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Cosmological tensor perturbations equations are derived for Hamiltonian cosmology based on
Ashtekar’s formulation of general relativity, including typical quantum gravity effects in the
Hamiltonian constraint as they are expected from loop quantum gravity. This translates to corrections
of the dispersion relation for gravitational waves. The main application here is the preservation of
causality which is shown to be realized due to the absence of anomalies in the effective constraint algebra
used.
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I. INTRODUCTION

In cosmology, the study of gravitational waves created
through physical processes in the early universe provides a
unique window to initial stages of the universe. Significant
efforts are being made to detect possible signatures of
tensor mode perturbations of space-time geometry through
measurements of the polarization in the cosmic microwave
background (CMB). Since quantum gravity effects could
play a significant role in the very early universe, it is of
interest to study possible quantum gravity effects on gravi-
tational wave propagation during these periods. In the last
few years, applications of the method used in loop quantum
gravity (LQG) [1–3], a candidate quantum theory of grav-
ity, to early universe cosmology have led to significant
progress. In particular, the quantization of homogeneous
cosmological models known as loop quantum cosmology
(LQC) [4] has led to a resolution of the big bang singularity
[5–9], and techniques have become available to include
inhomogeneous perturbations [10,11].

In this paper we study typical quantum gravity effects
for tensor modes that are expected from loop quantum
gravity.1 In particular, we consider the effects on gravita-
tional wave dynamics expected from corrections to classi-
cally divergent inverse powers of metric components and
from the use of holonomies in the quantum theory instead
of connection components. To study the dynamics we

compute gravitational wave equations together with their
dispersion relations.

In Sec. III, we present a derivation of tensor mode
equations in Ashtekar variables. The calculations are
purely canonical and split off the tensor mode in the metric
from the outset. This mimics the usual covariant deriva-
tions as far as possible in a way accessible to canonical
quantizations. Other canonical derivations exist [13] which
due to their explicit use of Dirac observables appear more
difficult to use in quantizations. In the following section,
we consider the effects of quantum corrections to the
inverse volume in Hamiltonian and compute the corre-
spondingly corrected tensor mode equation. After that,
we consider a second quantum effect due to the use of
holonomies in a loop quantization. From the corrected
wave equations one can easily derive the corresponding
dispersion relations. Quantum gravity corrections are sen-
sitive to the underlying discreteness of a quantum state,
which in general changes as the universe expands. Thus,
also propagation speeds derived from the corrected disper-
sion relations are functions of time, providing, in particu-
lar, a varying speed of light scenario.

Both corrections are typical of loop quantum gravity and
thus test its basic features. The dispersion relations, in
particular, allow one to investigate possible violations of
causality which would arise if the propagation velocity of
gravitational waves would turn out to be larger than the
speed of light. In fact, we will see that gravitational waves
travel faster than the classical speed of light, but not faster
than the physical speed of light which is also subject to
quantum corrections from an underlying discrete geome-
try. Quantum corrections to the gravitational and electro-
magnetic dynamics are related by the requirement of
anomaly freedom, which can directly be implemented at
the effective level and implies that physical causality is
preserved.

II. CANONICAL FORMULATION

We consider linear tensor mode perturbations
around spatially flat Friedmann-Robertson-Walker (FRW)
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1Possible cosmological implications for primordial gravita-

tional waves with input from loop quantum cosmology have
recently been discussed in [12]. However, only corrections to the
background dynamics were considered while perturbation equa-
tions for the tensor mode were otherwise left unchanged.
Moreover, the main analysis there focuses on nonperturbative
quantum effects in the background dynamics which makes a
rigorous inclusion of perturbative inhomogeneities around the
background difficult; see e.g. the discussion in [10]. In the
present paper, by contrast, we provide a consistent perturbative
setting in which quantum corrections of the inhomogeneities
themselves are included in the equations. As we will see, this by
itself provides important effects which are not mimicked by
corrections to the background dynamics.
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spacetimes.2 The general form of a perturbed metric
around the isotropic background FRW background con-
taining only the tensor mode is
 

g00 � �N2 � qabNaNb � �a2; g0a � qabNb � 0;

gab � qab � a2��ab � hab�; (1)

where a�t� is the scale factor of the FRW space-time. This
notation is adapted to a canonical formulation, where the
space-time metric g�� is decomposed in terms of the
spatial metric qab, the lapse functionN, and the shift vector
Na. Here we use the convention that Greek letters denote
space-time indices whereas small Latin letters denote spa-
tial indices. The symmetric metric perturbation field hab is
transverse and traceless, i.e. it satisfies @ahab � 0 and
�abhab � 0. This removes any vectorial or scalar contri-
butions from gradient terms @�avb� or @a@bv or from the
trace u�ab which rather contribute to the vector and scalar
modes. Also the lapse N and shift Na, being scalar and
vectorial, respectively, do not contribute to tensor pertur-
bations. Thus, in a canonical formulation tensor perturba-
tions are generated through perturbations of the spatial
metric qab alone.

A. Background

In Ashtekar’s formulation of general relativity [15,16],
the spatial metric as a canonical field is replaced by the
densitized triad Eai , defined as

 Eai :� j det�ejb�je
a
i : (2)

Here, eai as a matrix is the inverse of the cotriad eia whose
relation to the spatial metric is qab � eiaeib. The canoni-
cally conjugate variable to the densitized triad is the
Ashtekar connection Aia :� �ia � �Ki

a, where Ki
a is the

extrinsic curvature and � is the so-called Barbero-
Immirzi parameter [16,17]. The spin connection �ia is
defined such that it leaves the triad covariantly constant
and has the explicit form

 �ia � ��ijkebj �@�ae
k
b� �

1
2e
c
ke
l
a@�celb��: (3)

As we perturb basic variables around a spatially flat FRW
background, our background variables denoted by a bar are

 

�E a
i � �p�ai ; ��ia � 0; �Ki

a � �k�ia;

�N �
����
�p

p
; �Na � 0;

(4)

where �p � a2 and the spatial metric is �qab � a2�ab.3 The
choice of �N � a leads to conformal time which is used in
what follows.

B. Perturbed canonical variables

The perturbed densitized triad Eai and Ashtekar connec-
tion Aia around a spatially flat background are given by

 Eai � �p�ai � �E
a
i ;

Aia � �ia � �Ki
a � � �k�ia � ���ia � ��Ki

a�;
(5)

where �p and � �k are the background densitized triad and
Ashtekar connection, using the fact that �� � 0 for a spa-
tially flat isotropic model. The general form of a cotriad
corresponding to a spatial metric as in (1) is

 eia � a��ia �
1
2h
i
a�; (6)

where hia :� �ibhab. The densitized triad (2) then has the
perturbation

 �Eai � �
1
2 �phai ; (7)

where we have used the fact that tensor mode perturbations
are traceless, i.e. �ia�Eai � 0. For a general perturbed
densitized triad (5) the linearized spin connection (3) be-
comes

 ��ia �
1

�p
�ije�ac@e�Ecj : (8)

As perturbations of lapse N and shift Na do not contribute
to the tensor mode, we can set �N � 0 and �Na � 0 when
studying tensor mode dynamics.

