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Superinflation in loop quantum cosmology
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We investigate the dynamics of superinflation in two versions of loop quantum cosmology, one in which
the Friedmann equation is modified by the presence of inverse volume corrections, and one in which
quadratic corrections are important. Computing the tilt of the power spectrum of the perturbed scalar field
in terms of fast-roll parameters, we conclude that the first case leads to a power spectrum that is scale
invariant for steep power law negative potentials and for the second case, scale invariance is obtained for
positive potentials that asymptote to a constant value for large values of the scalar field. It is found that in
both cases, the horizon problem is solved with only a few e-folds of superinflationary evolution.
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L. INTRODUCTION

An inflationary epoch is currently the most promising
model for the origin of large-scale structure in the universe
[1]. The predictions of inflation are fully compatible with
the most recent observations suggesting that structure or-
iginated from a pattern of near scale-invariant, Gaussian
and adiabatic primordial density fluctuations [2]. Despite
these successes, however, a number of important questions
remain. In particular, in what fundamental theory will
inflation be seen to arise? Having asked the question, it is
worth noting that there have been successful implementa-
tions of inflation both in the context of ordinary field theory
[3,4] as well as in the context of string and M-theory [3,5—
14]. Given the importance of inflation and the need to
explore all possibilities of accommodating it in alternative
theories of quantum gravity, in this paper we turn our
attention to inflation in the context of loop quantum gravity
LQG) [15].

LQG is a background independent and nonperturbative
canonical quantisation of general relativity based on
Ashtekar variables: su(2) valued connections and conju-
gate triads. The variables used in the quantisation scheme
are then holonomies of the connection and fluxes of the
triad. The restriction of LQG to symmetric states gives rise
to loop quantum cosmology (LQC) [16]. Although it is a
particular limit of the more general LQG, and therefore can
not be said to have generic features, LQC has produced a
number of intriguing results and resolved many problem-
atic issues present in the earlier Wheeler de Witt quantum
cosmology. In particular, LQC can lead to a nonsingular
quantum evolution [17], with the origin of the nonsingular
behavior being traced to the methods used to quantize
inverse triad operators in LQG [18,19].

While the consequences of this quantum evolution are
fascinating, it is difficult to connect it to existing theories of

*Ed.Copeland @nottingham.ac.uk
fD.Mulryne@damtp.cam.ac.uk
“nunes @damtp.cam.ac.uk
$ppxms1@nottingham.ac.uk

1550-7998/2008 /77(2)/023510(11)

023510-1

PACS numbers: 98.80.Cq, 98.80.Qc

the early universe which tend to be based on classical
dynamics, and, in particular, to inflation. Therefore, an
approach to LQC has been developed in which effective
or ‘“semiclassical’”’ equations are derived and studied. In
the isotropic setting, the effective equations which have
been studied predominately to date include high energy
modifications to the classical dynamics which originate
from the spectra of quantum operators related to the in-
verse scale factor [19-22]. In the context of scalar field
driven inflation, a number of important effects follow from
these modifications. These include the possibility that the
field can be excited up its self-interaction potential [23—
28], leading to a subsequent period of slow-roll inflation.
Most intriguing of all, however, is the presence of a super-
inflationary phase which occurs during the early phases of
the universe’s evolution irrespective of the form of the
field’s potential [21,29].

More recently, however, a further semiclassical modifi-
cation, which arises from the use of holonomies as a basic
variable in the quantization scheme, has been derived in the
isotropic setting [30]. The modification is remarkably sim-
ple and takes the form of an additional negative p? term in
the effective Friedmann equation, which appears in addi-
tion to the usual positive p term. Such a term has a number
of effects, it forces a collapsing universe to undergo a
nonsingular bounce once a critical density is reached,
and immediately after this bounce it also causes the uni-
verse to undergo a period of superinflation. It is intriguing
to note that such a term also appears in braneworld models
with an extra timelike dimension [31].

While the two sets of modifications discussed above
have rather different origins, it appears that the qualitative
effects of both the inverse scale factor effects and the p?
term are rather similar. In particular, they both give rise to a
period of superinflation during which the Hubble factor
rapidly increases, rather than remaining nearly constant as
is the case during standard slow-roll inflation. Given that
such a superaccelerating phase appears to be a robust
prediction of LQC, it is important to study both the back-
ground dynamics, and particularly the cosmological per-
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turbations, which such a phase gives rise to. Considering a
universe sourced by a scalar field, a number of important
results have already been obtained. A scaling solution for
the effective equations which arise from the inverse scale
factor modifications has been derived [32], and a number
of attempts made at studying perturbations in the super-
inflationary regime [33,34]. Similarly the scaling solution
for the p? effective equation has also been derived [35,36].

