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We calculate the magnetic field generated during bubble collisions in a first-order electroweak phase
transition that may occur for some choices of parameters in the minimal supersymmetric standard model.
We derive equations of motion from the electroweak Lagrangian that couple the Higgs field and the gauge
fields of the standard model sector. We show that for sufficiently gentle collisions, where the Higgs field is
relatively unperturbed in the bubble overlap region, the equations of motion can be linearized so that in the
absence of fermions the charged W= fields are the source of the electromagnetic current for generating the
seed fields. Solutions of the equations of motion for the charged gauge fields and Maxwell’s equations for
the magnetic field in O(1, 2) space-time symmetry are expressed in closed form by applying boundary
conditions at the time of collision. Our results indicate that the magnetic fields generated by charged W=
fields in the collision are comparable to those found in previous work. The magnetic fields so produced

could seed galactic and extra-galactic magnetic fields observed today.
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I. INTRODUCTION

Identifying the source of the observed large-scale galac-
tic and extra-galactic magnetic fields remains an unre-
solved problem of astrophysics. One of the interesting
possible sources is cosmological magnetogenesis, where
the seed fields would have arisen during one of the early-
universe phase transitions: the quantum chromodynamic
chiral phase transition that led from the quark-gluon
plasma to our present hadronic universe or the much earlier
electroweak phase transition (EWPT) in which the Higgs
and the other particles acquired their masses. See Ref. [1]
for a comprehensive review.

Here we consider magnetogenesis of the EWPT, which
most likely requires a first-order phase transition.
Electroweak baryogenesis is a closely related problem of
great interest and one requiring a first-order phase transi-
tion also. Although it is generally believed that there can be
no first-order EWPT in the standard model [2], there has
been a great deal of activity in supersymmetric extensions
[3], and for certain minimal extensions of the standard
model there can be a first-order phase transition [4-6].
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One such extension that allows a first-order phase transi-
tion requires a right-handed stop, the partner to the top
quark, with a mass similar to the Higgs [4,7]. Other models
for CP violation and baryogenesis have been proposed,
including two-Higgs models [4—-6] and leptoquarks [8].

Limits on parameter space of the minimal extension of
the standard model (MSSM) placed by electric dipole
moment measurements and dark matter searches allow a
first-order electroweak phase transition that could lead to
successful electroweak baryogenesis [9] and the possibility
that we are exploring, namely, that magnetic seed fields
responsible for the large-scale magnetic fields seen today
are created during the era of the EWPT. Accordingly, we
consider the production mechanism of magnetic seed fields
in a MSSM using an equation of motion (EOM) approach
similar to one we developed in studying bubble collisions
in the QCD phase transition [10].

The most detailed previous research on the study of
magnetic fields during the EWPT along these lines was
based on an Abelian Higgs model [11-13], in which the
electromagnetic (EM) field originated from gradients in the
Higgs phase when bubbles of the broken phase collided
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and overlapped. In this paper, we calculate the magnetic
field instead by starting from the MSSM using results of
[14,15], where we derive the EOM directly from the elec-
troweak (EW) Lagrangian and express the EM current
explicitly in terms of the charged W™ fields appearing in
the Lagrangian.

For cosmological magnetogenesis, the characteristics of
the primordial magnetic field are vastly modified during
cosmic evolution to the present day. Much progress has
been made in modeling this evolution in magnetohydro-
namics, first solving the equations for the period leading to
the formation of galaxies and galactic clusters considering
all relevant dissipative processes such as viscosity, and
then for the evolution of these structures including the
possibility that they provide a large-scale dynamo. Such
studies have led to quantitative predictions for magnetic
field energy and coherence length at the present epoch.
One detailed study of possible galactic or extra-galactic
magnetic fields evolving from the EWPT showed that
random seed fields would not create such large-scale mag-
netic fields [16]. Results of more recent studies [17], how-
ever, are more optimistic and support the possibility that
galactic cluster magnetic fields may in fact be entirely
primordial in origin. Our main interest in the present
work is the mechanism that might have led to the creation
of the seed fields during the EWPT rather than their cosmic
evolution.

For our present exploratory work, the precise nature of
the extension of the standard EW model is not needed as
long as it supports a first-order phase transition. We begin,
in Sec. II, by reviewing the derivation of our EOM and
explaining some of the considerations motivating our nu-
merical work. In Sec. III we review the previous work done
in the Abelian Higgs model. In our work as well as that of
Refs. [11-13], bubble nucleation and growth is driven by
the dynamics of the Higgs field with an effective potential
allowing a first-order phase transition, building on the
classic work of Coleman [18]. Fermions are not explicitly
considered. In Sec. IV we make use of the observations of
Sec. II to simplify the theory along lines previously dis-
cussed in Ref. [14], concentrating on a regime in which the
bubble collisions may be considered “gentle.”” Restricting
the application to gentle collisions has the advantage that
the EOM linearize and display a more transparent connec-
tion to the work of [11-13]. A closed form solution of our
EOM is given in Sec. V, and the results of our calculation
of the corresponding seed fields are given in Sec. VL.

