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We discuss observational consequences of f�R� dark energy scenarios that satisfy local gravity
constraints (LGC) as well as conditions of the cosmological viability. The model we study is given by
m�r� � C��r� 1�p (C> 0, p > 1) with m � Rf;RR=f;R and r � �Rf;R=f, which covers viable f�R�
models proposed so far in a high-curvature region designed to be compatible with LGC. The equation of
state of dark energy exhibits a divergence at a redshift zc that can be as close as a few while satisfying
sound horizon constraints of the cosmic microwave background (CMB). We study the evolution of matter
density perturbations in detail and place constraints on model parameters from the difference of spectral
indices of power spectra between CMB and galaxy clustering. The models with p � 5 can be consistent
with those observational constraints as well as LGC. We also discuss the evolution of perturbations in the
Ricci scalar R and show that an oscillating mode (scalaron) can easily dominate over a matter-induced
mode as we go back to the past. This violates the stability of cosmological solutions, thus posing a
problem about how the overproduction of scalarons should be avoided in the early universe.
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I. INTRODUCTION

The origin of dark energy (DE) has persistently been one
of the most serious problems in cosmology [1,2]. Many DE
models have been proposed so far, but we have not found
any strong evidence to support that such models are better
than the cosmological constant. Thus the first step towards
the understanding of the origin of DE is to find the depar-
ture from the �CDM model.

The simplest modification to the �CDM model is per-
haps so-called f�R� gravity in which the Lagrangian is
written in terms of the function of a Ricci scalar R. It is
well known that inflationary expansion is realized by the
Starobinsky model with a Lagrangian density f�R� � R�
�R2 [3]. Since the R2 term is negligibly small relative to R
at the present epoch, this model is not suitable to explain
present accelerated expansion of the Universe. Instead, the
model with a Lagrangian density f�R� � R� �=Rn (�>
0, n > 0) was proposed to give rise to a late-time accel-
erated expansion in the metric formalism [4] (see also
Refs. [5,6]). However it was shown that this model is
plagued by matter instability [7] as well as by a difficulty
to satisfy local gravity constraints [8]. Moreover it does not
possess a standard matter-dominated epoch because of a
large coupling between dark energy and dark matter [9]
(see Refs. [10] for recent works).

In Ref. [11] several conditions for the cosmological
viability of f�R� dark energy models were derived without
specifying the forms of f�R�. This can be well understood
by considering a trajectory of each model in the �r;m�
plane, where r � �Rf;R=f and m � Rf;RR=f;R. The ex-
istence of a saddle matter-dominated epoch requires the
conditions m> 0 and �1< dm=dr � 0 around the point
�r;m� � ��1; 0�. The matter era can be followed by a
stable de-Sitter attractor on the line r � �2 provided that

0<m�r � �2� � 1. This method is useful to rule out
some of the f�R� models such as f�R� � R� �=Rn (�>
0, n > 0) easily.

More recently a sequence of cosmologically viable f�R�
models was discussed in Refs. [12,13]. One such model,
for example, is f�R� � �Rb ���1=b with 0< b< 1, which
corresponds to a straight line m�r� � �b� 1��r� 1� con-
necting the matter point �r;m� � ��1; 0� to the de-Sitter
point on the line r � �2. The parameter m that character-
izes the deviation from the �CDM model is constrained to
bem<O�0:1� for such models from the data of Supernova
Ia (SN Ia) and cosmic microwave background (CMB) [13].
Meanwhile local gravity experiments constrain the value of
m to be very much smaller than unity in high-density
regions where gravity experiments are carried out. This
means that the deviation from the �CDM model needs to
be very small in a high-curvature cosmological epoch
whose Ricci scalar R is much larger than the present
cosmological value R0.

A number of authors [14–16] recently proposed f�R�
dark energy models that can satisfy both cosmological and
local gravity constraints (LGC) (see Refs. [17,18] for
related works). From the requirement of LGC these behave
as close as the �CDM model during radiation and matter-
dominated epochs (R	 R0). The deviation from the
�CDM model becomes significant after the end of the
matter era with the growth of the quantity m. These models
satisfy the relation f�R � 0� � 0, implying that the cos-
mological constant disappears in a flat spacetime. We note,
however, that the Ricci scalar is frozen at a value R �
R1 > 0 if the solutions are trapped by stable de-Sitter
attractors responsible for the late-time acceleration. Thus,
in these models the system does not reach the region R � 0
in an asymptotic future.
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In this paper we shall study observational consequences
of f�R� models that satisfy LGC in addition to conditions
of cosmological viability. The models we consider are
given by m�r� � C��r� 1�p with C> 0 and p > 1,
which cover viable models proposed in the literature
[14–16] in the region R	 R0. The quantity m�r� is, for
large p, vanishingly small during matter and radiation
epochs (r 
 �1), but grows to the order of C as the
solutions approach de-Sitter attractors on the line r �
�2. These models exhibit peculiar evolution of the DE
equation of state, as we will see later. Moreover matter
density perturbations evolve differently compared to the
�CDM cosmology for redshifts below a critical value zk.
This property can be used to place constraints on model
parameters in addition to constraints coming from LGC,
SN Ia, and CMB.

This paper is organized as follows. In Sec. II we present
all conditions viable f�R� DE models need to satisfy. In
addition to f�R� models studied so far, we shall propose
another model satisfying these conditions. In Sec. III the
evolution of the DE equation of state and the resulting
observational consequences are discussed in addition to
constraints coming from the sound horizon of CMB. In
Sec. IV we study how matter perturbations evolve on
subhorizon scales and put constraints on model parameters
from the difference of spectral indices of the power spectra
between CMB and galaxy clustering. We also discuss the
evolution of the perturbation �R and show that an oscillat-
ing mode called scalaron [3] easily dominates over the
background value R when we go back to the past. This
generally violates the stability condition of f�R� models,
which gives rise to another problem about how to avoid the
overproduction of scalarons in the early universe. We con-
clude in Sec. V.