It is also interesting to note the close connections be-
tween the superinflationary phases in LQC and the evolu-
tion of a universe sourced by a phantom field, and with the
ekpyrotic evolution of a collapsing universe [37—40]. In all
these cases the magnitude of the Hubble rate grows with
time. Moreover, the scale factor duality discussed in [41]
maps the ekpyrotic collapse onto the superinflationary
scaling solution for the inverse scale factor modified equa-
tions. On the other hand, another duality maps the ekpyr-
otic collapse phase onto the dynamics of a universe
sourced by a phantom field [41]. These three regimes are
therefore all related to one another. Furthermore, given that
the ekpyrotic collapse is thought to offer a method for the
generation of scale-invariant perturbations [42] (as is the
dual superinflationary phase sourced by a phantom field
[43]), it is reasonable to expect that a similar mechanism
may operate in the superinflationary phases of LQC.
Indeed such a mechanism has been discussed previously
[34], though its relation to ekpyrotic and phantom models
was not emphasized.

In this study we aim to explore further the phenomenol-
ogy of superinflation in LQC. One complication, however,
is that the relative status of the two sets of modifications
discussed is at present unclear. We therefore take a prag-
matic approach and study the dynamics when each of the
modifications is considered in turn, but not including both
sets of modifications simultaneously, although we believe
it should not be too difficult to incorporate them both. A
further difficulty is that despite considerable progress the
understanding of metric perturbations in LQC is at present
incomplete [44]. We therefore restrict our attention to
perturbations in the scalar field as a first approximation.
This approach allows us to establish a framework for deal-
ing with perturbations in LQC in which metric perturba-
tions can be incorporated as our understanding advances.

The paper is organised as follows. In Sec. II, we intro-
duce the cosmological evolution equations which arise in
LQC including the inverse volume corrections. Solutions
are obtained including those showing scaling behavior, and
the primordial spectrum of scalar perturbations is calcu-
lated for each solution in terms of “fast-roll”” parameters.
The stability of these solutions is then discussed. In
Sec. III, we analyze the dynamics when the modification
is induced by a p? correction to the Friedmann equation.
Concentrating on the evolution just after the bounce, we
demonstrate the existence of the superinflationary solution,
obtain the scaling dynamics of the system, the primordial
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spectrum of scalar perturbations as well as the stability of
the background solutions. Section IV discusses the way in
which superinflation in LQC can solve the horizon problem
with a small number of e-foldings and we conclude in
Sec. V.

II. EFFECTIVE FIELD EQUATIONS WITH LQC
INVERSE VOLUME CORRECTIONS

The first set of modified equations which we consider
are those which incorporate two functions, Dj,,(a) and
S j(a), into the dynamics. These functions arise because
of the presence of powers of the inverse scale factor in the
Hamiltonian constraint for an isotropic and homogeneous
universe. A full discussion of the origin of these terms can
be found in Refs. [20,22] (a summary can be found in
appendix B of Ref. [45]), but here we simply state their
basic properties. We are implicitly considering either posi-
tively curved or topologically compact models. This en-
sures that the size of the fiducial cell does not enter in the
equations of motion. D and S are both functions of the
scale factor, and their form changes depending on the
values of two ambiguity parameters: / which takes values
in the range 0 </<1, and j which takes half integer
values. When the scale factor approaches zero, D and §
also approach zero, whereas as a increases above the
critical value a, which depends on j, they both tend to
unity.

The modified Friedmann equation is given by

5 _ (a\2 K (¢

H <a> y S<2D + V(¢)>, )
where a dot denotes differentiation with respect to cosmic
time ¢, and k2 = 87G. In what follows we choose units in
which « = 1. We have omitted the curvature contribution
as we assume either a compact flat universe or that the
curvature term rapidly becomes subdominant and that it
can be safely neglected. The equation of motion for the
scalar field takes the form

1 dInD\ ,
— - +DV, =0, 2
3 dlna>¢ ad @

é + 3H<1

A subscript ¢ means differentiation with respect to the
field. These equations can also be combined to give the
Raychaudhuri equation

_Sqfsz[l _1dlnD 1 dlnS} SV dInS

6 dlna’

H= 3)

2D 6 dlna 6 dlna

A. Scaling dynamics
We will be interested in the regime a < a,, where
the function D;,(a) may be approximated by a power
law of the form D(a) = D,a", with D, = 3/(3 +

21))3/20-0g30=3/0=D and = 3(3 — 1)/(1 — 1) takes val-
ues in the range 9 < n < oo, Likewise, the function S(a)
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may be similarly approximated by S(a) = S,a”, where
Sy = (3/2)a;? and r = 3, though we keep r arbitrary in
our calculations for generality. For a > ay, Sy = D, = 1
and r = n = 0. Inserting this form for the functions S and
D into Eq. (3), we can clearly see that for an expanding
universe, and with n > 6 + r which occurs for all I, H is
necessarily positive (assuming that the potential is either
positive or the term involving SV can be neglected). Hence
superinflation is occurring. We will confine ourselves to
these situations in what follows.