II. EQUATION OF MOTION APPROACH TO
MAGNETIC FIELD CREATION DURING THE
EWPT

Our ultimate goal is to determine the magnetic seed
fields by solving EOM derived from the MSSM, a goal
shared with Ref. [15]. Both works derive EOM from a
MSSM Lagrangian consistent with a first-order phase tran-
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sition and then examine, by solving these EOM, the EM
fields produced by the current of charged gauge fields of
the standard model (SM). Beyond this, there are important
distinctions. For example here we focus on a regime where
linearized equations are appropriate, whereas in Ref. [15]
the full nonlinear dependence on the W fields is retained
assuming an I-spin ansatz for the W and for the EM field.
Additionally, here magnetic fields generated in bubble
collisions are obtained, whereas in Ref. [15] EM fields
generated in nucleation are studied. An additional differ-
ence is that in Ref. [15] the right-handed stop appears in the
coupled EOM, whereas in the present work the EOM are
completely projected onto the SM sector.

A. MSSM EW equations of motion

In this section we summarize the derivation of our
equations of motion [14]. As discussed above, we assume
that our MSSM Lagrangian supports a first-order phase
transition. The MSSM Lagrangian, written generically, is

LMSSM — ploy g2
+ lepton and quark terms of SM sector

+ terms of super symmetric sector,

| R 1
£1=—ZWWW“ — 3 Bu B,

L= |<iaﬂ - %7" W, - %/BM>(I)|2 —V@), (1)
with
Wi, = 0, Wi — 0, W, — ge Wi W,
B,,=0d,B,— 9,8,

where the W/, with i = (1, 2), are the W= fields, @, is the
Higgs field, 7/ is the SU(2) generator. The electromagnetic
and Z fields are defined as

1 /3
Ve e
- 1 3 _
= W(é’wﬂ g'B,). (3)
The effective Higgs potential V(®P) is not known at the
present time, depending as it does on unknown parameters
of the MSSM as well as the properties of the plasma in the
early Universe at the time of the EW phase transition. The
various parameters are discussed in many publications [4].
Fortunately, the specific form of V(®) is not relevant for
the purposes of this paper, beyond the requirement that it
should produce a first-order phase transition as it would in
an underlying MSSM extension including a light right-
handed stop [7]. Later, in an illustrative calculation, we
use a simple form for V(¢) taken from Ref. [18]. For our
calculations we I=

2

AEM —

need g = e/sinfy = 0.646, g =
gtanfy, = 0.343, and G = gg'/+/g* + g’* = 0.303.
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In the picture we are using, the Higgs field plays a
dynamic role in EW bubble nucleation and collisions.
Our form for the Higgs field is

. 0
2@ =y ) @
and thus
1 — i 2
A ((W"_ e )¢<x). 5)

We also use the definitions

B (x) = p(x)e®W), lp(x)* = p(x)*
With these definitions £2 is (j = (1, 2, 3))
L2=0,¢"0 ¢ + (i(0,0)p —id*d, )
X (~aWi + g'B,)/2+ 670 (3) WP
+ (%)232 - %g/w3 : B} — V(®). (©)

To facilitate achieving our goal, to isolate and explore
the magnetic seed fields arising from nonfermionic cur-
rents of the SM sector, the relevant EOM are obtained by
minimizing the action,

5 f AL+ £2] =0, 7

Making the projection into the SM sector requires that all
the supersymmetric partners, particularly a light stop, and
their couplings as they appear in the Lagrangian be prop-
erly and fully accounted for within the effective potential.

The result of doing this yields the following set of
equations, where our metric is (1, —1, —1, —1). The modu-
lus p of the Higgs field satisfies the ““p-equation,”

2
0=09%p(x) — gzp(x)[Wl - W+ W? - W?]
P+ L ®)

where the quantity ¢, is defined in terms of the phase of the
Higgs field, the B field, and the W? field as

!
v, = 0,0 + 58, - Jw. )

It obeys a “®-equation,”
0= 9"p(x)4,(x), (10)
with the B field satisfying a ““B-equation,”
0=09%B, — 9,0 B+ p(x)?g'¢,(x). (11)

Finally, the W field satisfies the two “W-equations,”
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0= azwij — 3,0 " w3 — P(x)28¢u(x) - gESjk[Wzlja - W/
+2W - WE — Wha, W] + gPey Wi em Wik W
(12)

for i = 3, and
. | . .
0=0W., —9,0- Wi+ ip(x)ngW,ﬂ - geijk[W,lﬁa - W/

+2WI - OWE — WL, WrE] + gle Wi ekm Wik W
(13)

for i = (1, 2). In the absence of knowledge of the coupling
parameters in L, it is reasonable to use a phenomenologi-
cal effective potential consistent with the characteristics of
the phase transition of interest.

