards the left
of the figure), the number of oscillations decreases until the
transition completes by crossover, that is, within a time
scale which is shorter than a typical oscillation period.
(More on this soon.)

Adopting as the decay time scale (�) the time at which
���t� crosses the maximum of VH� ���, we can plot the

logarithm of decay times as a function of the logarithm
of the bounce energy �Eb=��, where Eb is computed from
the solution of Eq. (17) for a given pair (�, �). The results
are ensemble averaged over 50 runs, and displayed as
individual points (diamonds) in the left plot of Fig. 10.
On the right side, we plot the logarithm of �Eb=�3� to show
the simple scaling with �. For reference, if �x � 0:25, the
value we adopted in our simulations, the temperature
would be in the range 0:09 � T � 0:14. [To get the value
of the temperature, use that T � �=a3d. Analytically,
a3d � 0:955 (see the Appendix), and numerically a3d �
0:933, an error of only 2.4%.] The slopes of the straightline
fits are the numerical values for the decay power B.

Note that we are not including decay times smaller than
� ’ 22. Times shorter than this are characteristic of a

FIG. 9 (color online). The volume-averaged field, or order
parameter, ���t� for � � 1:589! 1:78 for � � 0:085. (Results
are better seen in color.)

FIG. 8 (color online). The value of the decay power B as a
function of � in two dimensions.
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crossover transition and would not fall under resonant
nucleation. This can be made clear by investigating how
we extracted the slopes of the log-log plot, that is, the
constant B controlling resonant nucleation. As an illustra-
tion, fixing � � 0:0954, consider the results for the decay
times displayed in Fig. 11. From the data, it is clear that
there is a sharp departure from a straightline fit below

ln��� ’ 3:2. This happens consistently for all parameters
we investigated, offering a natural cutoff below which the
transition occurs via crossover.

In Fig. 12, we show our results for the power B control-
ling resonant decay. We have included two data sets: the
squares are the results obtained using the Hartree effective
potential to compute the bounce action and to read off the
nucleation time scale (which depends on the location of the
maximum). The circles are the results obtained using the
tree-level potential. It is clear that for VH���, B is fairly
independent of � within the range where resonant nuclea-

FIG. 12 (color online). Results for the decay power B. Slopes
as measured individually, as in Fig. 11. The circles are calculated
with the tree-level potential and the squares with the Hartree
effective potential. Error bars are from ensemble-averaging fits
within the sizes of the squares and circles.

FIG. 10 (color online). Decay time scales in 3d: we plot ln��� vs ln�Eb=�� (left panel) and ln�Eb=�
3� (right panel). From top to

bottom on the left figure, � � f0:084; 0:095; 0:101; 0:107; 0:119; 0:131g.

FIG. 11 (color online). Extracting the decay exponent B:
shown are the raw data points for the decay time ln� vs
�lnEb=�� with � � 0:0954. We ran 50 experiments for each
value of � (or, equivalently, of Eb). In this illustration, we used
the tree-level potential of Eq. (3) to compute Eb. The straightline
slope fit gives B � 1:473. Note the clear departure from a
straightline fit for ln� & 3:2. We characterize time scales faster
than those as typical of crossover transitions.
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tion applies. The average value is B � 1:327� 0:059. The
values agree well for �> 0:09. For smaller �, it is neces-
sary to increase the value of � to probe into the resonance
nucleation regime, leading to larger errors in the tree-level
estimates.

We also verified that the value of B is not very sensitive
to changes in lattice spacing. As an illustration, let us
choose �x � 1. For T � 0:55, which gives � � 0:131,
we repeated the numerical experiments to obtain B ’
1:68. By adjusting T, this value can, for example, be
compared with the one obtained with lattice spacing �x �
0:25 for the same � � 0:131, which we measured to be
B � 1:47. This is a change of only 13% in B for a factor 4
change in lattice spacing. As a second illustration, we
compared the results for �x � 0:35 and T � 0:175, for
which � � 0:119, with �x � 0:25, at the same �. The
values for the power-law decay were B � 1:458 and B �
1:353, respectively, a 7% difference. Within the accuracy
of our simulations, we conclude that B is weakly dependent
on �x and, most importantly, on �.

B. Phase diagram for vacuum decay

In Fig. 13, we summarize our results in a phase diagram
displaying the three possible mechanics for false-vacuum
decay as a function of the parameters controlling the
asymmetry of the potential (�) and the temperature of

the initial metastable state (�). Homogeneous nucleation
(dark blue region labeled as HN) describes vacuum decay
for low enough temperatures for all values of asymmetries.