To study this regime further, it proves convenient to
introduce the variables

__¢ VIVl
x= ) y \/b_,

“4)

V2Dp
where p = ¢*/2D + V(¢). Using these definitions, the
equation of motion for the scalar field (2) can be written
for an expanding universe in terms of a system of first order
differential equations as

Xy = —3ax* \/%)‘y2 + 3o, )
YN = —\/%)\xy + 3ax?y, (6)
Ay = =62 — Dx + Y(n = r)A, (7
where
DV Vv
= — _;qﬁy = ’¢¢; (8)
SV Vi

with @ =1 — n/6 <0 and N = Ina. These variables are
subject to the constraint equation

X2y =1 9)

The plus and minus signs correspond to positive and nega-
tive potentials, respectively. Using the constraint equation
to substitute for y in Eq. (5) renders Eq. (6) redundant.

The resulting system defined by Egs. (5) together with
the constraint equation and (7) has three fixed points for
A # 0. Two of them represent kinetic energy dominated
solutions, valid for all values of A:

B B B V6
x= -1, y=0, =1 o (n—r), (10)
NG
=+ = =14+ (5—
x=+l  y=0 T=1+"(m-n (1

and the third point is a scaling solution for which the
kinetic and potential energies evolve in a constant ratio
to one another:

A A2
=, =.*(1-—) 12
x y ( 6a2> (12)

PHYSICAL REVIEW D 77, 023510 (2008)

o
I‘=l+ﬁ(n—r). (13)
The scaling solution is therefore well defined for A> <
6a? for positive potentials and for A> > 6a? for negative
potentials. In the remainder of this analysis, we will focus
mainly on the scaling solution for negative potentials as
this is the case that, as we shall see, leads to a scale-
invariant power spectrum of the perturbed field. For this
case one can check that the universe is undergoing super-
inflationary expansion.
Considering the fixed point for the scaling solution (12),
one can write

b _[Sow_ A "
JV2Dp D .6 6o’

which upon integration gives

2A D
- W\g )

where we have set the integration constant to zero without
loss of generality.

Then inserting this relation into the definition of A in (8)
gives

V = V,dP, (16)

where B = —2A%/(n — r)a > 0.
Considering now the fixed point for y we have

Vv D A2

p 3H? ! 6a® a7
Differentiating Eq. (15) and eliminating ¢ using Eq. (12),
then substituting for p in terms of V using Eq. (17) and
finally substituting for V in terms of a using Eqgs. (15) and
(16), one obtains an expression between a and &. Then by
integrating this expression we can determine that the scale
factor evolves as a power law in time while the universe
evolves according to the scaling solution. In terms of
conformal time dt = adr, we find

a(r) = (=17, (18)

where for an expanding universe 7 is negative and increas-
ing towards zero and

2ar

T2+ na’ )

p
where, for direct comparison with previous literature, we
have introduced the slow-roll parameter € = A?/2 and
A = —+/2€ for ¢ > 0. Using this form of a we find that
H = p/ar, and it is straightforward to show that

22¢ \Pl’ 0)

PO T e na|st
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4(3a* — &) 1
(2e — (2 + Pa)? S(ar)?*’

where a prime means differentiation with respect to con-
formal time, 7. Equations (18)—(21) form the basis of our
analysis. This scaling relation (for S = 1) was first uncov-
ered in Ref. [32] using a different procedure.

V(r) = (2D

B. Power spectrum of the perturbed field

For a universe which evolves according to the scaling
solution, the primordial spectrum of scalar perturbations
produced by this superinflationary phase was previously
calculated in Ref. [34]. It was found that the spectrum
tends to exact scale invariance for 8> 1 (i.e. € > 1),
without any fine tuning of the quantization parameters of
LQC. The purpose of this section is to review how scale
invariance arises for the scaling solution with 8 > 1, and
to generalize the analysis of [34] in order to allow for
potentials which do not give rise to exact scaling solutions.

In order to calculate the spectrum of perturbations, we
now perturb the scalar field equation. The perturbation in
the field 6 ¢ then satisfies the equation

a/

s = [—2; + %}M’ + D[V? = a’V 4418, (22)

which can be written in the form [34]
u'" + (=DV? + m2)u = 0, (23)

where u is defined as u = aD~'/28¢ and the effective
mass of the field u is given by

) (aD—1/2)//

Mt =~ im +a’DV 4. (24)

Decomposing u in Fourier modes wy, that satisfy
wi + (=Dk> + m%)w, = 0, (25)
the power spectrum is then given by

’Pu = —|Wk|2- (26)
T

It was shown in Ref. [34] that the general solution to
Eq. (25) is

wi(T) = (d1\/_H

(x) + do/=7H|| (x))
(27)

2|2 +n

whenever m7 is constant, where

N 4m?,. 72
y=—¥_ (28)
2+ np
and d, and d, are constants subject to the condition |d;|*> —
|d,|> = 1 and H, (1) (x) and H m(x) are Hankel functions of

the first and second kind, respectwely In the long wave-
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length limit, the power spectrum yields
:pu o k3—2|v|(_7.)1—|1/|(np+2)' (29)

Scale invariance of the power spectrum is then attained
when the spectral tilt An, = 3 — 2|»| is zero. Since for a
universe evolving according to the scaling solution
Eq. (18)

mgg> = =2+ (3 = 2n)p +3(6 + 2n — n?)p*, (30)

we can see from Eq. (28) that scale invariance occurs
whenever p — 0, which, as we referred to, does indeed
imply that € > 1 and consequently V <0 from Eq. (21).
There is one other value of p for which scale invariance is
attained, p = —4/(n + 4), however, we will not consider
it any further.