These then are the exact EOM in our MSSM model that
we use to study magnetic seed fields arising from EM
currents in the SM sector. Quantifying the contributions
of the supersymmetric partners to these currents will be-
come compelling once stronger limits on their coupling
parameters are established. It is perhaps reassuring to note
that the methodology developed below generalizes in a
straightforward manner to the case where these fields are
explicitly coupled in the EOM.

B. First-order electroweak phase transition

As we indicated, in this paper we study the magnetic
field generated during a first-order electroweak phase tran-
sition by finding solutions of the equations of motion
derived above in the particular regime of gentle collisions.
Since the basis of our theory involves complicated coupled
nonlinear partial differential equations (PDEs), we would
like to begin by illustrating some of the central ideas by
discussing them within a model developed by Coleman
[18] that is conceptually transparent but contains much of
the complexity of the actual electroweak transition that we
wish to examine.

In Coleman’s model, the Higgs field is a real scalar field
¢ (O = 0) satisfying the nonlinear PDE

Pp() + Bx) oy =0, (14)
d¢?

The effective potential V(¢), which specifies the depen-
dence of the energy of vacuum on the scalar field, has a
metastable minimum for a value of ¢ = ¢ separated from
a second minimum at ¢ = ¢, by a barrier. Coleman
identifies the two minima with “true’” and “‘false’ states
of the vacuum, respectively. In his model, a symmetry
breaking term is added to V(¢) to give the true vacuum a
slightly lower energy. Initially, the system is imagined to
exist in the false vacuum for which (¢) = ¢ but over time
makes a transition to the true vacuum in which (@) = ¢,.
Coleman confirmed that in this model the system moves
from the false to true vacuum by bubble nucleation as one
expects of a first-order phase transition. He showed that
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bubbles nucleate as tunneling (instanton) solutions of
Eq. (14) connecting ¢ in the true and false vacua in
Euclidean space-time, and he was able to calculate the
nucleation probability.

During the actual electroweak phase transition in the
early Universe, the Higgs couples to the other particles in
the electroweak theory, and as a result these particles
acquire mass in the true vacuum as the value of (@)
changes from ¢; = 0 to ¢, > 0. Once nucleated, bubbles
grow and collide as solutions of Eq. (14) in Minkowski
space-time. Coleman did not consider the physics of colli-
sions, but these collisions are of central interest in our work
because it is through them that the magnetic field will be
generated.

We have modeled bubble collisions by obtaining nu-
merical solutions of Eq. (14) in 2 + 1 dimensions to illus-
trate an important feature of collisions. We assume that the
bubbles nucleate at rest at time ¢ = 0 with radii r(z = 0) =
Ry small compared to their radii r(¢,) = R, at the time of
collision. For 0 < ¢ < t.. the magnitude of the scalar field is
constant at ¢ = py =5 (in arbitrary units) throughout
each bubble, dropping rapidly to zero at its surface. Once
the bubbles collide, the scalar field begins to fluctuate
around the value p(. The fluctuations are greatest for r =
R, just after the surfaces first touch, corresponding to the
situation shown in Fig. 1. A vertical slice through the
symmetry axis is shown in Fig. 2. It is seen that at this
point the scalar field fluctuates by as much as 30% from
p = po. These fluctuations rapidly damp out and essen-
tially disappear once the bubbles interpenetrate with r(¢) =
Ry + R,.

For the purposes of this paper it is important that in the
collision these fluctuations in the scalar field remain small
compared to py. We refer to a collision of this character as
a gentle collision. We will make use of the observation that
collisions between bubbles tend to be gentle to guide our
approach to show how magnetic field generation arises as a
result of charged W= dynamics as the bubbles collide.