As described in more detail for scalar and vector modes
in [11,14], the symplectic structure splits into one for the
background variables and one for perturbations,

 f �k; �pg �
8�G
3V0

; f�Ki
a�x�; �E

b
j �y�g � 8�G�3�x; y��ba�

i
j:

(9)

Here, G is the gravitational constant and V0 is a fiducial
volume introduced to arrive at a finite symplectic structure
for the background variables by integrating the action only
over a finite cell rather than all of R3. Since this back-
ground is homogeneous, no information is lost by the
restriction to a cell. However, a fiducial quantity enters
the formalism which must disappear from final physical
results.

This provides separate canonical structures for the back-
ground and perturbations, but these variables will be
coupled dynamically. In particular, the homogeneous back-
ground dynamics would receive backreaction effects at
quadratic or higher order.

III. CLASSICAL DYNAMICS

In canonical quantum gravity, dynamics is determined
by a Hamiltonian (constraint) operator rather than a path
integral. This implies that one obtains relevant quantum
corrections at the level of an effective Hamiltonian as
opposed to an effective action in a covariant quantization.

2The procedure follows that used for scalar [11] and vector
modes [14] but is simpler at several places in the derivation of
their equations of motion as well as for gauge issues.

3Compared to [18] we drop an additional tilde on �p to keep the
notation simple.
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To study the effects of quantum corrections to the classical
equations of motion one thus needs to derive these equa-
tions starting from an effective Hamiltonian. Here, we are
interested in studying the quantum correction expected
from loop quantum gravity which is based on Ashtekar
variables in the classical formulation. As a preparation for
an analysis of effective tensor mode Hamiltonian we thus
derive in this section the classical gravitational wave equa-
tion in canonical gravity using Ashtekar variables.

In a canonical triad formulation of general relativity
there are three types of constraints: the Gauss constraint
which generates local rotations of the triad, the diffeo-
morphism constraint which generates spatial diffeomor-
phisms, and the Hamiltonian constraint which completes
the space-time diffeomorphisms and is thus relevant for the
dynamics. For linear perturbations including only the ten-
sor mode, the corresponding Gauss constraint is trivially
satisfied as the perturbation field hia � �ibhab is symmet-
ric. In fact, the triad perturbation (6) is symmetric, while
su(2)-gauge transformations of the Gauss constraint could
only generate antisymmetric contributions owing to the
antisymmetry of the su(2)-structure constants. Also the
diffeomorphism constraint is identically satisfied as Na �
0 for the tensor mode as discussed before. Thus, solutions
for tensor mode perturbations are completely governed by
the Hamiltonian constraint.

A. Hamiltonian constraint

The Hamiltonian constraint generates ‘‘time evolution’’
of the spatial manifold in terms of a time coordinate. Its
general expression is
 

HG�N� �
1

16�G

Z
�

d3xN
EcjE

d
k��������������

j detEj
p ��jki F

i
cd

� 2�1� �2�Kj
�cK

k
d��: (10)

Using the expression (5) of the perturbed basic variables
and the curvature Fiab � @aAib � @bA

i
a � �ijkA

j
aAkb, one

can simplify and expand (10) for linearized tensor modes.
Up to quadratic terms in perturbations we have
 

HG�N� �
1

16�G

Z
�

d3x �N
�
�6 �k2

����
�p

p

�
�k2

2 �p3=2
��Ecj�E

d
k�

k
c�

j
d� �

����
�p

p
��Kj

c�Kk
d�

c
k�

d
j �

�
2 �k����

�p
p ��Ecj�K

j
c� �

1

�p3=2
��cd�jk�ef@eEcj@fE

d
k�

�
:

(11)

As expected, � dependent terms drop out of the
Hamiltonian constraint when one uses the spin connection
and the fact that densitized triad and extrinsic curvature are
symmetric for the tensor mode.

B. Linearized equations

In the standard covariant formulation linearized equa-
tions for metric perturbations are derived by considering
the variation of the action with respect to the perturbed
metric. In a canonical formulation, the linearized equations
are derived using Hamilton’s equations of motion. For the
perturbed densitized triad,

 � _Eai � f�E
a
i ;HG�N� �Hmatter�N�g (12)

leads to the expression of extrinsic curvature. Here
Hmatter�N� denotes the matter Hamiltonian which together
with the gravitational contribution (11) forms the total
Hamiltonian. Also the matter Hamiltonian depends on
the lapse function through the determinant of the space-
time metric. The choice of the background lapse function
then determines the time coordinate which the dot refers to,
which from now on will be �N � a for conformal time.

Using the expression (7) of the perturbed densitized triad
and thus � _Eai � �

1
2 � �p

_hai � _�phai �, the equation of motion
(12) then leads to the expression

 �Kai �
1
2�

_hia � �khia� (13)

for the linearized extrinsic curvature, where we used the
background extrinsic curvature �k � _�p=2 �pwhich follows in
a similar way from the zero order Hamiltonian constraint.

The second Hamilton equation of motion

 � _Ki
a � f�Ki

a; HG�N� �Hmatter�N�g (14)

describes the evolution of perturbed extrinsic curvature.
Using (13), one can derive the second order equation of
motion for gravitational tensor mode perturbations:

 

1
2 �

�hia � 2 �k _hia �r2hia� � 8�G�i
a; (15)

where

 �i
a �

�
1

3V0

@Hmatter

@ �p

��Ecj�ja�ic
�p

�
�
�Hmatter

���Eai �

�
: (16)

As usual, in the absence of source terms (15) has propagat-
ing wave solutions which are the usual gravitational waves
in the given cosmological background. Cosmological ex-
pansion leads to a friction term which is proportional to �k
and thus the Hubble parameter.