We would now like to generalize the form of the poten-
tial we are dealing with so that it no longer has to be of
exactly the form which gives rise to the scaling solution.
For standard slow-roll inflation, where the kinetic energy is
small compared with the potential energy, it is possible to
account for potentials of a form more general than a scaling
potential by introducing slow-roll parameters. Such pa-
rameters parametrize the steepness of the potential, and
how this steepness evolves as the field moves along the
potential. For a given field potential they also allow the
dynamics which follow from a more general potential to be
expanded locally about the dynamics which follow from a
scaling potential with the same local steepness. The power
spectrum which follows from the general potential can then
also be written in terms of the slow-roll parameters.

For the case at hand we would like to develop a similar
expansion scheme. However, for the regime which we are
considering in which € > 1, it is clear that the kinetic
energy is of approximately the same magnitude as the
potential energy, and therefore the slow-roll approximation
is inadequate. Indeed in this case the field is evolving
rapidly along a steep negative potential, and we refer to
the evolution as the “fast-roll”” regime. Our strategy will
therefore be to determine other suitable small parameters
which characterise the steepness and curvature of the
potential, and which we will refer to as “fast-roll”” parame-
ters. The derived parameters we will arrive at are similar to
those obtained in Ref. [42], where fast-roll parameters
were required to parametrize general potentials in the
ekpyrotic scenario. This similarity is natural since, as we
have already mentioned in the introduction, the evolution
of the superinflationary scaling solution in LQC is dual to
the ekpyrotic collapse.

The first step in accommodating a more general class of
potentials is to allow € to become time dependent. From its
definition it then follows that

= —(28)2 \F ¢, @31)
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where we have defined

VeoV 1 V Dy S
| _ Lo’ _( b _ ,¢>’ 32)

v, av,\D s

1’5

which can also be written in terms of the background
quantities as
_ VeV 1

2
Ve 2

vV a
r)———7.
Vg ad

n=1 (33)

Likewise, we can calculate 7' in terms of a third parameter

&,

n' = —Jz_éfz\gdﬂ, (34)

where
£ = [1 L VeosV _ 2V,¢¢V} VoV
VsV vy 1 V3
_ 1[1 L DysV D4V _ V,¢¢>V} D4V
2L DyVe DVy Vi 1DV,
1 SesV  SeV  V,eVIS4V
+_[1+ EIMEEAA T } sV 35
2L SeVe SV Ve 1SV,

In particular, for the scaling solution where € is constant,
one can verify that n = ¢? = 0 exactly. Since we are
considering potentials which are close to the form of a
scaling potential, we expect that there will be solutions to
the equations of motion of a form very similar to that given
by Eqgs. (18)—(21), when € is slowly varying. Assuming
that Eqgs. (18)—(20) are indeed good approximations, we
have in general that
dlne - 461;

dlnm 2@52
dlna a’

dlna na’

(36)

Imposing that € and 7 are slowly varying, and since € is
large in the regime which gives rise to scale invariance,
requires 1 and &2 to be small, i.e. the potential must be
nearly power law in form which is in agreement with our
assumption. We refer to 7 and ¢ as the second and third
fast-roll parameters, and for convenience introduce the first
fast-roll parameter as € = 1/2€, where in terms of relative
magnitude we find € ~ 7 and &2 ~ O(€?). Using these
relations it is possible to verify by substituting Egs. (18)—
(21) into the Friedmann and equation of motion that these
solutions are indeed valid up to second order in fast-roll
parameters for a general negative potential confirming the
consistency of our analysis.

Then using Egs. (18)—(21) to substitute for the respec-
tive quantities in the effective mass (24), and expanding to
first order in the parameters € and 7, we obtain

n

An, z4¢s|:1 ——(1

= +n—r>—r}—4n. (37)

6 2
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We note that although we have used the solution to Eq. (25)
which is valid only when mg 7 is constant, the solution will
remain sufficiently accurate provided that € does not vary
significantly as a given k mode crosses the horizon from
the small wavelength to the long wavelength regime. This
is simply the condition that 7 is small, which we have
assumed already. The spectral tilt can therefore be calcu-
lated at any given scale by inserting into Eq. (37) the values
that € and 7 take as this scale crosses the horizon. In
particular, to compare with observations we need to con-
sider the mode which corresponds to the largest scales on
the cosmic microwave background (CMB).

Finally we also note that we could have included time
derivatives of the power n and r. The generalization to do
so is straightforward but for simplicity the computation we
have presented does not include this possibility.

C. Stability of the fixed points

The analysis we have performed so far is intriguing. It
appears that in the a < a, regime, the scaling solution
which follows from a steep negative potential can give rise
to a scale-invariant power spectrum of scalar field pertur-
bations, and moreover we can generalize the analysis to
potentials which deviate from the scaling potential.