II. MODELS THAT SATISFY COSMOLOGICAL
AND LOCAL GRAVITY CONSTRAINTS

Let us begin with the following action

 S �
Z
d4x

�������
�g
p

�
1

2�2 f�R� �Lm �Lrad

�
; (1)

where �2 � 8�G (G is a bare gravitational constant). In
what follows we use the unit �2 � 1, but we restore the
gravitational constant when it is needed. Note that Lm and
Lrad are the Lagrangian densities of dustlike matter and
radiation, respectively, which satisfy usual conservation
equations. In the flat Friedmann-Robertson-Walker
(FRW) background with a scale factor a, the Ricci scalar
is given by R � 6�2H2 � _H�, where H � _a=a is a Hubble
parameter and a dot represents a derivative with respect to
cosmic time t.

There are a number of constraints viable f�R� models
need to satisfy. First of all, to avoid antigravity, we require
the condition f;R � df=dR > 0. Modified f�R� models
possess a scalar particle whose effective mass is given by

 M2�R� ’
1

3f;RR
; (2)

in the regime M2�R� 	 R [13,15,17,19]. In order to avoid
that the scalaron becomes tachyons or ghosts, we require
f;RR � d2f=dR2 > 0 in this region. Note that this condition
can be also derived by considering the stability of pertur-
bations [19,20].

The conditions for the cosmological viability of f�R�
models have been studied in Ref. [11] in great detail. This
can be well understood by considering two quantities:

 m �
Rf;RR
f;R

; r � �
Rf;R
f

: (3)

The �CDM model, f�R� � R� 2�, corresponds to m �
0 and r � �R=�R� 2��. The quantitym characterizes the
deviation from the �CDM model. The cosmological via-
bility of such models is known by plotting corresponding
curves in the �r;m� plane.

In what follows we shall consider cosmological evolu-
tion that starts from a radiation epoch with large and
positive R followed by a matter era and eventually ap-
proaches a de-Sitter attractor with R � R1 > 0 in future.1

In cosmologically viable models we study, the quantity m
is always smaller than 1 with f;R of order unity before
reaching a de-Sitter attractor. Since 1=f;RR	 R in such
cases, one can use the scalaron mass given in Eq. (2).
Hence the stability conditions are given by [15]

 f;R > 0; f;RR > 0; for R � R1: (4)

The matter-dominated point PM exists on the line m �
�r� 1 with m close to 0, i.e., �r;m� 
 ��1; 0�. The
presence of a viable saddle matter era demands the con-
ditions [11] (see also Ref. [21]):

 m�r 
 �1�> 0; and � 1<
dm
dr
�r 
 �1� � 0: (5)

If the condition (4) is satisfied then the variable m is
automatically positive. The second requirement in Eq. (5)
implies that m�r� curves should be present between the
lines m � 0 and m � �r� 1.

There is a stable de-Sitter fixed point that leads to a late-
time acceleration:

 PA: r � �2; 0<m � 1: (6)

If a m�r� curve staring from PM has an intersection point
with a line r � �2 in the region 0<m � 1, the corre-
sponding f�R�model is regarded as cosmologically viable.
The �CDM model is a straight line that links PM: �r;m� �
��1; 0� with PA: �r;m� � ��2; 0�. In this paper we do not
consider another accelerated fixed point PB that exists on
the line m � �r� 1 with �

���
3
p
� 1�=2<m � 1 [11]. This

1During the radiation era the Ricci scalar evolves as R / t�3=2

because of the presence of nonrelativistic particles.
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corresponds to the case in which R continues to decrease in
future, which can violate the stability condition (4).

A number of f�R� models satisfying the above condi-
tions were considered in Refs. [12,13]. Some examples are

 �i� f�R� � �Rb ���c �c � 1; bc 
 1�; (7)

 �ii� f�R� � R� �Rn ��> 0; 0< n< 1�; (8)

which correspond to m�r� � ��1� c�=c�r� b� 1 and
m�r� � n�1� r�=r, respectively.

Let us next consider local gravity constraints on f�R�
dark energy models. The LGC are satisfied for M‘	 1
[13,17], where ‘ is a scale at which gravity experiments are
carried out. Using Eqs. (2) and (3), this constraint is ex-
pressed by

 m�Rs� 
1

f;Rs

�
‘

R�1=2
s

�
2
; (9)

where Rs is a curvature measured on the local structure and
is proportional to the energy density �s of the structure
(Rs 
 8�G�s). Using the present cosmological density �0

and the Hubble radiusH�1
0 � 1028 cm (in what follows we

use the subscript ‘‘0’’ for present values), the above con-
straint is rewritten as

 m�Rs� 
�s
�0

�
‘

H�1
0

�
2
; (10)

where we used f;Rs � 1 and R0 �H
2
0 � 8�G�0. The r.h.s.

of Eq. (10) is very much smaller than unity [13] because
‘ H�1

0 even though �s is larger than �0. In the case of
the Cavendish-type experiments the typical constraint is
m�Rs�  10�43, as we will see later. Note that under the
so-called chameleon approach [22] the parameter m�Rs� is
also constrained to be very much smaller than unity [23].

The above argument shows that in the high-curvature
region (R	 R0) the quantity m needs to be negligibly
small. Cosmologically this means that during radiation
and matter eras the models need to mimic the �CDM
model with a high precision. Note that the models (i) and
(ii) given in Eqs. (7) and (8) behave as m�r� � C��r� 1�
as r approaches �1. In such cases, however, LGC are
difficult to be satisfied unless C is chosen to be unnaturally
small.

Hu and Sawicki [14] proposed an explicit f�R� model
that satisfies both cosmological and local gravity con-
straints. It is given by

 f�R� � R� �Rc
�R=Rc�2n

�R=Rc�
2n � 1

; (11)

where the power 2n is used instead of n. Starobinsky [15]
also proposed another viable model:

 f�R� � R� �Rc

�
1�

�
1�

R2

R2
c

�
�n
�
: (12)

In both models n, �, and Rc are positive constants, where
Rc is the order of the present Ricci scalar R0. Since f�R �
0� � 0 cosmological constant disappears in a flat space-
time. Thus the origin of dark energy can be regarded as the
geometrical one.