To model the dynamics of a first-order electroweak
phase transition of the early Universe, one needs to con-
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FIG. 1. Two bubbles colliding in the Coleman model as ex-
plained in the text. The distance scale is in arbitrary units.
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FIG. 2. A vertical slice through the colliding bubbles shown in
Fig. 1 as explained in the text. The distance scale is in arbitrary
units.

sider the dependence of the effective potential V(®, T) on
temperature 7 (see Ref. [19] for a comprehensive phe-
nomenological study of the kinetics of cosmological first-
order phase transitions such as the EW phase transition in
terms of such an effective potential). Just as imagined in
Coleman’s toy model, the vacuum state of the Universe
corresponds to a local minimum in V(®, T). For T greater
than a critical temperature 7., the minimum in the effective
potential is at (®) = 0. At T, V(®, T) develops a degen-
erate second minimum at a value (®) > 0 separated from
the first by a barrier. As the Universe continues to expand
and cool, the second minimum becomes deeper, meaning
that the Universe begins to tunnel from the original, now
metastable, false vacuum to the true vacuum by bubble
nucleation. In Ref. [19] T, is estimated to be T, =
166 GeV. Because the two minima are separated by a
barrier, the transition is delayed, a process referred to as
supercooling. As the phase transition develops, the bubbles
expand with a speed v and eventually completely merge, at
which point the phase transition is completed. The terminal
speed depends on the parameters of the phase transition but
appears to be quite low, perhaps v,,,; = .1c, as discussed
in Ref. [20].

Our theory is more complicated than that of Coleman
since it is based on the MSSM, with the Higgs coupled to
the other fields of that theory. We note here, by reference to
Eq. (8), that the gentle character of the collision illustrated
in Fig. 2 may change when the W fields become large, with
the Higgs field showing strong variation in the collision
region. We refer to collisions of this character as violent
collisions, the subject of a future publication.

ITI. BUBBLE COLLISIONS IN THE ABELIAN
HIGGS MODEL

The Abelian Higgs model has been of interest as a
prototype for the generation of magnetic fields in the early
universe in collisions of bubbles during a first-order EW
phase transition [11-13]. The Lagrangian of the Abelian
Higgs model describes a complex scalar field coupled to
the EM field AEM. It corresponds to the Lagrangian Eq. (1)
in the Abelian sector, formed by eliminating the W fields,
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identifying AEM with the field B,,, and relating the electric
charge e to coupling parameter g’ as e = g’/2. In this limit,
the equations of motion for the Higgs and magnetic field
may be read off from the results in Egs. (8), (10), and (11),
ie.,

3" p(x)’ ¢, (x) = 0, (15)
9’B, — 9#9,B,, + 2ep(x)*,(x) = 0, (16)
and
A%
Pplx) = I + p@ 5 =0 (7)
The quantity ¢, is now
U, (x) = 0,0 + eAEM, (18)

In this case, the phase transition is driven by the dynamics
of the Higgs field along the lines studied by Coleman [18]
and discussed in connection with Figs. 1 and 2 in the
previous section.

A. Gentle bubble collisions in the Abelian Higgs model

In their analysis of the Abelian Higgs model, Kibble and
Vilenkin [11] suggested one way in which magnetic fields
might be generated as bubbles collide. They considered the
regime of gentle collisions, where p(x) remains constant,
or nearly constant, in the region of overlap of the colliding
bubbles. They were able to gain insight into the generation
of magnetic fields in this case by making an expansion
about point p(x) = py, which we shall refer to as the
Kibble-Vilenkin point. For the case of gentle collisions,
we can assume the following expansion:

W, (x) = ayV + a2<//§,2) +...,
(19)

p(x) = po + adp(x),

where a is the magnitude of p, — p(x) and is small by
assumption (refer to the discussion in connection with
Figs. 1 and 2). Substituting the expansion into the equa-
tions of motion and requiring that the equations be satisfied
at each order in the expansion parameter a, the relevant ®
and B equations give, to leading order in a, the following
results:

(92 + 2e2pR)yl) =0, (20
vyl =0, QD

where now
gV = 9,0 + eABMD, (22)

From these equations one can easily derive the equations of
Kibble and Vilenkin [11] in the axial gauge for AEM.

PHYSICAL REVIEW D 77, 023501 (2008)
B. Bubble collisions and O(1, 2) symmetry

Prior to nucleation, the dynamics is most easily formu-
lated in the Euclidean metric, which is O(4) symmetric.
After nucleation, the bubble expands in Minkowski space-
time, which is O(1,3) symmetric [18]. For collisions,
Kibble and Vilenkin study the case of two bubbles
nucleated simultaneously at time ¢ = O at positions sym-
metrically located about the origin on the z— axis. In the
notation of Ref. [13], the radii of the bubbles at nucleation
are R,. Once nucleated, the bubbles expand with radii r(z)
according to

r(t)> = R} + 2. (23)

The bubbles collide on the z axis at t = ¢, with radii
r(t.) = R,, and hence the nucleation points are at z =
*R.. In this system, the collision of two bubbles has the
symmetry O(1, 2) and may be expressed in the coordinates
(7, z), where

=7

(24)

Kibble and Vilenkin formulated their Abelian Higgs
model in terms of the variables (7,z) and found the
O(1,2) symmetric solutions of Egs. (20) and (22). They
demonstrated from them that when the phase of the Higgs
fields is initially different within each bubble an axial
magnetic field forms as the bubbles collide and that this
field has the structure of an expanding ring encircling the
overlap region of the colliding bubbles.