However, there is another element which is involved in
building a convincing theory for the origin of scale-
invariant perturbations. That is, it would be highly desir-
able if the scaling solution was an attractor, so that initial
conditions not exactly on the solution would evolve to-
wards it, and the solution’s stability against small local
perturbations would be assured.

To determine the stability of the scaling solution, we
study the nature of the fixed points of Egs. (5)—(7). We do
this by linearizing the equations about the fixed points and
determining the corresponding eigenvalues (w) in each
case. For the kinetic energy dominated solutions, valid
for an arbitrary A, in Eqs. (10) and (11), we find their
respective eigenvalues to be

w, = 6a + 61, w_=—3n—-r), (38

w. =6a—V6),  w_=-ln-r. (39

Since n > r and a <0, the first fixed point is stable for
A < —+/6a and the second for A > /6«. Turning to the
scaling solution, Eq. (12), we find

W = — L(49 + \/62 + 8a(n — r)(A%2 — 6a?), (40)
da
where 6 = a(6 — r) — A2 < 0. The scaling solution is
therefore stable whenever A> > 6a? which coincides with
the region of existence of this solution. In Fig. 1 we show
the evolution of the ratio —¢>/2DV obtained by numeri-
cally solving the equations of motion. We can see that it
approaches the value given by x?/y? where x and y are
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V = Voo?

-4?/(2DV)

L ; i i
0 0.5 1 1.5

Ina/a.

FIG. 1 (color online). The evolution of the ratio —(f)z /2DV
obtained by numerically solving the equations of motion for
three different initial conditions (solid line). They approach the
scaling solution given by x?>/y?> where x and y are given by
Egs. (12) (dashed line). We used as parameters V, = —10720,
dinie = 1, in Planck units and n = 15, r = 3 and a;,;; = 0.9a,,
in a flat universe.

given by Egs. (12). Typically the evolution only reaches the
attractor when a > a, which is far outside the region
where the approximation D = g" is valid. We conclude
that this solution must be extremely fine tuned in order to
deliver the dynamics and power spectrum as described in
the previous subsections.

In the second part of this article we will be dealing with a
second possibility of obtaining a superinflationary regime
that also leads to a scale-invariant power spectrum with the
advantage that the stability of the scaling solution is no
longer a dangerous issue.

III. EFFECTIVE DYNAMICS WITH QUADRATIC
CORRECTIONS

The second modification to classical dynamics which we
consider follows from considering that holonomies are the
basic variables for quantisation in LQC. This modification
gives rise to a Friedmann equation of the following form

[30]:
2L (P
H 3,o<1 5 )

Once again we are assuming either a flat universe or that
the curvature contribution can be safely neglected. It is
interesting that this form of the Friedmann equation is
identical to the form which arises in braneworld scenarios
with a single timelike extra dimension in the absence of a
black hole in the bulk spacetime [31]. In the braneworld
case o represents the brane tension while for the LQC case

(4D

PHYSICAL REVIEW D 77, 023510 (2008)

20 represents the critical energy density arising from
quantum geometry effects which leads to the scale factor
undergoing a bounce as p approaches it.

We are interested in high density regimes where p
approaches the bounding value of 2¢. In this case, the
term within brackets tends to zero, and the behavior of
the equations alters significantly compared with the clas-
sical behavior. Indeed in this regime we have H > 0 and for
an expanding universe superinflation takes place. We will
again consider a scalar field dominated universe, hence,
p = ¢*/2 + V(¢). We stress that we are studying inverse
volume and quadratic corrections separately, hence we do
not include the D and S functions in the Friedmann equa-
tion and in the definition of energy density. The scalar field
equation of motion

é+3Hp+Vy=0, (42)

is unchanged from the classical form.

A. Scaling dynamics

It was shown in Ref. [36] (also see [35]) that the effec-
tive equations (41) and (42) also allow a scaling solution in
which the kinetic and potential energy vary in proportion to
one another. In this case the potential must be of the form
V = V,cosh(¢). However, while earlier works claimed
otherwise, it can be shown that the scaling solution is not
an attractor. Moreover, the scaling solution which was
found implies an evolution for the scale factor which is
not of a power law kind, and this means that it is unlikely to
give rise to a scale-invariant spectrum of perturbations.
Given these difficulties, instead of focusing on the scaling
solution we will ask whether there is a form of the scalar
field potential which does result in a power-law evolution
of the scale factor. We are interested in the regime in which
p = 20, when superinflation occurs, and where H = 0.
Inserting the power-law ansatz,

a(t) = (=0, (43)
where m < 0, into the time derivative of the Hubble rate,
P2
H= —¢—<1—£>, (44)

2 o

we see that for p = 20 the kinetic energy of the field is
¢$?/2 = —m/> which upon integration gives

¢ = =vV—2mlnt. (45)
Using Eq. (41) and expanding in 6H? /o < 1 we have that
p =20 — 3H? (46)

and it follows from the definition of the energy density of

the field and Eq. (45) that
V =20 — Uye *?, (47)

where Uy = 3m?> — m > 0and A = 1/+/—2m. Itis evident
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that, in this regime, scaling exists between V — 20 and the
kinetic energy ¢2/2. We now look for a more precise
description of the dynamics. The form of the potential
(47) motivates us to define the new variables:

XEL yzi (48)
Vdo =2p’ V2o —p’

such that p < 20 and V(¢) = 20 — U(¢). In terms of a
system of first order differential equations, the equation of
motion of the scalar field now reads,

Xy = —3x— \/§Ay2 — 3,3 (49)
v = iy — 3%y (50)

Ay = —VBA(T — D)x + 3x2<2p°' - 1>\/ZE .G

where A and I" are defined as

_% 270- FEUU’d’d)'

A= , 5
U\p U’q5

(52)

The variables x, and y are also related by the constraint
condition

x> —y>=-1 (53)

Considering the regime discussed above where 20/p =
1, we can see A is a constant and by integrating A, we see
that the U part of the scalar potential is given by

U= Uje "%, (54)

as we were expecting from Eq. (47).

We consider the section of the phase space in which x <
0,y >0, and A > 0. Taking A to be constant, and substitut-
ing the constraint equation (53) into Eq. (49), results in an
autonomous system with three fixed points. Two of them
are nonphysical solutions with

x = *i

y=0, (55)

and the third is a scaling solution with

2
x=—i y= 1+/\—. (56)
6
The scaling solution is valid for all real values of A.
As in the previous case, it is straightforward to show that
as the universe evolves according to this solution, the scale
factor undergoes a power-law evolution

a(t) = (—1)?, (57)
where
1
P==x1 (58)
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and € is here defined as é = (U 4/U)*/2 = A?/2. This is
of course what we expect since we began by searching for
such a solution using the ansatz equation (43). The time
derivative of the field and the potential yields,

V2E 1
Yoerr 9
3+€e 1
V=20-— % (60)

(1 + &7 (ar)*

We are now ready to compute the spectrum of the scalar
field perturbations produced by this power-law solution.

B. Power spectrum of the perturbed field

In this section we follow the same approach we took in
the previous analysis of the scalar field perturbations. In
terms of conformal time, the perturbation equation for the
scalar field, ¢, can be written as

/
S = —2%5¢’ + (V2= a?Vy)d4  (61)

which in turn can be written in terms of u = ad¢ as
u" + (=V? + m2)u =0, (62)

and the effective mass of the field u is

2 a
2, = (— “ta \{¢¢>. 63)
Decomposing u« in Fourier modes wy, that satisfy
wi + (k2 + m2)w, = 0, (64)

the power spectrum is then given by
P.=—lwlx (65)
w

The general solution to Eq. (25) is

wil) = T + o FHE ), (66)

where the subscript |v| is

f 4.2 2

L 1 —dmeT
2 b

and d, and d, are constants subject to the condition |d;|*> —

|d,]> =1and H f;f (x) and H, |(12,|) (x) are Hankel functions of

the first and second kind, respectively. For large wave-
length modes, the power spectrum can be approximated by

(67)

P, o k32 (=)t m2, (68)
By substituting Eqs. (57)—(60) into Eq. (63), we find
m2.m> = —2+3p + 3p. (69)

Comparing this case to our previous results, we expect to
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have scale invariance for p — 0. Once again, therefore,
scale invariance occurs when the field ¢ is rolling down a
steep potential and the kinetic energy is not negligible, but
comparable to V — 20. Hence the evolution should again
be understood as a fast-roll regime.

Clearly, scale invariance is also obtained for p — —1 or
€ < 1 which corresponds to the standard slow-roll regime
that we are not concerned with for the purposes of this
work.

In order to extend this analysis to general potentials, as
we did for the previous system of modified equations we
studied, we allow € to depend on conformal time such that

¢ = -8 ne/, (70)
which defines the fast-roll parameter 7,

_UgeU
it
Uy

n=1 (1)

Similarly, n’ can be written in terms of the next order fast-
roll parameter &2 as

n = —2é8 ¢, (72)
with
U U Uy UNU 4, U
5255(1-%L/¢¢Z 2= ) e
PP, P ¢ ¢

For the scaling solution, it can be verified that both 1 and
£? vanish. As in the previous case, we can use Egs. (57)—
(59) as approximate solutions, and hence we have

~ 2E_§:2’

dlnée -
T dlna n

dlIna

dlnn

(74)

which means that for a large and slowly varying € the
parameter 17 must be small, and for a slowly varying 7 the
parameter §2 must also be small. Hence, the U part of the
scalar potential must be close to exponential.