Let us check the cosmological viability as well as the
stability for such models. In the region R	 Rc these
behave as

 f�R� ’ R� �Rc

�
1�

�
Rc
R

�
2n
�
; (13)

 r ’ �1� �
Rc
R
; (14)

 m ’
2n�2n� 1�

�2n ��r� 1�2n�1: (15)

Thus in this region the models (11) and (12) have the
following property

 m�r� � C��r� 1�p; (16)

where p � 2n� 1> 1 and C is a positive constant. It is
obvious that, for larger p, m�r� becomes very small as r!
�1 so that the model satisfies LGC. Since dm

dr �r � �1� �
0 the condition (5) is also satisfied.

Let us next check the conditions (4) and (6). In the model
(11), the de-Sitter point at r � �2 is determined by the
value of �:

 � �
�1� x2n

1 �
2

x2n�1
1 �2� 2x2n

1 � 2n�
; (17)

where x1 � R1=Rc. From the stability condition 0<
m�r � �2� � 1 we obtain

 2x4n
1 � �2n� 1��2n� 4�x2n

1 � �2n� 1��2n� 2� � 0:

(18)

When n � 1, for example, we have x1 �
���
3
p

and � �
8
���
3
p
=9. Under Eq. (18) one can show that the condition

(4) is satisfied. This situation is similar to the Starobinsky
model (12), see Ref. [15] for details.

We can extend the above two models to the more general
form

 f�R� � R� ��R�; ��0� � 0;

��R	 Rc� ! const:
(19)

The conditions (4) translate into

 �;R < 1; �;RR < 0; for R � R1: (20)

In order to satisfy LGC, we require that ��R� approaches a
constant rapidly as R grows in the region R	 Rc (such as
��R� ’ const.� �Rc=R�2n discussed above). Another
model to meet these requirements is
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 f�R� � R� �Rc tanh
�
R
Rc

�
; (21)

where � andRc are positive constants. A similar model was
proposed by Appleby and Battye [16], although it is differ-
ent from (21) in the sense that ��R� can be negative for R<
R1. In the region R	 Rc the model (21) behaves as f�R� ’
R� �Rc�1� exp��2R=Rc��, which can be regarded as
the special case of (16) with a limit p! 1. The Ricci
scalar at the de-Sitter point is determined by �, as

 � �
x1cosh2�x1�

2 sinh�x1� cosh�x1� � x1
; (22)

where x1 � R1=Rc. From the stability condition (6) of the
de-Sitter point we obtain the constraint

 x1 > 0:920; � > 0:905: (23)

In the models (11) and (12), f;RR are negative for 0<
R=Rc < ��2n� 1�=�2n� 1��1=2n and 0<R=Rc <
1=

���������������
2n� 1
p

, respectively. In the model (11) the quantity

f;R also becomes negative (i.e., �;R > 1) in some regions,
whereas in the model (12) it is possible to have f;R > 0 for
all positive R in some restricted regions of the parameter
space (0:944< �< 0:966 for n � 2). See the curves (i)
and (ii) in Fig. 1 for illustration. Of course we are consid-
ering the situation in which the violation of the conditions
f;R > 0 and f;RR > 0 occurs for R< R1, so it is harmless as
long as the universe is in the region R � R1. In the model
(21) we always have f;RR > 0 for positive R, whereas f;R is
positive for � < 1. Hence, if 0:905< �< 1, this model
satisfies the conditions f;R > 0 and f;RR > 0 for all positive
R and also possesses a de-Sitter attractor. Such an example
is plotted as the case (iii) in Fig. 1.

In Fig. 2 we plot the trajectories in the �r;m� plane for
the model (12) with n � 2, � � 0:95, and for the model
(21) with � � 0:95. The solutions start from the region
R=Rc 	 1 around the point PM and they finally approach
the de-Sitter point PA at R � R1. Since f;R > 0 (R> 0)
and f�0� � 0 in such cases we have f�R�> 0 for positive
R, which means that r � �Rf;R=f is always negative. The
quantity m � Rf;RR=f;R is positive for R � R1 because
f;RR > 0. In the case (A) of Fig. 2 we have m< 0 for 0<
R=Rc < 1=

���������������
2n� 1
p

because f;RR changes the sign.
Meanwhile, in the case (B), m is always positive for R>

0.0

0.50

1.0

1.5

2.0

2.5

0 0.5 1 1.5 2 2.5

ξξξ     
(R

) 
/ R

c

R / Rc

(i)

(ii)

(iii)

ξξξξ = R

. .

FIG. 1. The illustration of ��R� as a function of R=Rc in three
different models. Each corresponds to (i) the model (11) by Hu
and Sawicki with n � 1 and � � 2, (ii) the model (12) by
Starobinsky with n � 2 and � � 0:95, and (iii) the model (21)
with � � 0:98. We also plot a line ��R� � R to see whether or
not the condition �;R < 1 (i.e., f;R > 0) is violated. The black
points represent de-Sitter fixed points (R � R1). Note that in the
case (i) the de-Sitter point corresponds to R1=Rc � 3:383, which
is outside of the figure. In the case (i) we have f;R < 0 for
0:296<R=Rc < 1, whereas in the cases (ii) and (iii) f;R > 0 for
all positive R. In the models (11) and (12) it is inevitable to avoid
that f;RR becomes negative in the small R region, but in the
model (21) it is possible to realize f;RR > 0 for R> 0. In the
region before the solutions reach the de-Sitter attractor (i.e., R �
R1), both f;R and f;RR are positive in the above three models.

- 8 . 0

- 6 . 0

- 4 . 0

- 2 . 0

0 . 0

2 . 0

4 . 0

6 . 0

8 . 0

- 2 . 5 - 2 - 1 . 5 - 1 - 0 . 5 0

m

r

PMPA

r = -2 
(A)

(B) f
,RR

= 0

FIG. 2. Two trajectories in the �r; m� plane. The trajectory (A)
corresponds to the model (12) by Starobinsky with n � 2 and
� � 0:95, whereas the trajectory (B) to the model (21) � � 0:95.
In both cases the solutions start from the region around the point
PM: �r;m� � ��1; 0� with R	 Rc. They approach the stable de-
Sitter point PA on the line r � �2 with 0<m � 1. In the
case (A) the quantity f;RR becomes negative for 0<R=Rc <
1=

���������������
2n� 1
p

, while f;R is positive for R> 0. In the case (B) one
has f;RR > 0 and f;R > 0 for all positive R. In the limit R=Rc !
0 both models approach the point �r;m� � ��1; 0� again.
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0. In the limit R=Rc ! 0 the trajectories approach the point
�r;m� � ��1; 0� again in both models. If the Ricci scalar
oscillates around R � 0, the quantity f;RR becomes nega-
tive for R< 0 even for the model (21). As we will see later
in detail, this can indeed occur by the oscillation of scalar-
ons unless initial conditions are appropriately chosen. The
above argument shows the importance of confining the
Ricci scalar in the region R � R1 to ensure the stability
of models.