The quantity �i
a describes the linear transverse and

traceless source terms that can be related to the transverse
and traceless part of the perturbed stress-energy tensor as
�i
a � �p�T�t�ia. For comparison, we now demonstrate the

explicit relation between �i
a and the stress-energy tensor

which is defined as

 T�� � �
2�������
�g
p

�Smatter

�g��
(17)

for a given matter action Smatter. Including only tensor
perturbations, the inverse spatial metric can be written as
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qab � gab since the shift vector Na does not contribute to
tensor perturbations, i.e. Na � 0. Thus, space-space com-
ponents of the stress-energy tensor are

 Tab � �
2�������
�g
p

�Smatter

�gab
�

2

N
���
q
p

�Hmatter�N�

�qab
; (18)

where q is the determinant of the spatial metric qab. The
inverse spatial metric qab is related to the densitized triad
by qqab � Eai E

b
i , for which we use the perturbed form

Eai � �Eai � �E
a
i with �Eai � �p�ai . In perturbation theory

both �Eai and �Eai are treated as independent degrees of
freedom and one can express the stress-energy tensor (18)
up to linear order in perturbations as
 

Tab �
2

N
���
q
p

��@ �Ecj
@qab

�
�Ecj

�Hmatter

� �Ecj
�

�@��Ecj�
@qab

�
�Ecj

�Hmatter

���Ecj�

�

�
2

�N �p3=2

��
�jc

@ �Ecj
@qab

�
�Ecj

1

3V0

@Hmatter

@ �p

�

�@��Ecj�
@qab

�
�Ecj

�Hmatter

���Ecj�

�
: (19)

With the relation between the inverse spatial metric and the
densitized triad, one can show that

 

�
�jc

@ �Ecj
@qab

�
�Ecj

� �p2

�
��ab �

5�ae�bfE
�e
i �

f�
i

2 �p

�
;

�@��Ecj�
@qab

�
�Ecj

�
�p2

2
���ca �j�b � �cj�ab�

(20)

using the fact that tensor perturbations are symmetric and
traceless i.e. �jc�Ecj � 0. While in the first equation we
have kept terms up to first order in perturbations, in the
second equation we have kept only the zeroth order terms
as the term ��Hm=���Ecj�� itself is at least of first order in
perturbations. We then compute the perturbed stress-
energy tensor

 �Tia :� Tia � �Tia � �ic�qcbTab� � �Tia

�
1

�N
����
�p
p

�
1

3V0

@Hmatter

@ �p

��Ecj�
i
c�

j
a�

�p
�
�Hmatter

���Eai �

�

�
1

�N
����
�p
p �i

a; (21)

where we have used the requirement that for tensor pertur-
bation, perturbed stress-energy tensor is trace-free, i.e.
�cj��Hmatter=���Ecj�� � 0. The background stress-energy
tensor �Tia is given by

 

�T i
a � �

�ia
�NV0 �p3=2

�
2 �p
3

@Hmatter

@ �p

�
: (22)

This expression explicitly shows the relation between spa-

tial components of the background stress-energy tensor
and background pressure.

IV. QUANTUM DYNAMICS

In the previous section, we have seen how the tensor
mode equation is derived from canonical classical cosmol-
ogy. We will now include two basic types of quantum
corrections that are expected from the Hamiltonian of
loop quantum gravity. These corrections arise for inverse
powers of the densitized triad, which when quantized
becomes an operator with zero in the discrete part of its
spectrum thus lacking a direct inverse [19], and from the
fact that a loop quantization is based on holonomies, i.e.
exponentials of the connection rather than direct connec-
tion components. There is an additional source of correc-
tions due to backreaction effects of quantum fluctuations
on expectation values of the basic variables [20,21]. This is
more complicated to derive and not included in the present
analysis. We need to consider these corrections only in the
Hamiltonian constraint because the full diffeomorphism
constraint does not receive quantum corrections. It thus
remains trivial for the tensor mode dynamics as in the
classical case. We now consider these two basic types of
corrections to Hamiltonian constraint separately, which is
justified because they have different origins in properties of
quantum geometry. Keeping them separate provides valu-
able insights in physical consequences of these different
geometrical effects.

A. Inverse volume corrections

In loop quantum gravity, the factor EcjE
d
k=

��������������
j detEj

p
,

which appears in the Hamiltonian constraint (10) and con-
tains inverse powers of the densitized triad, cannot be
quantized directly but only after it is reexpressed as a
Poisson bracket not involving an inverse [19]. In homoge-
neous models, explicit calculations show that eigenvalues
of the resulting operator approximate the classical expres-
sion for large values of densitized triad components, but do
provide quantum corrections which become larger for
small components [22–24]. One can include these correc-
tions as one of the new terms in effective expressions by
introducing a factor �� whose generic form in the large
volume regime is

 ��� �p� � 1� c
�
‘2

P

�p

�
n
; (23)

where n and c are positive numbers. Anticipating similar
quantum corrections even for the inhomogeneous case, the
effects of such a correction have already been studied for
scalar and vector mode perturbations [11,14]. Here, we
provide an analysis for tensor mode perturbations, starting
with a corrected Hamiltonian constraint
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Hphen
G �N��

1

16�G

Z
�

d3x �N�� �p;�Eai �
�
�6 �k2

����
�p

p

�
�k2

2 �p3=2
��Ecj�E

d
k�

k
c�

j
d��

����
�p

p
��Kj

c�Kk
d�

c
k�

d
j �

�
2 �k����

�p
p ��Ecj�K

j
c��

1

�p3=2
��cd�

jk�ef@eE
c
j@fE

d
k�

�
:

(24)

(We indicate quantum corrected expressions by a super-
script ‘‘phen’’ to indicate that such terms are introduced for
a phenomenological analysis while a systematic effective
analysis is still outstanding.) This is to be used in a pertur-
bative inhomogeneous context and is thus not set in a
purely minisuperspace model. In this case, �� �p; �Eai �
also depends on triad perturbations and is in general
more complicated to compute from an underlying
Hamiltonian operator than in homogeneous models.
Moreover, since the function � comes from the quantized
inverse densitized triad where the tensorial term
EcjE

d
k=

��������������
j detEj

p
is quantized as a whole, it could be tensorial

in nature. However, later we will see that its leading effect
on perturbation dynamics comes from the background
corrections �� �p; �Eai � 0� � ��.

The only background variable determining the geometry
is �p, as a function of which the corrections are expressed.
The appearance of such a scale factor dependent function
in dynamical equations has occasionally led to concerns
that quantum gravity might break the scale invariance of
flat isotropic models, or even introduce gauge artefacts.
Alternatively, one can absorb the rescaling freedom in a
redefinition of the fiducial volume V0 encountered earlier,
but then the dynamical equations as well as their solutions
seem to depend on this fiducial volume. None of these
problems occurs in genuine inhomogeneous models. The
dependence of a correction function � in an inhomoge-
neous Hamiltonian constraint is through elementary area
variables whose values are determined by an underlying
inhomogeneous state. (Areas, or more precisely fluxes, are
elementary because they are directly related to the densi-
tized triad as a canonical variable.) These elementary areas
build up the quantum geometry of space in a discrete
manner and their sizes determine the degree of discreteness
involved. The scale of corrections, too, is determined by
the underlying state and thus depends on the size of
discreteness.