Using now Egs. (57)—(59) in the expression for the
effective mass of u Eq. (63), where € is now time depen-
dent, and then using Eq. (67), we find that An, = 3 — 2||
is to first order

An, = —4(e — n) (75)

where we have again defined a further fast-roll parameter
by € = 1/2€. Again the assumption that m.s7 is nearly
constant as a given mode evolves outside the cosmological
horizon is valid. Hence the spectral tilt for a given k mode
can be calculated by inserting the values the fast-roll
parameters took as the mode crossed the horizon in
Eq. (75). It is clear that the system we have investigated
here results in a scale-invariant spectrum of scalar field
perturbations for € < 1 and 7 < 1.
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0.25f

0 2 4 6 8
In a/ainit

FIG. 2 (color online). The evolution of the ratio ¢2/(2a — V)
obtained by numerically solving the equations of motion for
three different initial conditions (solid lines). They approach the
scaling solution given by 2x?/y?> where x and y are given by
Egs. (56) (dashed line). We used as parameters U, = 1072,
dinir = 1 and o = 0.41 in Planck units, in a flat universe.

C. Stability of the fixed points

Linearizing the system (49), using Eq. (53) about the
fixed points we find the following eigenvalues w: for the
unphysical kinetic energy dominated solution, Eq. (55),

0 =6=* oA, (76)

and hence this solution is unstable. While for the scaling
solution, Eq. (56)

o= -6+ 12), (77)

and hence this point is a stable attractor for all values of A.
A numerical analysis of this system shown in Fig. 2 sup-
ports our analytical results presented here. The figure
shows the evolution of the ratio ¢>/(20- — V) obtained
by numerically solving the equations of motion for three
different initial conditions. They approach the scaling so-
lution given by 2x?/y?> where x and y are given by
Egs. (56). When a > a, the quadratic corrections become
negligible and the numerical evolution diverges from this
attractor.

IV. NUMBER OF E-FOLDS

Before concluding, it is important to address the ques-
tion of whether a sufficient amount of superinflation can
occur in LQC to account for the largest scale perturbations
observed on the CMB. This in turn is equivalent to asking
whether the superinflationary phases can solve the cosmo-
logical horizon problem.
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It is clear that only a small number of e-folds of super-
inflation can be considered generic for either of the modi-
fied sets of evolution equations we have studied [29]. This
might be considered disappointing, since experience from
standard inflation suggests that approximately 60 e-folds of
inflation are required for consistency with observations.
However, the inflationary periods we have been studying
are considerably different to standard inflation and this has
a dramatic effect.

Solving the horizon problem is essentially the require-
ment that aH grows sufficiently during an early stage of
the universe’s evolution. While in standard inflation this is
accomplished by a changing rapidly as H remains nearly
constant, in our case the converse appears to be possible,
that H increases sufficiently as a remains nearly constant.
The number of e-folds usually only refers to the change in
a, and so we only expect a small number of e-folds to be
necessary in a superinflationary phase, provided that H
changes sufficiently. To confirm the expectation that our
superinflationary phases can indeed solve the horizon
problem, let us now quantify our qualitative arguments.

During superinflation, perturbation modes exit the cos-
mological horizon, and once superinflation ends, modes
start to reenter. Let us consider a perturbation mode with
wave number k, such that k exited the cosmological hori-
zon N(k) e-folds before the end of the superinflationary
phase, and reentered sometime later. The mode reentering
the horizon today, k.., must satisfy k. = agH,, where sub-
script O indicates quantities at the present epoch.
Comparing this with the generic kK mode we have:

k_aHy _ apHy  Geng Gren Geq Hena

(78)

agHy  agHy  adepgHeng ren aeq a0 Hy

where subscript “‘end” labels quantities at the end of
inflation, “reh” at reheating, and ““‘eq” at matter radiation
equality. Then employing the known evolution of the uni-
verse from reheating to the present day, together with the
measured value of the Hubble rate at the present epoch, H,
and for simplicity assuming that the universe behaves as if
it is matter dominated between the end of inflation and
reheating, we find:

k H 1 M
In ~ 68 + In| — KTk | Z | P
aOH() aendHend 2 Hend

1 1/4
- ln[@} . (79)
3 Preh

The energy scale at the end of inflation must be determined
by requiring that the magnitude of the curvature perturba-
tion accounts for the temperature anisotropies in the CMB.
Since we have only worked with the scalar field perturba-
tion this is so far undetermined in our model and we
therefore take H,.,q to be the highest possible scale, i.e.
H.,q = Mp,. A lower scale would lead to fewer required e-
folds. Further considering k = k., and assuming instant
reheating, we find that
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H
ln(M> ~ 68. (80)
Clk*Hk*

In order to determine the number of e-folds of super-
inflation required, we now consider the cases in which the
scale factor is undergoing pure power-law behavior, a «
(—7)?. Using this together with Eq. (80), we find

-1
1n<76“d> ~ 68, 81)
Tk*
and in turn
N(k,) = 1n<“e“d> = —68p. (82)
ak*

Recalling that p must be small and negative for scale
invariance, we see that only a small number of e-folds
are required. Although considering behavior which devi-
ates from pure power law behavior will alter Eq. (82), it is
clear that the conclusion of only a small number of e-folds
being necessary will remain valid.