In this paper we shall study a number of cosmological
constraints on the models of the type (16). As we men-
tioned, in the region R	 Rc, this covers the models (11)
and (12) with p � 2n� 1 as well as the model (21) with
the limit p! 1. If 0<C � 1 there exists a stable de-
Sitter point PA at r � �2. The model m�r� � C��r� 1�p

essentially contains sufficient information about how via-
ble f�R� models behave. During radiation and matter eras
(r ’ �1) the quantity m is very much smaller than unity,
but it grows to the order of C once the system approaches
the de-Sitter attractor PA. Thus one can see the departure
from the �CDM model around the present epoch. Note
that we are only concerned with the region of m�r� curves
before the solutions reach the de-Sitter attractor. If we
demand the condition f�R � 0� � 0, this can be satisfied
by modifying the form of m�r� outside the region that
connects PM to PA [as in the models (12) and (21) in
Fig. 2].

Before entering the details of various cosmological con-
straints, we consider LGC on the model (16). In high-dense
regions where local gravity experiments are carried out
(Rs 	 Rc � R0) the quantity r behaves as Eq. (14) and

hence m ’ ~m�R0=Rs�
p, where ~m is a constant whose order

is not much different from unity. Since R0=Rs � �0=�s, the
constraint (10) yields

 

�
�s
�0

�
p�1
	 ~m

�
H�1

0

‘

�
2
: (24)

In the Cavendish-type experiments the typical values are
�s � 10�12 g=cm3 and ‘� 10�2 cm [24]. Recalling the
values �0 � 10�29 g=cm3 and H�1

0 � 1028 cm, we find
that the LGC is well satisfied for p � 3.

In the case of solar-system experiments, if we take the
typical solar-system length scale ‘ � 1 Au � 1:5�
1013 cm with the density �s � 10�24 g=cm3 at the distance
from Sun [14], we obtain the constraint p � 5. Meanwhile
the so-called Shapiro time-delay effect [25] comes mainly
from the gravity contribution around the radius of Sun (‘�
7:0� 1010 cm) with the density �s � 10�15 g=cm3, which
gives a much weaker constraint: p � 2. Thus the constraint
p � 5 is certainly enough to satisfy LGC and is even too
tight in some of gravity experiments.

III. SN IA AND CMB SOUND HORIZON
CONSTRAINTS

In this section we discuss the cosmological evolution of
the model (16) at the background level and confront it with
constraints coming from SN Ia and the sound horizon of
the CMB. In the flat FRW spacetime the variation of the
action (1) leads to the following equations

 3FH2 � �m � �rad � �FR� f�=2� 3H _F; (25)

 � 2F _H � �m � �4=3��rad � �F�H _F; (26)

where F � @f=@R. Here �m and �rad are the energy den-
sities of a nonrelativistic matter and radiation, respectively,
which satisfy the usual conservation equations.

Following Refs. [11,13] we introduce the dimensionless
variables

 x1 � �
_F

HF
; x2 � �

f

6FH2 ;

x3 �
R

6H2 ; x4 �
�rad

3FH2 :

(27)

Then we obtain the dynamical equations [11]

 x01 � �1� x3 � 3x2 � x2
1 � x1x3 � x4; (28)

 x02 �
x1x3

m
� x2�2x3 � 4� x1�; (29)

 x03 � �
x1x3

m
� 2x3�x3 � 2�; (30)

 x04 � �2x3x4 � x1x4; (31)

where a prime represents a derivative with respect to N �
lna. Sincem is a function of r � x3=x2, the above system is

- 1 0

- 5 . 0

0 . 0

5 . 0

1 0

0 1 2 3 4 5 6 7

C=0.1
C=0.5
C = 1

w
D

E

z

FIG. 3. The DE equation of state wDE versus the redshift z for
the model m�r� � C��r� 1�2 with three different parameters
(C � 0:1, 0.5, 1.0). With the increase of C the divergence of wDE

occurs for smaller z.
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closed. The energy density and the pressure of DE to
confront with SN Ia observations are given in Ref. [13]
and the corresponding equation of state (EOS) of DE is

 wDE � �
1

3

2x3 � 1� �F=F0�x4

1� �F=F0��1� x1 � x2 � x3 � x4�
; (32)

where F0 is the present value.
Our model (16) needs to satisfy the condition F;R > 0

for R � R1, which leads to the increase of F toward the
past as R gets larger. The denominator in Eq. (32) is written
as 1� �F=F0��m, where

 �m �
�m

3FH2 � 1� x1 � x2 � x3 � x4: (33)

Since �m increases from present to the matter-dominated
epoch, it happens that wDE exhibits a divergence at a
redshift zc satisfying �m � F0=F. This is in fact generic
to cosmologically viable models that fulfill the criterion
(4). The EOS of DE crosses a cosmological constant
boundary (wDE � �1) at a redshift zb smaller than zc [13].

In Fig. 3 we plot wDE versus the redshift z � a0=a� 1
for the model m�r� � C��r� 1�2 with three different
values of C. In all simulations the present epoch (z � 0)
is identified as a matter energy fraction �m � 0:28 with a
radiation contribution �rad � �rad=3FH2 � 10�4. Note
that the current universe is in the middle of approaching
the de-Sitter attractor PA: �x1; x2; x3� � �0;�1; 2� from the
matter point PM: �x1; x2; x3� 
 �0;�1=2; 1=2�. As we see
in Fig. 3, wDE is larger than �1 at z � 0 and decreases to
�1 as z! zc � 0 after crossing the cosmological con-
stant boundary at z � zb. For smaller C, zc gets larger.
When C � 1 we have zc � 2:03 and wDE�z � 0� �
�0:853, whereas if C � 0:5 we get zc � 2:31 with
wDE�z � 0� � �0:904. This peculiar behavior of the
EOS of DE is an interesting signature to discriminate
f�R� models from the �CDM cosmology. In particular,
the larger deviation from the �CDM model leads to a
smaller critical redshift zc that can be reached in future
observations.