More specifically, correction functions only seem to
depend directly on the scale factor a because other pa-
rameters, most importantly the number of lattice sites N
per volume in the underlying state, have been suppressed
(see also [25]). This parameter rescales in the same way as
the scale factor such that the whole expression is scaling
invariant. Elementary areas are the primary object appear-
ing in corrections and they are, on average, of the geomet-
rical size F � a2‘2

0 where ‘0 is the average coordinate

length of lattice links. This quantity is certainly scaling
independent. Moreover, ‘0 is related to N and thus de-
pends on the precise quantum state and has to be deter-
mined from the underlying theory. The parameter N ,
however, also depends on the chosen volume V0 in which
one counts the number of lattice sites: N � V0=‘

3
0. One

can identify V0 with the fiducial volume introduced earlier.
Then, an alternative worry has been voiced, namely, that a
scaling invariant quantum correction would depend explic-
itly on the fiducial volume. Also this is not true: One
simply rewrites the quantity F as before in a different
way, F � a2V2=3

0 =N 2=3. Numerator and denominator are
now scaling independent but V0 dependent. Nevertheless,
the total quantity F which appears in quantum corrections
from the inverse volume is V0 independent. Such quantum
corrections are thus consistent and do not depend on any
gauge or other choices.

Extrinsic curvature is derived using Hamilton’s equation
of motion (12). With quantum corrections in the
Hamiltonian, also extrinsic curvature should receive quan-
tum corrections. In our case of a Hamiltonian (24), this
leads to

 �Kai �
1

2

�
1

��
_hia � �khia

�
: (25)

Here one can see that the leading correction due to the
background correction function is �� as inhomogeneous
contributions to � will contribute only higher order terms.
The second Hamilton’s equation together with the just
derived expression of extrinsic curvature (25) then pro-
vides a second order equation

 

1

2

�
1

��
�hia � 2 �k

�
1�

��0 �p
��

�
_hia � ��r2hia

�
�Ai

a � 8�G�i
a

(26)

for the dynamics of tensor mode perturbations, where the
prime denotes a derivative by �p and

 A i
a � 3 �N �k2

����
�p

p �
@�

@��Eai �
�

1

3 �p
@�
@ �p
��Edk�

k
a�id�

�
: (27)

Inverse densitized triad corrections lead to several sig-
nificant changes in the wave equation (26) compared to its
classical counterpart (15). First, there are corrections in the
coefficient of �hia and the coefficient of the Laplacian term
r2hia. Second, there are additional contributions to the
friction term and, third, an entirely new term Ai

a. In the
context of vector mode dynamics [14], the same term Ai

a
appears in the equation of motion but it also presents an
anomaly term in the constraint algebra between the per-
turbed Hamiltonian and diffeomorphism constraints.
Requiring an anomaly-free constraint algebra in the pres-
ence of quantum corrections then implies that Ai

a must
vanish and leads to restrictions on the possible functional
form of the quantum correction function �� �p; �Eai �. While
there are no such anomalies in the constraint algebra for
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tensor modes as the diffeomorphism constraint is trivial
here, the same quantum correction function �� �p; �Eai � as
for the vector mode must occur since there is only one
Hamiltonian constraint which is just split into different
mode contributions to simplify the analysis. Thus, we
must set Ai

a to zero, which we will do in the subsequent
analysis.

B. Holonomy corrections

A loop quantization represents holonomies as basic
operators on a Hilbert space rather than connection com-
ponents. Moreover, it is impossible to derive operators for
connection components from holonomies and thus any
quantized expression depending on the connection must
do so through holonomies. This is especially true for the
Hamiltonian constraint, which thus receives quantum cor-
rections from higher powers of the connection.
Holonomies are nonlinear as well as (spatially) nonlocal
in connection components. Thus, they provide higher order
and higher spatial derivative terms. Higher time deriva-
tives, as they would also be provided by higher curvature
terms, do not arise in this way but rather through the
coupling of fluctuations and higher moments of a quantum
state to the expectation values [20,21]. Here we focus on
corrections from holonomies as a typical effect of a loop
quantization, while the more complicated quantum back-
reaction effects are genuine and occur for any interacting
quantum theory.

We start by recalling the situation for a homogeneous
and isotropic model with a massless free scalar field. This
model allows one to compute an exact effective
Hamiltonian [26]

 

�H eff
G �

�N� �
�NV0

16�G

�
�6

����
�p

p �
sin ��� �k

���

�
2
�
; (28)

where higher order terms of extrinsic curvature (which is
proportional to the Ashtekar connection in a spatially flat
model) are explicit in the sine. Again, V0 is the volume of
the fiducial cell introduced to avoid the integration over
spatial infinity in (10) for a homogeneous background.
Moreover, �� is a new parameter related to the action of
the fundamental Hamiltonian on a lattice state. It can be
understood as the coordinate size of a loop whose holon-
omy is used to quantized the Ashtekar curvature compo-
nents Fiab. In the limit ��! 0, the effective Hamiltonian
reduces to the standard classical Hamiltonian. In general,
�� can even depend on the triad component �p to reflect

refinements of the discrete state during dynamics [25].
While the precise behavior is difficult to compute, general
considerations restrict the dependence to ��� �p� � �pn where
0< n<�1=2. Only the limiting cases n � 0 [18,27] and
n � �1=2 [28] have so far been discussed in the literature.

Variation of the Hamiltonian constraint with respect to
the background lapse function �N leads to the effective
Friedmann equation

 

1

�p

�
sin ��� �k

���

�
2
�

8�G
3

�; (29)

where � is the energy density defined as

 � :�
1

�V0p3=2�

� �Hmatter

� �N
:

In this form, the effective equation is precise only for the
energy density of a free scalar, Hmatter �

1
2

�NV0 �p�3=2p2
	

with momentum p	. If a matter potential or anisotropies
and inhomogeneities are added, additional corrections
arise [29] from quantum backreaction.