Resonant nucleation falls within the region bracketed by
the two left to right curves (light blue region labeled as
RN). The diamonds and circles are the results of the
simulations. The circles, being close to the crossover re-
gion (�� 25), were not used to compute the decay power
B. The curves bracketing RN from above (crossover,
purple region) and below (HN region) were obtained by
using the average value of the field, ���t�, as a guideline: a
field well-localized within the false vacuum [ ���t� � �inf]
will only decay via HN, a field for which ���t� 
 �inf will
easily cross over. RN lies in between. Noting that the
amplitude of thermal fluctuations about ���t� is given by

j
�������������
h��2i

p
j � j

���������
�=2

p
j, we obtain the condition

 VH��inf �
���������
�=2

q
� � 0: (20)

This condition translates into a relation between � and �
that generates the two curves bracketing the RN region
horizontally (see Fig. 13).

The steeper line to the left is obtained by examining the
dynamics of resonant nucleation. As noted in Ref. [24], in
the region near degeneracy, where the critical bounce is
large, RN will occur due to the coalescence of two or more
oscillons. In Fig. 14, we compare the radius of a bounce
with that of oscillons as a function of � for � � 0:107.
There are three distinct regions: For large � * 1:7, the
bounce and oscillon practically match. This region is typi-
cal of quick crossovers or, at most, borderline RN, where a

FIG. 13 (color online). Phase diagram for false-vacuum decay.
Shown are the three regions characterizing vacuum decay as a
function of the asymmetry in the Hartree potential � and the
effective lattice temperature �. HN (dark blue) represents decay
by homogeneous nucleation of critical bubbles. RN (light blue)
represents decay by resonant nucleation, either by the coales-
cence of two oscillons (diamonds) or by the unstable growth of a
single oscillon (circles). The top region represents fast crossover,
within time scales of � < 25. (The regions were labeled for
clarity with B&W display).

FIG. 14 (color online). Comparing the sizes of oscillons
[Rosc—continuous (blue) lines] and critical bubbles [Rbounce —
dashed (red) line] as a function of asymmetry �: 2Rosc is the
upper line, and Rosc the lower continuous (blue) line. Data are
obtained for � � 0:107.
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single oscillon becomes unstable, grows, and becomes
critical. In the intermediate region, where 1:56 & � &

1:7, Rbounce < 2Rosc: here, two oscillons may coalesce to

form a critical bubble. This is the region typical of RN.
Lastly, for �< 1:56, Rbounce > 2Rosc and more than two
oscillons are needed to produce a critical bubble, a process
that, although not impossible, is strongly suppressed in the
allowed time scales where RN can act, that is, while
oscillons are present in the system, typically while
@t ���t� � 0. In this region, HN is the favored decay route.
The steeper line in the phase diagram is thus obtained by
tracing the points where Rbounce � 2Rosc for each �, in
excellent agreement with the simulations: RN, denoted by
the diamonds, ends on this line.

In Fig. 15, we show the coalescence of oscillons leading
to a critical bubble that grows to complete the vacuum
decay. This figure should be contrasted with Fig. 3 for a
symmetric double-well potential. The regions displayed
are isosurfaces at � � f0:9; 1:75; 1:85g, which are colored
blue, red, and green, respectively. We used � � 1:545 and
� � 0:134. In Fig. 16 we show the corresponding evolu-
tion of the volume-averaged field, ���t�. The arrows denote
the locations of the isocurvatures depicted in Fig. 15.

IV. SUMMARY AND OUTLOOK

We have presented a detailed numerical study of the
decay of metastable vacua in scalar field theories. In par-
ticular, we investigated the effects of large-amplitude fluc-

FIG. 15 (color online). Snapshots of a 3d scalar field simulation after a quench from a single-well to an asymmetric double-well
potential (� � 1:545, T � 0:28, dx � 0:5, � � 0:134). The oscillons coalesce to become a critical bubble that grows to complete the
vacuum decay. The slices are at times t � f27:0; 38:0; 45:5; 54:5; 71:0; 79:5gm�1. The blue, red, and green isosurfaces are at � �
f0:9; 1:75; 1:85g, respectively. The average value of the field along with the respective isosurface locations are also noted in Fig. 16.

FIG. 16 (color online). The volume-averaged field, or order
parameter, h��t�i � ���t� for � � 1:545 for � � 0:1385. The
colored arrows label the locations of the isosurfaces depicted in
Fig. 15.
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tuations about the vacuum state on the decay rate. These
large-amplitude fluctuations were produced by a rapid
quench from a single-well to an asymmetric double-well
potential. We have argued that they are characterized by
spatially extended, long-lived oscillatory configurations
called oscillons. There are, of course, short-lived, small-
amplitude configurations as well, but those play a small
role on the dynamics of vacuum decay. They are incorpo-
rated, via a perturbative approach, into the effective
Hartree potential.