For the values of p greater than 2, zc gets larger and
wDE�z � 0� tends to be closer to�1. In Table I we show zb,
zc, and wDE�z � 0� together with present values of m for
several different choices of p and C. When p � 5, if we
look at the low redshift region only, the models are hardly
distinguishable from the �CDM model. Still the EOS of
DE shows a peculiar behavior in the high redshift region:
z > 3. For larger p the cosmological constant boundary
crossing occurs at the redshift close to the present epoch.
We note that the recent SN Ia data analysis finds some
evidence for such a crossing [26]. If future high-precision
observations favor models whose EOS corresponds to a
phantom (wDE <�1) in most of the past epochs relevant to
SN Ia observations, this can be the signal of f�R� gravity.

If we use the criterion wDE�z � 0�<�0:7 according to
the current SN Ia data [27], we find from Table I that the
models with p � 2 satisfy this requirement even when C is

as close as unity. The slopes of the EOS, jdwDE=dzj, are
found to be smaller than the order of 0.1 around the present
epoch, which do not provide additional information to
constrain models. When C � 1, we have wDE�z � 0�>
�0:7 only for p � 1:4. Thus the current SN Ia observa-
tions do not provide a better constraint on the power p than
the one obtained by LGC. It will be interesting, however, to
carry out a likelihood analysis using the future data of SN
Ia along the line of Refs. [28].

Let us also consider the sound horizon constraint coming
from the CMB. The angular size of the sound horizon is
defined by

 �s �
Z 1
zdec

cs�z�dz
H�z�

=
Z zdec

0

dz
H�z�

; (34)

where c2
s�z� � 1=�3�1� 3�b=4���� is the adiabatic

baryon-photon sound speed and zdec ’ 1089. From the
position of CMB acoustic peaks we obtain the constraint
�s � 0:5946� 0:0021 deg from the WMAP 3-year data
[29]. For the models in which the effect of dark energy is
not negligible during the matter-dominated epoch, the
quantity �s is rather strongly modified (as in the coupled
quintessence [30]).

In f�R� gravity, if the quantity m is not much smaller
than 1 during the matter era, this leads to a considerable
change of �s compared to the �CDM model. In fact, this
happens for the models (7) and (8), as was shown in
Ref. [13]. In our model (16) the quantity m is very much
smaller than unity during the matter era from the require-
ment to satisfy LGC. Hence it is easier to satisfy the sound
horizon constraint compared to the models (7) and (8). In
fact, we have evaluated �s numerically and confirmed that
the models with p � 2 are consistent with the WMAP 3-
year data. Thus the data coming from the CMB sound
horizon does not provide tighter constraints relative to
the SN Ia data.

TABLE I. The values zb, zc, wDE�z � 0� and m�z � 0� in the
model m�r� � C��r� 1�p for several different choices of p and
C.

p C zb zc wDE�z � 0� m�z � 0�

1.5 0.1 0.79 3.44 �0:959 0.075
1.5 0.5 0.73 2.24 �0:851 0.244
1.5 1 0.85 2.14 �0:743 0.293
2 0.1 0.62 3.88 �0:969 0.067
2 0.5 0.54 2.31 �0:904 0.220
2 1 0.56 2.03 �0:853 0.285
3 0.1 0.40 5.00 �0:982 0.055
3 0.5 0.33 2.83 �0:955 0.180
3 1 0.32 2.31 �0:936 0.248
5 0.1 0.16 7.25 �0:994 0.037
5 0.5 0.10 4.30 �0:990 0.124
5 1 0.09 3.53 �0:988 0.180
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IV. MATTER PERTURBATIONS AND SCALARON
OSCILLATIONS

In this section we study constraints on the model (16)
coming from matter density perturbations. Let us consider
scalar metric perturbations �, 	, ’, and � about the flat
FRW background [31]:
 

ds2 � ��1� 2��dt2 � 2a	;idtdx
i

� a2��1� 2’��ij � 2�jij�dx
idxj: (35)

In what follows we neglect the contribution of radiation as
it is unimportant to discuss the evolution of matter pertur-
bations during the matter-dominated epoch. The energy-
momentum tensors of a pressureless matter is decomposed
by

 T0
0 � ���m � ��m�; T0

i � ��mvm;i; (36)

where vm is a velocity potential.
Introducing a covariant velocity perturbation, v � avm,

we obtain the following equations of motion in the Fourier
space [32] (see also Refs. [20,33]):

 � � _v; (37)

 ���m=�m�� � �� 3H��
k2

a2 v; (38)

 

_�� 2H��
�

3 _H �
k2

a2

�
� �

1

2F

��
�6H2 �

k2

a2

�
�F

� 3H� _F� 3� �F� _F�

� 3�2 �F�H _F��

� 3 _F _����m

�
; (39)

 

� �F� 3H� _F�
�
k2

a2 �
R
3

�
�F �

1

3
��m � _F��� _��

� �2 �F� 3H _F��

�
1

3
F�R; (40)

 

�
k2

a2 ’� 3H�H�� _’� �
k2

a2 H


�
1

2F

�
3H� _F�

�
3 _H � 3H2 �

k2

a2

�
�F

� 3H _F�� _F�� ��m

�
; (41)

 _
�H
� �� ’ �
1

F
��F� _F
�; (42)

where k is a comoving wave number and � � 3�H��
_’� � �	� a _��k2=a. We define a gauge-invariant quantity:
�m � ��m=�m � 3Hv. In the comoving gauge where v �

0, we find from Eqs. (37) and (38) that � � 0 and � � _�m.
Then from Eqs. (39) and (40) we obtain

 

��m �

�
2H�

_F
2F

�
_�m �

�m
2F

�m

�
1

2F

��
�6H2 �

k2

a2

�
�F� 3H� _F� 3� �F

�
; (43)

 � �F� 3H� _F�
�
k2

a2 �
F

3F;R
� 4H2 � 2 _H

�
�F

�
1

3
��m � _F _�m: (44)

In the model (16) the quantity m � Rf;RR=F is very
much smaller than unity during the matter era with F ’
1. Since 1=f;RR	 R in such a case, the scalaron mass
squared is given by Eq. (2) and satisfies the relation M2 	
R�H2. In what follows we shall discuss two cases:
(A) M2 	 k2=a2 and (B) M2  k2=a2, separately. As
we will see below, the modes that are initially in the
region (A) can enter the region (B) during the matter-
dominated epoch.