While classical cosmological dynamics is in general
singular, the effective dynamics is nonsingular. The singu-
larity avoidance is achieved by exhibiting a bounce at
small volume when the energy density reaches a critical
value [8]. This can be seen by writing the effective
Friedmann equation (29) as �sin ��� �k�2 � �=�c where

 �c �
3

8�G ��2�2 �p
: (30)

The boundedness of the sine then implies a minimum p
and thus a minimum nonzero volume, the bounce scale.
For the case �� �

����������
�= �p

p
for instance, �c is a constant. The

critical energy density �c then signifies the maximum
energy density that is reached at the bounce point. This
can be seen explicitly from the Hamilton’s equations of
motion which are

 

_�p � 2 �N
����
�p

p �
sin2 ��� �k

2 ���

�
(31)

and

 

_�k � � �N
@
@ �p

� ����
�p

p �
sin ��� �k

���

�
2
�
�

8�G
3V0

@ �Hmatter

@ �p
: (32)

Thus, for an isotropic model sourced by a massless, free
scalar field the effective Hamiltonian can be obtained by
simply replacing the background Ashtekar connection � �k
by ���1 sin ��� �k. This is no longer true for other models,
especially when inhomogeneities are included. But to
study the effects on inhomogeneous perturbations, one
can substitute the appearance of �k in the classical
Hamiltonian by a general form sinm ��� �k

m ��� where m is a num-
ber. There may be additional corrections, but qualitative
effects can already be read off from such a replacement.
With this prescription, the Hamiltonian constraint becomes
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 Hphen
G �N� �

1

16�G

Z
�

d3x �N
�
�6

����
�p

p �
sin ��� �k

���

�
2
�

1

2 �p3=2

�

�
sin ��� �k

���

�
2
��Ecj�E

d
k�

k
c�

j
d�

�
����
�p

p
��Kj

c�Kk
d�

c
k�

d
j � �

2����
�p
p

�
sin2 ��� �k

2 ���

�

���Ecj�K
j
c� �

1

�p3=2
��cd�

jk�ef@eE
c
j@fE

d
k�

�
:

(33)

In writing the explicit coefficients we have required that
the Hamiltonian has a ‘‘homogeneous’’ limit in agreement
with what has been used in isotropic models (28). This
fixes the parameter m to equal one in the first two terms.
The parameter for the last term as chosen here is the one
which leads to an anomaly-free constraint algebra in the
context of vector modes [14].

One should keep in mind that, although we write explicit
sines in this expression and thus arbitrarily high powers of
curvature components, this is to be understood only as a
short form to write the leading order corrections. This is
more compact than writing the leading terms of a Taylor
expansion of the sines. The expressions are, however,
reliable only when the argument of the sines is small,
which excludes the bounce phase itself. Moreover, higher
orders are supplemented by further, yet to be computed
higher curvature quantum corrections. (Such sine correc-
tions can be used throughout the bounce phase only for
exactly isotropic models sourced by a free, massless scalar
[26,30].)

The expression for extrinsic curvature is again derived
using one of Hamilton’s equations of motion and thus
receives quantum corrections also from the use of holon-
omies in loop quantum gravity,

 �Kai �
1

2

�
_hia �

�
sin2 ��� �k

�2��

�
hia

�
: (34)

Along with Hamilton’s equation for the perturbed extrinsic
curvature, this Eq. (34) then yields the quantum corrected
second order equation for tensor perturbations

 

1

2

�
�hia �

�
sin2 ��� �k

���

�
_hia �r

2hia � TQh
i
a

�
� 8�G�i

Qa:

(35)

This Eq. (35) describes propagating degrees of freedom
which are the usual gravitational waves subject to quantum
corrections. Unlike for inverse densitized triad corrections,
the coefficients of �hia and r2hia take the classical form. On
the other hand, the friction term does receive corrections.
As a new feature, there is an additional term proportional to
field perturbations hia with coefficient

 TQ � �2
�

�p
��
@ ��
@ �p

�
��2�2

�
sin ��� �k

���

�
4
: (36)

For any �� / j �pjn with n < 0, TQ is positive definite.
Finally, the source terms from the matter Hamiltonian
take the form

 �Qa
i �

�
1

3V0

@Hmatter

@ �p

��Ecj�ja�ic
�p

�
cos2 ��� �k�

�Hmatter

���Eai �

�

(37)

as the transverse and traceless part of the stress-energy
tensor that sources gravitational waves. The additional
cosine can be understood from the fact that the background
geometry receives quantum corrections and is used to
define the trace-free part of stress-energy. The source
�Qa

i vanishes when there is no matter field, and it reduces
to the classical transverse and traceless part of the stress-
energy tensor �i

a in the limit ��! 0.

V. DISPERSION RELATION

To study wave propagation it is often convenient to
compute the relevant dispersion relation from the corre-
sponding wave equation, presenting a relation between the
frequency and the wave vector. In this section, we use
dispersion relations for the quantum corrected gravita-
tional wave equations to study some of their basic
properties.

Starting with the classical dispersion relation to be able
to contrast it with the corrected versions later on, we
consider the source-free tensor mode perturbation equation
by making a plane wave ansatz hia / ~hia exp�i!t� ik:x�.
Here, the frequency ! corresponds to proper time t where
the lapse function �N, in contrast to the previous section, is
equal to unity. The classical tensor mode Eq. (15) then
simply implies

 !2 �

�
k

a

�
2
: (38)

Here we have ignored the friction term in the equation of
motion (15) since we are mainly interested in local propa-
gation not involving cosmic scales. The dispersion relation
(38) is, of course, the standard classical dispersion relation
between the frequency! and the proper wave number k=a.
We further note that the corresponding group velocity of
gravitational waves

 vgw :�
d!

d�k=a�

is equal to 1 (in natural units).

A. Inverse volume corrections

Repeating the calculations of the classical case but using
quantum corrections in the wave equation we obtain the
corrected dispersion relations. In particular, the tensor
mode Eq. (26) in the presence of inverse volume correc-
tions leads to
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 !2 � ��2

�
k

a

�
2

(39)

as illustrated in Fig. 1.
As one can see, the quantum correction function multi-

plies the wave number k, thus affecting the mode on all
scales. Moreover, given that ��> 1, the corrected group
velocity due to inverse volume corrections is greater than
unity. This may appear as a violation of causality since
gravitational waves would travel faster than with the speed
of light. However, this refers to the classical speed of light,
while a physical statement requires us to compare the
velocity to the physical speed of light. This differs from
the classical one because also the Maxwell Hamiltonian
receives inverse volume corrections in loop quantum grav-
ity [31]. In the regime of linear inhomogeneities such
corrections have been computed in [32], and a derivation
of the quantum corrected group velocity of electromag-
netic waves, which we present in Sec. VI, shows that it is
not smaller than that of gravitational waves. Thus, there are
no violations of causality.

B. Holonomy corrections

We finally consider corrections to the dispersion relation
of gravitational waves due to the appearance of holono-
mies. Again ignoring the friction term, a plane wave ansatz
in the wave equation (35) leads to

 !2 �

�
k

a

�
2
�m2

g; (40)

where

 m2
g :�

TQ
a2 �

1

��2

�
�
�c

�
2
: (41)

One may note that holonomy corrections effectively con-
tribute a new additive term m2

g in the dispersion relation
(40) compared to the classical dispersion relation (38).
With this quantum correction, the gravitational wave has

acquired an ‘‘effective mass.’’ This, in turn, implies that the
different modes of the gravitational waves propagate with
different group velocities which are less than unity. Also
here, causality is thus respected because the curvature
independent electromagnetic Hamiltonian does not receive
holonomy corrections. The corrected dispersion relation
(40) is shown in Fig. 2.