— 52 _y2'

C. Finite wall speed and plasma conductivity

The Abelian Higgs model has the feature that the bub-
bles accelerate freely to the speed of light along space-time
hyperboloids. Corrections come from a variety of sources
and were discussed comprehensively in Refs. [11-13], and
the effects of these corrections on the subsequent evolution
of the magnetic field was estimated. We discuss these
results briefly next.

One of the important corrections is that bubble walls
reach a terminal speed v,,,; << 1 as the bubbles experience
collisions with constituents of the plasma. Another impor-
tant correction is the conductivity of the medium. The
effects of finite conductivity lead to decay of the currents
(and therefore the magnetic field) with a characteristic time
t; = o/m? [11]. However, with values of conductivity that
are believed to characterize the plasma, currents and mag-
netic fields persist on time scales that are long compared to
those of the symmetry breaking scale.

Another consequence of the large conductivity arises
from the following considerations. Since the magnetic
fields propagate with the speed of light, in the absence of
conductivity, for slowly expanding bubbles these fields
would very quickly escape from the region of the bubble
collision and move into the surrounding false vacuum.
However, because of the large conductivity the magnetic
fields become ‘““frozen” or confined to the interior of the
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bubbles. This is particularly important in the case of slowly
moving bubble walls, where this effect prevents the escape
of magnetic flux into the false vacuum. Kibble and
Vilenkin showed that the loss of flux is negligible provided
that oR,.v > 1, where R, is the bubble radius at collision
time.

IV. MAGNETIC FIELD GENERATION IN THE
MSSM IN GENTLE COLLISIONS

The main difference of our current work compared to the
Abelian Higgs model arises from the fact that in our
MSSM model the source of the current is the charged
gauge fields. These W= originate in the plasma and popu-
late the bubble by passing through the bubble wall follow-
ing nucleation. As they do this, they acquire mass and
thereby lose kinetic energy. We envision them to cool as
the bubble expands, thereby occupying a low-energy
mode, the occupation of which grows as the bubble ex-
pands. We assume in this work that early in the phase
transition all such W* entering the bubble drop into this
mode, which has a high degree of coherence, much like a
state of electrons in a superconductor (except that the W
are bosons). It is quite different from the more familiar
thermal modes, which are incoherent.

As we shall see, this mode plays a special role in the
theory. A significant consequence of the strong coupling to
the Higgs field is that the W fields follow the evolution of
the Higgs field, and this is described by our EOM. Because
the W, and other modes not considered explicitly in this
work, communicate with the thermal plasma and are cre-
ated in the same process of spontaneous symmetry break-
ing that forms the bubble, the initial conditions of this
mode are subject to a certain randomness over which the
magnetic field must eventually be averaged. We solve our
EOM for the magnetic field in gentle bubble collisions for
the MSSM in parallel to the Abelian Higgs model, ac-
counting for this randomness in our choice of the boundary
conditions at the time of collision, in Kibble-Vilenkin
geometry. From our results we will be able to ascertain
the relative importance of the charged W= in the MSSM as
compared to the Higgs mechanism of the Abelian Higgs
model as a source of magnetic field generation. One of our
important conclusions is that this randomness does not
wash out the magnetic field but amounts to a simple
numerical factor, which we compare to a corresponding
one of Refs. [11-13].

It is our eventual goal to determine the magnetic field
collisions between individual bubbles possessing O(3)
symmetry as they would when evolving from nucleation
with a finite wall velocity. Thus, in the future we will
examine the more numerically intensive case of collisions
by solving the equations of motion numerically. Numerical
methods for dealing this situation will be reported in forth-
coming publications [21].
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Here, we first derive, in Sec. IVA, the EOM in the case
of gentle collisions. In the MSSM, the EOM are compli-
cated nonlinear PDE coupling the W, B, and ¢ (Higgs)
fields. From the solution of these equations, the physical Z
and A™M fields are determined by Eq. (3). As shown in
Sec. IV B, this leads in turn to an expression for the
electromagnetic current in terms of the W* and to a
corresponding Maxwell equation.