A. The region M2 	 k2=a2

When M2 	 k2=a2, Eq. (44) is approximately given by

 � �F� 3H� _F�M2�F ’ 1
3��m; (45)

where we used the fact that the variation of the quantity F
is negligibly small during the matter era. This is a very
good approximation for the model (16), since m is vanish-
ingly small during the matter era.

The general solutions for Eq. (45) are given by the sum
of the oscillating solution �Fosc obtained by setting ��m �
0 and the special solution �Find of Eq. (45) induced by the
presence of matter perturbations ��m. The former was
obtained by Starobinsky [15] for the model (12) in the
unperturbed flat FRW background (i.e., k � 0). The oscil-
lating part �Fosc satisfies the equation �a3=2�Fosc�

�� �

M2�a3=2�Fosc� ’ 0. By using the WKB approximation,
we obtain the solution

 �Fosc / a�3=2f1=4
;RR cos

�Z 1�����������
3f;RR

p dt
�
: (46)

During the matter era in which the background Ricci
scalar evolves as R�0� � 4=�3t2�, the quantity f;RR has a
dependence f;RR / R��p�1� / t2�p�1�. Hence the evolution
of the perturbation, �Rosc � �Fosc=f;RR, is given by

 �Rosc ’ ct��3p�5�=2 cos�c0t�p�; (47)

where c and c0 are constants. As we go back to the past, the
amplitude of �Rosc dominates over R�0�, unless the coeffi-
cient c is chosen to be very small. Since R gets smaller than
R1 and even becomes negative, the stability condition (4) is
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violated. This property also holds in the radiation era
during which �Rosc and the background Ricci scalar R�0�

evolve as

 �Rosc ’ ct
��9p�15�=8 cos�c0t

��1=4��3p�1��; R�0� / t�3=2:

(48)

Thus we need to avoid the excessive production of scalar-
ons in the early universe so that j�Roscj  R�0� is satisfied
at all times. This problem is even severe for the models of
the type (21). Moreover, the scalaron mass rapidly grows to
the past in these models and can exceed the Planck mass
even during the matter era.

The special solution �Find of Eq. (45) can be derived by
using the approximation used in Refs. [34,35]. This
amounts to neglecting the first and second terms relative
to others, giving

 �Find ’ f;RR��m; �Rind ’ ��m: (49)

Under the condition j�Foscj  j�Findj we have �F ’
f;RR��m. Substituting this relation for Eq. (43) and using
the property M2 	 k2=a2, we obtain

 

��m � 2H _�m � 4�G�m�m ’ 0: (50)

Here we have reproduced the gravitational constant for
clarity. This is the usual equation of matter perturbations
on subhorizon modes in �CDM cosmology and has a
growing mode solution �m / a / t2=3. From Eq. (49) we
get

 �Find / t
2p�2=3; �Rind / t

�4=3: (51)

Compared to the oscillating mode (47), the matter-induced
mode �Rind decreases more slowly and thus dominates in
the late universe. Relative to the background value R�0�, the
perturbation, �R � �Rosc � �Rind, evolves as

 

�R

R�0�
’ b1t

��3p�1�=2 cos�c0t
�p� � b2t

2=3; (52)

where b1 and b2 are constants. Unless the coefficient b1 is
very small, the oscillating mode dominates over the matter-
induced mode to violate the condition R � R1 as we go
back to the past. In Fig. 4 we show an example about the
evolution of perturbations in which the initial condition of
�R is chosen to be very close to ��m (see the appendix for
perturbation equations suitable for numerical calculations).
The perturbation evolves as �R / t�4=3 during the period
in which the condition M2 	 k2=a2 is satisfied. After the
system enters the region M2  k2=a2, �R decreases more
rapidly as we see in the next subsection. Since �R ’ ��m
and R�0� ’ 3H2 ’ �m during the matter era, we obtain the
relation �R=R�0� ’ �m. This property is in fact confirmed
in Fig. 4 in the region M2 	 k2=a2.

Figure 5 is the case in which the oscillating mode
dominates over �Rind around the redshift z * 30. Since
j�Rj grows to the order of R�0� the Ricci scalar R becomes

negative in this region, thus violating the stability condi-
tion (4). These results confirm that the coefficient b1

should be chosen to be very small to avoid the dominance
of the scalaron mode in an early epoch.

1 0-10

1 0-8

1 0-6

0 . 0 0 0 1 0

0 . 0 1 0

0 5 1 0 1 5 2 0 2 5 3 0 3 5

z

| δδm|

| δδR |

|δδR/ R (0) |

FIG. 4. The evolution of �R, �R=R�0�, and �m for the model
m�r� � ��r� 1�3 with the mode k=a0H0 � 335 in the case
where the coefficient b1 in Eq. (52) is very small so that the
scalaron mode �Rosc is negligible relative to the matter-induced
mode �Rind. The transition from the region M2 	 k2=a2 to the
region M2  k2=a2 occurs around the redshift zk � 5.