V. DISCUSSION

In this paper we have investigated the nature of super-
inflation in loop quantum cosmology. Considering two
specific examples which lead to modifications of the
Friedmann equation, one where the modification is due to
the presence of inverse volume corrections, and the second
where it is induced by the use of holonomies as the basic
variable in the quantisation of Loop Quantum Gravity, we
have demonstrated explicitly in both cases the existence of
superinflation solutions defined by H > 0 where H is the
Hubble parameter. Through the use of phase plane analysis
we have been able to discuss the nature of the attractor
solutions and their stability in both cases. Further we
determined the scalar perturbations arising in these mod-
els, and through the introduction of fast-roll parameters,
showed that a class of potentials exhibit near scale-
invariant spectra. To be more specific we have shown
that for the case with inverse volume corrections, if we
concentrate on the regime D o a”, three solutions exist,
two of them corresponding to kinetic energy dominated
solutions and one to a superinflationary scaling solution
where the kinetic energy scales in proportion to the poten-
tial energy. In this last case, when the potential is negative,
scaling occurs when it is polynomial in form, and the
perturbed scalar field equations for this potential are scale
invariant (as first demonstrated in [34]). However, we have
been able to go further. By introducing fast-roll parameters
€ and 7 in an analogous manner to the way introduced for
the ekpyrotic scenario [42], we were able to extend our
calculation of the scalar power spectrum beyond the case
of the polynomial scaling potential. In other words we can
determine the degree to which scale invariance is broken in
terms of the fast-roll parameters. Through the stability
analysis of these solutions we have seen that the scaling
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solution which gives rise to the scale-invariant spectrum is
a stable attractor. In general, however, the attractor is
reached when a > a, when D = 1 and therefore we con-
cluded that in only a limited range of parameters we have
an analytical understanding of the dynamics of the system
in the semiclassical phase a <K ay.

We considered a second set of corrections to the
Friedmann equation, arising from the quantisation proce-
dure in LQG where a p? term in the Friedmann equation,
analogous to that found, in particular, braneworld models
[31], is present. In this case the scaling solution found in
[36], which involves a cosh(¢) potential, is not an attractor
(in contradiction to the claims in Refs. [35,36]) and we
believe it is unlikely to lead to a scale-invariant spectrum.
In order to obtain the solution with a scale-invariant spec-
trum we decided to take another route, namely, search for
the potential with the correct time evolution in the scale
factor which would lead to scale invariance. In these
models superinflation occurs just after the bounce and
using this fact we quickly arrive at the intriguing result
that the corresponding potential is an uplifted negative
exponential potential, and in this case the scaling solution
is stable. Scale invariance easily follows as does the gen-
eralization to include a new set of fast-roll parameters,
hence obtaining potentials which will yield small devia-
tions from scale invariance.

In both cases, we note that we do not expect the scalar
potential to remain of the form we have used to give scale
invariance throughout the entire evolution of the universe
as a negative value of the potential after the end of super-
inflation may lead to a subsequent recollapse. The full
details of the exit from superinflation, the subsequent
form of the potential, as well as the transition to the
radiation epoch, are beyond the scope of the present work.

We emphasize that we only dealt with the evolution of
the universe in the expanding phase, however, for closed
models, the universe may have gone through a bounce from
a collapsing phase into the superinflationary evolution. It is
natural to question whether the bounce is symmetric or not,
i.e. if the period of superinflation is nothing more than the
counterpart of an identical deflationary period and an
epoch of standard inflation is still necessary. Though this
is a possible situation, we stress that the scaling solutions
produced by the potentials we considered here are the
attractors only during the expanding epoch, hence, the
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evolution through the bounce is indeed expected to be
asymmetric.

Finally, we have discussed the horizon problem in this
set up. We found that for the class of potentials studied that
lead to scale invariance, the required number of e-folds of
superinflation is of only a few, more specifically, N =
—68p where —1 < p <0 defines the time dependence
of the scale factor of the universe, a = (—7)?. A previous
criticism of inflation within the inverse volume corrections
approach has been that a, must be unphysically large to
give rise to 60 e-folds [46]. We have seen in this work,
however, that only a small number of e-folds of super-
inflation are required, which suggests that this bound on a,
can be evaded. We also note that previous studies found a
small probability of sufficient standard inflation in the
context of LQC [47]. However, their conclusions do not
apply directly to our model of superinflation since, as we
have discussed, only a small number of e-folds are required
and moreover, in their study, the Hubble rate was assumed
to be constant.

In our calculation we have neglected metric perturba-
tions, instead we have only considered scalar perturbations
and been able to find scale invariance through the scalar
field perturbations. Given the similarity mentioned
throughout the paper between our LQC results and the
ekpyrotic mechanism, it seems likely that when metric
perturbations are included in the LQC calculation, we
will find that the scale-invariant spectrum occurs in the
Newtonian potential and the scalar field perturbation, but
not in the curvature perturbation, just like the ekpyrotic
case (for example, see [42]). If this turns out to be the case,
it would be interesting to consider whether the inclusion of
a second scalar field in LQC, as in the “new ekpyrotic”
mechanism, would allow the scale-invariant spectrum to be
transferred from the scalar field perturbation into the cur-
vature perturbation via an entropy perturbation [48—50].
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