A. EOM for gentle collisions in electroweak theory

As indicated, we consider here only the regime of gentle
collisions in the context of the full MSSM. This leads to a
linearized theory giving EOM for these fields. Although
the linearization leads to the same limitations as the
Abelian Higgs model discussed at the end of the last
section, fortunately the corrections for the finite wall
propagation and the finite conductivity of the plasma are
easily estimated since the considerations are similar to
those of the Abelian Higgs model.

As in the Abelian Higgs model, the MSSM equations
simplify upon expansion about the Kibble-Vilenkin point,

p(x) = po + adp(x). (25)

The fact that ¢ and W (for d = (1, 2)) enter quadratically
in the p-equation places two important constraints on these
quantities: (1) ¢ and W? must have an expansion in odd
powers of a'/2, if we require the square of these quantities
be analytic in a; and, (2) expanding this equation in powers
of a'/2, we find that the terms of leading order for ¢, W1,
and W2 must vanish. This is most easily seen in the
Euclidean metric, from the fact that the square of each
enters with the same sign. However, the same must be true
in the Minkowski metric as well by analytic continuation.
In view of these considerations, ¢, and W¢ for d = (1, 2)
have the following expansion:

g, (x) = a2y + a3 PyD + L (26)

Wi = a'Pw)? + 32D 27)

It is natural that an expansion in the same parameter a'/?
remains appropriate for d = 3. However, there is no re-
quirement that the leading term vanish, so we take

WS = WE/O)B + a1/2w5,1)3 + a3/2w(,,3)3 + ... (28)

The B-, ©-, and W-equations then give, to first order in
all?
02
7+ R e Ju =0 29)

deyi) =0, (30)

where now
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(gz + g/2)1/2

5 zW.

P (x) = 9,0 — 31)
Comparing these equations to those in the Abelian Higgs
model, Eqgs. (20)—(22), we see that the Z field here plays
the same role as the EM field did in that case. Specifically,
in this case, the phase difference of the Higgs field now
determines the gauge field Z,, of Eq. (3) within the bubble
overlap region. Thus, for gentle collisions, the mathemati-
cal problem in leading order is no more complicated that it
was in the Abelian case.

Equations for wibd may be obtained by expanding the B-
and W-equations through order a'/2. For d = 1 or 2 (cor-
responding to d’ = 2 or 1, respectively), we obtain the pair

of equations
1)d D)d 03 (I)d'
0= 2w — 9,9 - whd + m2w4 — o[ gm (W wﬁL)
_ W(Vl)dlwfgﬁ) + (wﬂ)dlaﬂwg,oﬂ _ wﬁima“w(,})d/)

= (w9, w02 — B9, whed)]

— 4[(W(0)3)2W(Vl)d — 3. W(l)dWS/UB], (32)
where m is the mass of the W field and is given by
2,2
m? =208 (33)

2

The corresponding equation determining w4 for d = 3 is

a2w9)3 —d,0 - w3 = p%glpg), (34)

which can be solved once the driving term ! (x) has been
independently determined from the solution of Egs. (29)
and (30).

Note that knowledge of the field w(yo)d for d =3 is
required in order to solve Eq. (32). This field is found to
be the solution of

2w — 9,6 - w3 = 0. (35)

Because the mass term is absent in this equation, clearly
w3 cannot contribute to Eq. (28) inside the bubble where
m is nonzero. Thus w(®3 must vanish inside the bubble.
Consequently, the equations for wV! and wM? simplify
and become

0=09’w2— 9,0 w* + m*w?, (36)

and we see that for sufficiently gentle collisions, all rele-
vant equations are linear inside the bubble.

B. The electromagnetic current for gentle collisions

We may find the Maxwell equation for the electromag-
netic field AEM(x) by taking the linear combination of the
W) and B indicated in Eq. (3). Using Egs. (11) and (12),
an expression for the corresponding EM current j,(x)
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immediately follows. It consists of terms quadratic and
cubic in the three fields Wi(x).
This result for j,(x) may again be simplified by expand-

ing the AEM and W fields in powers of a!/. Letting a'" (x)
refer to the terms in the expansion of AEM(x), we find that

the leading term of AEM(x) is a'?(x), satisfying the follow-
ing Maxwell equation:

ggleub3
(gz + g/2)1/2
- wEP“a,,w“)#h + 2wha . gyihby

(37)

(l)ba . W(l)a

02a? — 9,0 -a® = (w!)

= 47j,(x).