1 0- 1 0

1 0- 8

1 0- 6

0 . 0 0 0 1 0

0 . 0 1 0

1 . 0

0 5 1 0 1 5 2 0 2 5 3 0

z

| δδm|

|δδR / R(0)|

| δδR |

FIG. 5. The evolution of �R, �R=R�0�, and �m for the model
m�r� � ��r� 1�3 with the mode k=a0H0 � 315 in the case
where the coefficient b1 in Eq. (52) is not chosen to be very
small. The scalaron mode �Rosc dominates over the matter-
induced mode �Rind around the redshift z * 30.
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B. The region M2  k2=a2

Since the scalaron mass decreases as M / t��p�1�, the
modes which initially exist in the region M2 	 k2=a2 can
enter the regimeM2  k2=a2 during the matter-dominated
epoch. In this regime Eq. (44) is approximately given by

 � �F� 3H� _F�
k2

a2 �F ’
1

3
��m: (53)

Using the WKB approximation, the solution corresponding
to the scalaron mode is

 �Rosc �
�Fosc

f;RR
’ ct�2p�8=3 cos�c0kt1=3�: (54)

The matter-induced special solution of Eq. (53) is approxi-
mately given by

 �Find ’
a2

3k2 ��m: (55)

From Eq. (43) we obtain the following approximate
equation under the condition j�Foscj  j�Findj:

 

��m � 2H _�m �
4
3 � 4�G�m�m ’ 0: (56)

Relative to the regionM2 	 k2=a2 the growth rate of �m is
enhanced and is given by

 �m / t��
����
33
p
�1�=6�: (57)

Hence the matter-induced mode evolves as

 �Find / t�
����
33
p
�5�=6; �Rind / t�2p��

����
33
p
�17�=6: (58)

Then the evolution of the perturbation �R � �Rosc �

�Rind, relative to R�0�, is given by

 

�R

R�0�
’ b1t

��2p�2�=3 cos�c0kt
1=3� � b2t

�2p��
����
33
p
�5�=6:

(59)

As long as the scalaron mode is suppressed at the begin-
ning of the matter era, the second term on the r.h.s. of
Eq. (59) dominates over the first one. In Figs. 4 and 5 the
sudden decrease of �R means that the system enters the
region M2  k2=a2 in which the evolution of �R is char-
acterized by �R / t�2p��

����
33
p
�17�=6. At this stage �R=R�0� is

no longer proportional to �m.

C. The matter power spectra

The evolution of the matter perturbation is given by
�m / t2=3 for M2 	 k2=a2 and �m / t�

����
33
p
�1�=6 for M2 

k2=a2. We shall use the subscript ‘‘k’’ for the quantities at
which k is equal to aM, whereas the subscript ‘‘�’’ is used
at which the accelerated expansion starts ( �a � 0). While
the redshift z� is independent of k, zk depend on k and also
on the mass M.

In Table II we show numerical values of z� and zk for the
mode k=a0H0 � 300 in the model m�r� � ��r� 1�p. For

smaller p the period of a nonstandard evolution of �m
becomes longer because zk tends to be larger. We also
note that, for larger k, zk gets larger. This means that the
duration of the period of an additional amplification of �m
is different depending on the mode k, see Fig. 6. Since the
time tk has a dependence tk / k�3=�3p�1�, the matter power
spectrum P�m � �k

3=2�2�j�mj2 at the time t� shows a
difference compared to the case of the �CDM model:

 

P�m�t��

P�CDM
�m

�t��
�

�
t�
tk

�
2���

����
33
p
�1�=6���2=3��

/ k�
����
33
p
�5�=�3p�1�:

(60)

While the galaxy matter power spectrum is modified by
this effect, the CMB spectrum is hardly affected except for

TABLE II. The redshifts z� and zk in the modelm�r� � ��r�
1�p for the mode k=a0H0 � 300. We also show analytic and
numerical values of �n�t��, which are denoted as �n�A��t�� and
�n�N��t��, respectively. The values �n�N��t0� are obtained by
numerically integrating perturbation equations up to the present
epoch.

p z� zk �n�A��t�� �n�N��t�� �n�N��t0�

2 0.95 9.62 0.106 0.107 0.108
3 0.86 4.83 0.075 0.074 0.077
4 0.81 3.25 0.057 0.056 0.061
5 0.78 2.49 0.047 0.045 0.053
6 0.76 2.03 0.039 0.035 0.044
7 0.75 1.72 0.034 0.028 0.039

0 . 0 0 1 0

0 . 0 1 0

0 5 1 0 1 5 2 0

k / (a
0
H

0
) = 6

k / (a
0
H

0
) = 3 0 0

k / (a
0
H

0
)=3000

|δδ
m

|

z

FIG. 6. The evolution of the matter perturbation �m in the
model m�r� � ��r� 1�2 for the modes k=a0H0 � 6, 300,
3000. The transition redshift zk increases for larger k. For the
mode k=a0H0 � 300 we have zk � 9:62.
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low multipoles around which an integrated Sachs-Wolfe
(ISW) effect becomes important [36]. Thus there is a
difference for the spectral indices of two power spectra,
i.e.,

 �n�t�� �

������
33
p

� 5

3p� 1
: (61)

Since zk becomes as close as z� for larger p, it is not
necessarily guaranteed that Eq. (61) is valid in such cases.
Moreover the estimation (61) does not take into account
the evolution of �m after z � z� to the present epoch (z �
0). In order to see the validity of the formula (61) we have
evaluated numerical values of �n�t�� as well as �n�t0�
integrated up to the present epoch. From Table II we find
that the estimation (61) agrees well with the numerically
obtained �n�t�� for p � 5. The difference appears for p �
6, but it is not significant.

After the system enters the epoch of an accelerated
expansion, the momentum k can again become smaller
than aM. Hence the k-dependence is not necessarily neg-
ligible even for z < z�. However we find from Table II that
�n�t0� is not much different from �n�t�� derived by
Eq. (61). Thus the analytic estimation (61) is certainly
reliable to place constraints on model parameters except
for p	 1.

Observationally we do not find any strong signature for
the difference of slopes of the spectra of LSS and CMB
[37]. If we take the mild bound �n & 0:05, we obtain the
constraint p � 5. It is interesting to recall that LGC are
well satisfied for p � 5.

Finally we shall discuss the integrated Sachs-Wolfe
(ISW) effect in the model m�r� � C��r� 1�p. In order
to confront the model with CMB it is convenient to study
the evolution of an effective gravitational potential � �
��� ’�=2 in the longitudinal gauge (
 � 0) [20,33].
Under the subhorizon approximation used in
Refs. [34,35] we obtain, from Eqs. (41) and (42), the
following relation

 � ’ �
3

2

a2H2

k2 �m�m: (62)

In the �CDM model the gravitational potential remains
constant during the standard matter era, but it decays after
the system enters the accelerated epoch. This leads to the
ISW effect for low multipoles of the CMB power spectrum.
In our f�R� model (16), the additional growth of matter
perturbations in the region z < zk changes the evolution of
�.