Our main result was to obtain a phase diagram character-
izing the three possible mechanisms for vacuum decay.
Two of them, slow homogeneous nucleation and rapid
crossover, are well known. The novel mechanism, resonant
nucleation, lies between these two and ensues when fluc-
tuations probe the neighborhood of the inflection point. We
have shown that, as in 2d [24], 3d resonant nucleation is
characterized by a power-law decay rate, �� �Eb=��B,
where Eb is the energy of the critical bubble computed
with the effective potential, � is the effective lattice tem-
perature, and B � 1:327� 0:059 is the exponent control-
ling the decay. We argued that resonant nucleation
typically occurs when two oscillons coalesce to form a
critical bubble or, marginally, when a single oscillon be-
comes unstable to growth. Although the coalescence of
three or more oscillons is possible, this process tends to be
highly suppressed due to its long time scale.

Our results open many avenues for future investigation.
Can oscillons play a role in inflationary cosmology?
During reheating, the inflaton undergoes damped, large-
amplitude oscillations about the potential minimum. This
is essentially the same mechanism that gives rise to oscil-
lons. Of course, one must add the effects of the cosmic
expansion, but preliminary results in simple 1d models
indicate that oscillons not only will be present but will
actually be stabilized by the expansion, becoming spikes in
the energy-density distribution [25]. We are currently in-
vestigating such possibility in a full 3d simulation. Another
area where the effects of oscillons should be further inves-
tigated is during spontaneous symmetry breaking. In the
present work, we investigated a simple Z2 symmetry
breaking, as we quenched from a single-well to an asym-
metric double-well potential. It is clear that the dynamics
of symmetry breaking is very sensitive to the model pa-
rameters and that oscillons can play a key role. In a related
work, we found that low-momentum vortex-antivortex
scattering in broken U(1) gauge models can lead to very
long-lived oscillons characterized by a (practically) non-
radiating oscillating magnetic dipole and nontrivial Chern-
Simons number [14]. Farhi et al. and Graham [15] found a
long-lived oscillon in broken SU�2� 	 U�1� models when
the Higgs mass is twice theW� mass. If this turns out to be
the right mass ratio, as we will hopefully soon know from
the LHC, we should expect electroweak oscillons to exist
in nature. Alternatively, they may exist even for a wider

range of values. A final point is the role of oscillonlike
fluctuations at zero temperature, or quantum tunneling.
They may play a role ruling out ‘‘resonant tunneling,’’ as
recently discussed in Ref. [26]. Taken together, these re-
sults demonstrate the rich physics of time-dependent, spa-
tially extended field configurations. This richness is only
beginning to be explored.
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APPENDIX: ANALYTICAL ESTIMATE OF
EFFECTIVE LATTICE TEMPERATURE

Consider the simple case of a quadratic potential V0 �
1
2�

2, for which the Hartree potential is simple, VH �
1
2�

2 � 1
2�. Consider also the 1-loop potential with UV

cutoff �,

 V1L��� � V0 �
T
2

Z �

0

ddp

�2��d
ln�p2 � V 000 �: (A1)

In d � 2 the integral gives

 V1L��� � V0 �
T

8�
V 000

�
1� ln

�
V000
�2

��
; (A2)

while in d � 3 we obtain

 V1L��� � V0 �
T

12�2 f3V
00
0 �� ��V000 �

3=2g: (A3)

Focusing on the simple quadratic potential, for which
V000 � 1, we now match the cutoff-dependent term of V1L

(multiplied by d=2) with the �-dependent term of VH
[Eq. (12)] to obtain

 � �
T

4�

�
1� ln

�
�2

�x2

��
� a2dT �2d� (A4)

and

 � �
3T

4��x
� a3dT �3d�; (A5)

where we used � � �=��x� and introduced, for conve-
nience, the lattice-dependent constant a#d. For example,

TABLE I. Lattice renormalization factors

a#d Analytical Numerical Lattice size

a1d 0.5 0:5� 0:001 106

a2d 0.518 0:53� 0:005 10242

a3d 1.194 1:19� 0:005 1003

a4d 3.125 3:84� 0:005 324
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for �x � 0:2, a2d � 0:518 and a3d � 1:194. This value
agrees very well with the numerical estimate, obtained
by comparison with Eq. (14).

After comparing terms, one can write a#d most generally
as

 a#d�̂
d
2

Z �

0

ddp

�2�d�
ln�1� p�2� (A6)

where �̂ implies that one should keep only the first term of
the Taylor series expansion of the integral should be a#d. In
the table below, we compare the numerical and analytical
[Eq. (A6)] measurements of a#d in different dimensions.

With this simple analytical method, it is possible to
relate the initial state temperature T to the effective lattice
temperature � for any choice of lattice spacing.
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