From this we learn that the first nonvanishing contribution
to the EM current is of order ¢*/? and that it depends on the
components w7’ of the charged W' fields (i = 1 and 2),
calculated at order a'/2. Expressing the current in terms of
w' of Eq. (34), we find

4,”.]' (x) _ gg/eab3 (W(Vl)ba . W(l)a _ qul)aa wDpb
v (gz + g/2)1/2 v
+ 2w gyihh), (38)
It is easy to prove that this current is conserved,
d-jlx)=0, (39)

since w%(x) and w’(x) that appear in Eq. (38) commute
with each other and satisfy the equation of motion given in
Eq. (36).

One of the most important features of the derivation is
that the source current of the electromagnetic field is given
by the charged gauge W= fields. This is expected physi-
cally, and is in sharp contrast with the Kibble-Vilenkin
[11], Ahonen-Enqvist [12], Copeland-Saffin-Tornkvist
[13] picture, in which the source for the electromagnetic
field arises entirely from the Higgs.

It should be clear from the fact that the electromagnetic
current in Eq. (38) is antisymmetric in the labels a and b
that this current will vanish unless the field W%(x) for a =
1 has a different dependence on x from that for a = 2.
Thus, in an isolated bubble the electromagnetic current will
vanish if W!(x) and W2(x) in this bubble differ at most by a
phase. However, when two bubbles meeting this condition
collide, it is in general not the case that W¢(x) satisfying
the equations of motion will be proportional in the region
of overlap. This is the reason why magnetic fields are in
general produced when bubbles collide. We model this
below by solving the equations for W¢ with different sets
of boundary conditions on W¢ for a = 1 and a = 2.
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V. SOLUTION OF THE MSSM EQUATIONS OF
MOTION FOR BUBBLE COLLISIONS IN O(1, 2)
SYMMETRY

Following Kibble and Vilenkin, in Sec. VA we express
the EOM using the (7, z) variables and find the general
solution of the EOM for W= fields for a pair of colliding
bubbles. In Sec. VB we find the solutions for specific
boundary conditions. In Sec. V C we determine the current
corresponding to these solutions and find expressions for
the corresponding magnetic field by solving Maxwell’s
equations.

A. W equations with O(1, 2) symmetry

To express the equations of motion, Eq. (36), in terms of
the (7, z) coordinates we define

wi(x) = wi(r, 2), v =3,
(40)
thi('x) = xVWa(T’ Z)7 V= (07 1? 2))
with w¢ = —w?*. (In the remainder of the paper, we will

find it convenient to use « to denote the Lorentz index for
the values v = (0, 1, 2).) We then find

9 29 92
— A+ — ==+ m*|wx) =0 41
<87’2 TOT 972 )W (x) @1

and
9 49 9
-+ - —— 4+ m?wi(x) =0, 42
(67’2 7T 07% m )W () (42)

where we have used the fact that

za a

d
9 wi(x) = +3w“+7‘w
aT

3z =0. (43)

Equation (43) is a consequence of Eq. (36) and follows by
taking the four-divergence of this equation. Comparing our
results to the Abelian Higgs model, we see that w® takes
over the role of the electromagnetic vector potential and
d.w* takes over the role of —m/e®. In our theory, to find
the electromagnetic field we have the additional steps of
constructing the electromagnetic current in Eq. (38) and
then solving Maxwell’s equation, Eq. (37).

The solution of Egs. (41)—(43) is found by standard
methods. Expressing W¢(x) as a Fourier transform in z,
Egs. (41) and (42) give ordinary differential equations for
the 7-dependence, yielding

1 |2 (= ek sinw, 7
wiT, 2) = —4|= a| cosw,T —
T T ) —0 /W) W T

- bk<sinwk7 4 COS“’“))dk (44)

T

and
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“(r,2) L s (ci sinw,7 + dy cosw, 7)dk
wi (T, 7) = —,|— c w,T w,7)dk.
. T\NT J—00 /W) k k k k

(45)

We may use the auxiliary condition of Eq. (43) to relate the
coefficients of the linearly independent functions in the
expansion of w? and w*?. This gives

ic;, = arwi/k, (46)
and

idk = bkwk/k. (47)

B. Boundary conditions

As we indicated earlier, the relative phase of the two
charged W= fields is irrelevant for a single bubble, but in a
collision, this is not so. To be specific, let us assume that
when the colliding bubbles first touch at z = 0, the magni-
tude of the W¢ fields is the same in each bubble. It will
sometimes happen, though, that the sign of W_" is opposite
in the two colliding bubbles while W is the same sign. We
will refer to the first situation, where W, changes sign
across the point of contact at z = 0, with a superscript I,
and the second situation with a superscript II.