In Fig. 7 we plot the evolution of � in the models
m�r� � ��r� 1�p with the mode k=a0H0 � 4 for several
different values of p. For smaller p the gravitational po-
tential does not decay much because the duration of the
region z < zk gets longer. The models that cancel the ISW
effect by the additional growth of �m are consistent with
the CMB data [36], which means that the models with p �

2 are allowed. Hence the information coming from the ISW
effect of CMB does not provide strong constraints on the
model parameters compared to the galaxy spectrum dis-
cussed above.

V. CONCLUSIONS

We have discussed various observational signatures of
f�R� dark energy scenarios that satisfy both cosmological
and local gravity constraints. The f�R� models do not have
much freedom to fulfill all such constraints. Generally the
models need to mimic the �CDM model in a high-
curvature region where local gravity experiments are car-
ried out (R	 R0 �H2

0). The deviation from the �CDM
cosmology becomes important after the end of the matter-
dominated epoch in such viable models.

The models given in Eqs. (11) and (12) belong to such
viable classes that possess a de-Sitter attractor at R � R1 >
0 and satisfy the condition f�R � 0� � 0. The stability
conditions require that f;R > 0 and f;RR > 0 for R � R1.
In the models (11) and (12) either of these stability con-
ditions is violated in the region R< R1, but this is not
problematic as long as the Ricci scalar does not oscillate.
In Sec. II we discussed general properties about viable
f�R� models and proposed another simple model (21)
that can satisfy the conditions f;R > 0 and f;RR > 0 for
all positive R.

The model we have studied in this paper is given by
m�r� � C��r� 1�p �C> 0; p > 1�, where m and r are

0.75

0.80

0.85

0.90

0.95

1.0

1.1

0 5 10 15

p=1.5
p=2
p=3
ΛΛCDM

|ΦΦ
|

z

FIG. 7. The evolution of the effective gravitational potential
� � ��� ’�=2 in the model m�r� � ��r� 1�p for the mode
k=a0H0 � 4 with three different values of p. Note that � is
initially normalized as unity. We also show the evolution of � in
the �CDM model. For larger p the decay of the gravitational
potential is more significant. When p � 2 the models are well
consistent with CMB low multipole data.
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defined by Eq. (3). In the high-curvature region character-
ized by R	 R0, this recovers the models (11) and (12)
with finite p and also the model (21) with p! 1.
Moreover the departure from the �CDM cosmology can
be captured by the growth of the quantitym as the solutions
approach the de-Sitter fixed point on the line r � �2. In
fact this model possesses rich observational signatures
relevant to SN Ia, galaxy clustering, and CMB.

The equation of state of dark energy shows a peculiar
divergent behavior with a cosmological boundary crossing.
When the deviation from the �CDM model is significant,
the redshift zc at which such a divergence occurs can be as
close as a few. This may be detectable in future observa-
tions of SN Ia and weak lensing. Using observational
bounds on the equation of state of dark energy at present
(z � 0), we found that the models with p � 2 are consis-
tent with the data. The deviation parameter m is con-
strained to be m�z � 0� & 0:3. We also showed that the
models with p � 2 satisfy sound horizon constraints of the
CMB.

We have discussed the evolution of matter density per-
turbations �m together with the perturbation in the Ricci
scalar R. The mass squared of the scalaron, M2 ’

1=�3f;RR�, is much larger than H2 and can cross the value
k2=a2 during the matter era. In the early epoch with M2 	
k2=a2 the matter perturbation evolves as in the standard
way, provided that the oscillating mode �Rosc (scalaron) is
suppressed relative to the matter-induced mode �Rind.
However the scalaron dominates at early epochs unless
the coefficient of this mode is chosen to be very small so
that �R is always as close as �Rind. The dominance of the
scalaron means the violation of the condition (4), which
leads to an instability of solutions in the matter-dominated
epoch. This property persists in the radiation era and hence
it poses a problem about how an overproduction of the
scalaron is avoided in the early universe.

In the late epoch characterized by M2  k2=a2 the
matter perturbation evolves in a nonstandard way, see
Eq. (56). This leads to additional growth of matter pertur-
bations depending on the wave number k. Considering the
evolution of �m by the time t� at which an accelerated
expansion sets in, the difference about spectral indices of
the power spectra between galaxy clustering and CMB is
given by Eq. (61). We also integrated perturbation equa-
tions numerically by the present epoch and found that the
estimation (61) agrees fairly well with numerical values.
Using the rather mild criterion �n & 0:05, the constraint
on the parameter p is given by p � 5. We have also studied
the evolution of an effective gravitational potential and
found that the integrated Sachs-Wolfe effect in low multi-
poles of the CMB does not provide a stronger constraint
than the one coming from LSS.

It will be certainly of interest to place stringent con-
straints on the model parameters using future high-
precision observational data. We hope that this allows us

to find some signatures about the deviation from the
�CDM model. In particular the detection of unusual be-
havior of the equation of state of dark energy can be strong
evidence for f�R� gravity models.
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APPENDIX

In this appendix we present the perturbation equations
convenient for numerical purposes. We neglect the contri-
bution of radiation, i.e., x4 � 0. Using the dimensionless
variables given in Eq. (27) and introducing a new quantity
� ~F � �F=F, Eqs. (43) and (44) can be written as

 �00m �
�
x3 �

1

2
x1

�
�0m �

3

2
�1� x1 � x2 � x3��m

�
1

2

��
k2

x2
5

� 6� 3x2
1 � 3x01 � 3x1�x3 � 1�

�
� ~F

� 3��2x1 � x3 � 1�� ~F0 � 3� ~F00
�
; (A1)

 

� ~F00 � �1� 2x1 � x3�� ~F0 �
�
k2

x2
5

� 2x3 �
2x3

m

� x1�x3 � 1� � x01 � x
2
1

�
� ~F

� �1� x1 � x2 � x3��m � x1�
0
m; (A2)

where a new variable, x5 � aH, satisfies

 x05 � �x3 � 1�x5: (A3)

Note that the perturbation �R is given by

 �R � 6H2 x3

m
� ~F: (A4)

The evolution of the Hubble parameter is known by solving
the equation

 

H0

H
� x3 � 2: (A5)

Solving Eqs. (A1) and (A2) together with the background
equations (28)–(30), (A3), and (A5), numerically, we find
the evolution of �m and �R.
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