Using expression (41), one can estimate the value of the
‘‘effective mass’’ of the graviton at the present epoch.
Given the value of �	O�1�, �	O�1�‘2

P, �c 	O�1�M
4
P

and the energy density �	 10�120M4
P of the present uni-

verse one obtains the value mg 	 10�120MP � 10�92 eV.
Here ‘P and MP are Planck length and mass, respectively.
Current observational bounds on the graviton mass from
solar system measurements is mg < 4:4� 10�22 eV and
its accuracy could be lowered up to mg < 10�26 eV from
future gravitational wave measurements [33–36]. Thus,
our estimated theoretical value of the ‘‘effective graviton
mass’’ is well below the observational bound at present. It
is unlikely that such a value could be tested observationally
in the near future. However, given that the ‘‘effective
mass’’ depends on the background energy density, such
an effective mass could play a significant role in early
universe physical phenomena such as inflation.

VI. CAUSALITY

To determine whether causality is respected by the
quantum corrections, we have to compare the propagation
speed of gravitational waves to the physical speed of light.
Just as tensor perturbations of the metric receive quantum
gravity corrections, the electromagnetic field also is cor-
rected. Thus, the speed of its wave excitations may differ
from the classical value in the same way in which the
gravitational wave velocity differs from the classical one.
For an analysis of causality the two corrected velocities
have to be compared.

F
re

qu
en

cy
 ω

 -
--

>

Proper wave number (k/a) --->

Dispersion relation with inverse volume corrections

(α1 > α2 > α3)

Classical
Corrected (α1)
Corrected (α2)
Corrected (α3)

FIG. 1. Dispersion relation for gravitational waves in the pres-
ence of inverse volume corrections.

F
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 ω

 -
--

>

Proper wave number (k/a) --->

Dispersion relation with holonomy corrections

(m1
g > m2

g > m3
g)

Classical
Corrected (m1

g)
Corrected (m2

g)
Corrected (m3

g)

FIG. 2. Dispersion relation in the presence of holonomy cor-
rections. The classical dispersion relation is approached as the
background energy density decreases.
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The basic field of Maxwell’s theory of electromagnetism
is the vector potential A�. Its source-free dynamics in a
general space-time background is governed by the action

 SEM � �
1

16�

Z
d4x

�������
�g
p

F��F�
g
��g�
; (42)

where the background space-time is specified by the
Lorentzian space-time metric g��. We again use the con-
vention where Greek letters denote space-time indices
whereas small Latin letters denote spatial indices.

A. Canonical formulation of the electromagnetic field

In a canonical formulation, as before, the space-time
metric is decomposed into the spatial metric q�� � g�� �
n�n� and normal components which provide the nondy-
namical lapse function and shift vector. Also the electro-
magnetic fields are decomposed, with the electric field �a

arising from the space-time components of the field
strength, and the purely spatial components Fab giving
the magnetic field. The total Hamiltonian for the electro-
magnetic field corresponding to the action (42) can be
written as

 H EM � HEM�N� �DEM�N
a� �GEM; (43)

where HEM�N� denotes the electromagnetic contribution

 HEM�N� �
Z

�
d3xN

�
2����
q
p �c�dqcd �

���
q
p

16�
FcdFefq

ceqdf
�

(44)

to the Hamiltonian constraint. Similarly, there is a contri-
bution

 DEM�Na� �
Z

�
d3xNc�Fcd�d� (45)

to the diffeomorphism constraint, and a U(1)-Gauss con-
straint

 GEM �
Z

�
d3x��A0@c�c�: (46)

As usual in canonical formulations, time and space com-
ponents of the physical fields such as A0 and Aa play
different roles for the dynamics. Variation of GEM with
respect to A0, the time component of A�, whose conjugate
momentum is absent in (43) and which is thus a Lagrange
multiplier, leads to the usual expression

 @a�
a � 0 (47)

of the Gauss law.
Hamilton’s equations of motion for the canonical fields

Aa and �a take the form _f � ff;H EMg, explicitly given
by

 

_A a � @aA0 � NcFca �
4�N���
q
p �cqca; (48)

and

 _� a � @c�Nc�a� � @d�Na�d� �
1

4�
@c�N

���
q
p
Fefqceqaf�:

(49)

For further details of the canonical analysis we refer to
[32].

B. Classical propagation

As before, we analyze the propagation of linear electro-
magnetic waves on a spatially flat Friedmann-Robertson-
Walker background. (Small perturbations of the electro-
magnetic wave will induce small perturbations for geomet-
ric variables as well. However, to linear order the
perturbations are independent of each other and can thus
be studied separately.) As before, the spatial metric qab and
shift vector Na then are

 qab � a2�ab; Na � 0; (50)

where a�t� is the scale factor.
The momentum can be eliminated from (48) by comput-

ing its divergence and using the Gauss constraint (47):

 @t�@aAa� � r2At � 0; (51)

where @t refers to the time derivative according to
Hamilton’s equations of motion, @c � �ec@e and
�ec@e@c � r2. To satisfy this equation we make the stan-
dard gauge choices A0 � 0 and @aAa � 0. The Eqs. (48)
and (49) together then lead to the electromagnetic wave
equation

 @t

�
a
N
@tAa

�
�

�
N
a

�
r2Aa � 0: (52)

With the choice of proper time i.e. N � 1, the wave
equation (52) has the usual friction term due to the evolv-
ing cosmological background whereas with the choice of
conformal time i.e. N � a, the friction term will not be
explicitly present.

From the equations of motion we can again compute the
dispersion relation using the standard wave ansatz Aa 	
~Aa expi�!t� k:x�. Here, we will choose N � 1 so that the
frequency ! corresponds to proper time, but we ignore the
friction term which is justified for small wavelengths com-
pared to cosmological scales. The classical wave equa-
tion (52) then leads to the standard dispersion relation

 !2 �

�
k

a

�
2
: (53)

Moreover, the group velocity of electromagnetic wave
propagation is

 vEM �
d!

d�k=a�
� 1 (54)

which is constant in a classical cosmological background.
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C. Propagation in the presence of quantum gravity
corrections

Quantum gravity corrections mainly affect the
Hamiltonian constraint, which becomes [31,32,37]
 

Hphen
EM �N� �

Z
�

d3xN
�
�EM�qcd�

2����
q
p �a�bqab

� �EM�qcd�
���
q
p

16�
FabFcdqacqbd

�
; (55)

where �EM�qcd� and �EM�qcd� are the correction functions
due to quantum gravity effects in inverse triad components.
This provides equations of motion

 

_A a � @a�t
�A�� � N

cFca �
4�N���
q
p �EM�

cqca; (56)

and

 _� a � @c�Nc�a� � @d�Na�d�

�
1

4�
@c�N�EM

���
q
p
Fefqceqaf�: (57)

Using the same gauge fixing At � 0 and @aAa � 0,
which is possible since the Gauss constraint does not
receive quantum corrections, one obtains the corrected
wave equation

 @t

�
a

N ��EM
@tAa

�
�

�
N ��EM

a

�
r2Aa � 0; (58)

where ��EM :� �EMjqcd�a2�cd and ��EM :� �EMjqcd�a2�cd .
This provides the dispersion relation

 !2 � ��EM
��EM

�
k

a

�
2

(59)

and group velocity

 vEM �
d!

d�k=a�
�

�������������������
��EM

��EM

q
: (60)

As in the case of gravitational waves, we see that vEM > 1
is larger than the classical value, since both ��EM and ��EM

are always greater than one in perturbative regimes [10].
Second, the group velocity is no longer constant but varies
with time as the universe expands. Varying speed of light
has been studied in literature mainly in the cosmological
context [38,39], and motivated for instance from bimetric
gravity [40] or noncommutative geometry [41]; see [42]
for a review.

D. Relation between the speed of gravitational waves
and the speed of light

In the electromagnetic Hamiltonian (55) we have seen
two quantum correction functions �EM and �EM. For ho-
mogeneous situations, they have the generic feature of
being greater than unity while they approach unity in a
classical limit. Based on the kinematical quantization
alone, their values are not fixed but subject to quantization

ambiguities. Similarly, in the gravity sector we have seen a
quantum correction function � subject to ambiguities. A
priori, these quantum correction functions are indepen-
dent. On the other hand, these functions change the dis-
persion relations of gravitational as well as electro-
magnetic waves, and the corresponding changes in propa-
gation velocities may give rise to concerns regarding cau-
sality. In particular, the propagation of gravitational waves
may become superluminal depending on the precise form
of correction functions.

There are, however, further consistency conditions once
the dynamics of the quantum fields is considered. In a
canonical formulation of general relativity, the classical
constraints CI form a first class Poisson algebra, i.e.
fCI; CJg � fKIJ�A;E�CK whose coefficients fKIJ�A;E� can
in general be structure functions. The first class nature,
i.e. the fact that the Poisson brackets of constraints vanish
on the constraint surface defined by CI � 0, ensures that
the transformations generated by the constraints are gauge
and are tangential to the constraint surface. Quantum cor-
rection functions such as ��Eai � change the constraints and
thus their algebra. Making sure that the corrected con-
straints remain first class, i.e. that there is no anomaly,
provides additional consistency conditions beyond those
following from the kinematical quantization. As we will
see, closure of the corrected constraint algebra, in particu-
lar, for the Poisson bracket of Hphen�N� :� Hphen

G �N� �
Hphen

EM with itself, leads to a relation between all the quan-
tum correction functions in the matter and gravity sectors.

Specifically, the classical Hamiltonian constraint satis-
fies

 fH�N1�; H�N2�g � fHG�N1�; HG�N2�g

� fHEM�N1�; HEM�N2�g; (61)

where cross terms between matter and gravity contribu-
tions drop out because HEM�N� couples minimally to grav-
ity. On the other, the gravitational Hamiltonian constraint
itself satisfies

 fHG�N1�; HG�N2�g � DG�N1@aN2 � N2@aN1�; (62)

where, without loss of generality, we assume the gravita-
tional Gauss constraint to be solved. The matter term of
expression (44) of HEM�N�

 fHEM�N1�; HEM�N2�g � DEM�N1@
aN2 � N2@

aN1�: (63)

The Eqs. (61)–(63) together thus lead to

 fH�N1�; H�N2�g � D�N1@
aN2 � N2@

aN1�; (64)

where D�Na� is the total diffeomorphism constraint.
With quantum corrections we have the gravitational

Hamiltonian constraint
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Hphen
G �N� �

1

16�G

Z
�

d3xN��Eai �
EcjE

d
k��������������

j detEj
p

� ��jki F
i
cd � 2�1� �2�Kj

�cK
k
d�� (65)

which now satisfies
 

fHphen
G �N1�;H

phen
G �N2�g�DG��

2�N1@
aN2�N2@

aN1�� (66)

(for details see [43]). For the corrected Maxwell
Hamiltonian (55), on the other hand, we have

 fHphen
EM �N1�; H

phen
EM �N2�g � DEM��EM�EM�N1@aN2

� N2@
aN1��: (67)

This can be combined to a first class algebra of the total
constraints if and only if

 �2 � �EM�EM; (68)

such that
 

fHphen�N1�;H
phen�N2�g�D��

2�N1@
aN2�N2@

aN1��: (69)

For linear waves, it is sufficient to use the relation (68)
between the homogeneous parts of quantum correction
functions, i.e. ��2 � ��EM

��EM. They appear in the group
velocities

 vgw �
d!

d�k=a�
� �� and vEM �

�������������������
��EM

��EM

q
(70)

for gravitational and electromagnetic waves. Thus, the
requirement of a closed constraint algebra, implying (68),
ensures that there is no violation of causality: the corrected
speed of gravitational waves agrees with the physical speed
of light, which itself is subject to corrections.4

VII. WAVE PROPAGATION AND LATTICE
REFINEMENTS OF QUANTUM GRAVITY

As a further fundamental application, we analyze hol-
onomy corrections in more detail because they can give
insights into the precise form in which an underlying
discrete quantum gravity state is being refined during its
evolution. Holonomies as multiplication operators in loop
quantum gravity can create new edges and vertices of a
lattice state, and thus can dynamically imply its refine-
ments. This can also be described at the effective level
where, however, the complicated relation to the full theory
requires one to refer to several parameters describing this
refining behavior and, in particular, the functional form of
��� �p� used before. Here we show that tensor mode dynam-

ics can be used to restrict the possible choices.
We parametrize the Hamiltonian constraint as

 Hphen
G �N� �

1

16�G

Z
�

d3x �N
�
�6

����
�p

p �
sin ��� �k

���

�
2
�

1

2 �p3=2

�

�
sin ��� �k

���

�
2
��Ecj�E

d
k�

k
c�

j
d�

�
����
�p

p
��Kj

c�Kk
d�

c
k�

d
j � �

2����
�p
p

�
sinm ��� �k
m ���

�

���Ecj�K
j
c� �

1

�p3=2
��cd�

jk�ef@eE
c
j@fE

d
k�

�
;

(71)

where one parameter is m, the other appears in the power
law form ��� �p� / j �pjn. Here we have already required that
the effective Hamiltonian (71) has a homogeneous limit in
agreement with what has been used in isotropic models.
This fixes the parameters analogous to m in the first two
terms to equal one. The parameter for the last term cannot
be fixed by taking the homogeneous limit and is thus kept
free for now.

Expression (71) provides corrected second order equa-
tions

 

1

2

�
�hia �

�
sin2 ��� �k

���

�
_hia �r

2hia � TQh
i
a

�
� 8�G�Qa

i;

(72)

where
 

TQ �
1

2

�
sin ��� �k

���

�
2
�cosm ��� �k� cos2 ��� �k� �

�
sinm ��� �k
m ���

�
sin2 ��� �k

2 ���

�
2
� 2

�
�p
��
@ ��
@ �p

��
2 ��2�2

�
sin ��� �k

���

�
4

�

�
sin ��� �k

���

��
cos ��� �k

sinm ��� �k
m ���

� cosm ��� �k
sin ��� �k

���

��
: (73)

4In vacuum, the gravitational correction function � could be
absorbed into the lapse function, and even so in the presence of
an electromagnetic field after first using a duality transformation
making �EM � �EM and then referring to anomaly-freedom
such that �EM � �EM � �. The correction would then merely
appear as a change in what is proper time, and a preservation of
causality in this case would not be surprising. In fact, if �
changes proper time, the dispersion relation derived from
Eq. (26) for the tensor mode would, when formulated in the
new proper time, be free of quantum corrections. This reasoning
is not correct, however, because it overlooks the triad-
dependence of the correction functions as well as the fact that
corrections are dynamical rather than kinematical. The triad-
dependence prevents the use of a simple duality transformation
in the electromagnetic field since the correction functions would
mix up the new symplectic structure between gravitational and
electromagnetic variables. Even in vacuum, the corrections are
nontrivial because they arise in the Hamiltonian, i.e. in dynam-
ics, but not in the canonical form of the line element used to infer
the form of proper time. The time part �N2dt2 of a general line
element is not affected by the corrections being considered, and
thus proper time remains defined by d� � Ndt. Corrections
appear only in the dynamics, where they become noticeable.
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As before, corrections to the dispersion relation take the
form of an effective mass term,

 !2 �

�
k

a

�
2
�m2

g (74)

where
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As one can see, this effective mass squared is not guaran-
teed to be positive for all parameter values. Thus, stability
of the perturbation can be used as a criterion to restrict the
ambiguities.

One can use anomaly cancellation to relate the free
parameters, for which we have to refer to vector modes
since the tensor mode equations are automatically
anomaly-free. Specifically, we use the Poisson bracket
between the diffeomorphism and Hamiltonian constraints
and ensure that it is again linear in the constraints. For
simplicity we will consider here only effects of source-free
vector perturbations, and correspondingly assume that
matter constraints vanish. The perturbed Hamiltonian con-
straint including only vector mode perturbations is
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and the perturbed diffeomorphism constraint is
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1
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d
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(77)

With the Hamiltonian constraint (76), we then have
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The Poisson bracket has terms which cannot be expressed
through the constraints unless one imposes restrictions on
the parameters. To evaluate this, we have to recall that even
though we write sines in the expression (71) of quantum
corrections, it is to be understood as a convenient notation
to consider leading order quantum corrections. Anomaly
cancellation up to order �k4 then leads to the condition

 m2 � 5� 2n (80)

such that

 m2
g :�

TQ
a2 ’

�
22n2 � 35n� 5

18

��
8�G

3

�
2
� ��2�2 �p��2 (81)

depends on only one remaining parameter n. We have also
used the background Hamiltonian constraint to express TQ
in terms of the background energy density �.

The requirement of a positive ‘‘effective mass’’ squared
now implies �0:1319> n 
 �5=2, restricting the pos-
sible functional form of �� as a function of �p. As one can
see, some part of the otherwise allowed range�1=2< n<
0 is ruled out here, including a nonrefining dynamics n �
0. The other limiting case, n � �1=2 of [28], on the other
hand, is allowed.

VIII. DISCUSSIONS

We have considered tensor mode perturbation equations
in Hamiltonian cosmology based on Ashtekar variables. In
particular, we have derived possible effects of quantum
gravity on the dispersion relation of gravitational wave
propagation in a flat cosmological background. Included
were typical corrections that one expects from loop quan-
tum gravity, arising for inverse volume terms in the
Hamiltonian constraint and from the use of holonomies.
All final results are independent of gauge or other choices
in the derivation.

This shows that inhomogeneities can be considered
consistently within a perturbative framework of loop quan-
tum gravity. So far, no complete effective Hamiltonian has
been derived, but several separate effects are known and
have at least partially been computed. Different types of
quantum corrections can thus be studied separately to
elucidate possible consequences, always keeping in mind
that eventually all of them have to be combined for a
complete picture. The two types of corrections considered
here result in rather different correction terms in dispersion
relations for gravitational waves, which indicates that it is
reasonable to keep these corrections separate. Typically,
only one of them will be dominant in a given cosmological
regime, and the consequences have different physical
consequences.
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Since the magnitude of all the corrections depends on
the precise form of a quantum state, such properties must
be known for a precise quantitative estimate. Qualitative
implications are, however, clear based on more general
principles of loop quantum gravity. Also the rate of change
of correction terms during cosmic evolution depends on the
precise state and, in particular, its refinement. From the
tensor mode analysis we have provided further evidence
that discrete graph states of loop quantum gravity must be
refined during evolution, supporting the results of
[25,28,44–46]. Details will also determine the precise
rate of varying speeds of light and gravitational waves.

The results provide a viability test of loop quantum
gravity already in the absence of observations: no viola-
tions of causality occur even if quantum corrections in the
dispersion relations are considered. Along similar lines one
has to evaluate more general implications of Lorentz sym-
metries, especially in the context of potential Lorentz
violating effects where anomaly issues have not yet been
considered in the literature. While anomaly calculations
are difficult for full quantum operators, we have illustrated
that partial information can be gained economically at the
effective level. A much more detailed analysis is required
to see whether Lorentz symmetries are completely pre-
served once anomaly-freedom is implemented. An
anomaly-free set of effective constraints would mean that

quantum corrections implement a consistent deformation
of the classical theory which preserves the number of
symmetry generators although the form of symmetry trans-
formations may be changed. This appears more like a
deformation of the classical symmetry, rather than a break-
ing. Still, effective equations are approximations and thus
make it difficult to derive an exact symmetry group.

As seen here, the requirement of anomaly-free equa-
tions, while allowing for nontrivial quantum corrections,
eliminates one effect which would otherwise blatantly
violate Lorentz invariance. This requires a close relation
between quantizations of gravitational and matter (espe-
cially Maxwell) contributions to the Hamiltonian con-
straint, which is realized by the quantization procedures
of loop quantum gravity [19,31] and tightened by the
requirement of an anomaly-free constraint algebra. There
is thus a weak sense of unification of gravity and matter
since quantum corrections in the respective terms cannot
be independent of each other.
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