The two situations correspond to distinct solutions of the
EOM, each described by its own boundary condition. The
boundary condition BCI for the first situation is

d
—wi(r=1,2)=0, (48)

wil(r =t,z7) = we(),
or

where €(z) is the sign of z, and that for the second situation
BCII,
(o — — 9 i _ _
will(r =1t,2) = w, p widl(r =1,z =0. (49)
T

We note in passing that, from the definition of 7in Eq. (24),
the boundary conditions in Eqgs. (48) and (49) specify the

value of w? on a cylinder of radius /x> + y> = /2 — 12 =
b(1), where b(z) is the radius of the circle of intersection of
the colliding bubbles at time ¢.

The constant w in Egs. (48) and (49) fixes the density of
the charged gauge fields W= inside the bubble; charge
neutrality requires that w is the same for both ¢ = 1 and
a = 2. We determine w in the appendix in a model that
assumes the average number density of the W= quanta
inside the bubble (in the true vacuum) is constant in time
and equal to the number density of those W™ quanta in the
thermal plasma that can make a transition into the bubble
without violating overall energy-momentum conservation.
Since the charged gauge field inside the bubble is normal-
ized to the one outside the bubble, we should identify W¢
in Eq. (27) with w4 rather than with a!/2w{?,

From Egs. (44) and (45), we can determine the full (7, z)
dependence of the fields w?* and w* corresponding to each
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of the two boundary conditions. We will then calculate the
magnetic field from a collision of the two bubbles as an
indication of what magnetic fields can be expected when
they arise from the current of the charged W= fields.

Equating Eq. (45) and its 7 derivative at 7 = ¢, provides,
in a straightforward fashion, the coefficients a; and b, for
BCI and BCII. The solution is most direct for BCII, leading
to

wll(7,z) =0,

(50)

W,
wil(z, z) = — (sinmT + mt, cosmT),
mT

where T = 7 — t... For BCI, we may perform the sum over
the modes & to obtain

w

t lzl /1 0

< - —+—
T e(Z)®(T |Z|)j(; <f€ 6T>
X Jo(m\T? — 7d7’

1/1 )
+ 02| - T)—(— + —> sinmT,
m\t, 0T

wi(r,2) = — 2o - |Z|)<Jo(m\/T2 —2)

T

wi(r, z) =

(D
m

72 2
I Kt . TZ Ji(m\T? — zz)>.

More generally, one would expect W fields in bubbles
produced by spontaneous symmetry breaking to evolve
from randomly distributed initial conditions. Then the
particular set of phases in Eqgs. (48) and (49) is just one
of a continuum of possibilities, and the solutions of the
EOM for the W fields, as well as the corresponding EM
current, will depend on these phases.

It is easily shown that the initial conditions on the W
fields become, up to an irrelevant overall phase,

wi(r =t,,z) = w(cosy! + ie(z) siny?), .
(52)
wil(r = t,, 7) = w(cosy!! + ie(z) siny!l),

where the angle vy is defined in terms of the initial phases of
the W in the right- and left-hand bubbles, ¢; and ¢p,
respectively, as
1
Y= E(d)L — ¢r)- (53)
The solutions of the EOM for these initial conditions are,
again up to an irrelevant overall phase,

walr.9 = wil(n Jeosy! +ini(r)sing!,
wi (7, 2) = wil(1, 2) cosy" + iwl (7, 2) siny",

where wl,(7, z) and w!l(, z) are defined in Egs. (50) and
6.

We note in passing that the jump boundary conditions
employed here are suggestive of bubbles with thin walls
and consistent with the idea that the EWPT may be weakly
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first order [4]. The production of magnetic fields for bubble
collisions in the case that the phase transition is more
strongly first order is considered in Ref. [21].

C. Magnetic field

To obtain the magnetic field we need to solve Maxwell’s
equation, Eq. (37), with the current given by Eq. (38), and
with the W= fields appearing in the current given by the
solutions of Egs. (41)—(43). The solution of Maxwell’s
equation is completely determined once we specify the
boundary conditions on the AFM field with the W= fields
given above in Egs. (50) and (51).

In the (7, z) coordinates, the current in Eq. (38) may be
written in the form

Jo(x) = (7, 2), X0 j(7, 2)). (35)

Evaluating the current with W= fields satisfying the bound-
ary conditions given in Egs. (48) and (49) and using the
auxiliary condition of Eq. (43), we find that Eq. (38)
simplifies and becomes

/ 1 9 1
47j(7,z) = 88 <—27'w2” oW
/g2 + g/2 T 0z
awzll awzl
+ w T wll - > (56)
and
/ 9 zIl 9 zl
4drj.(1,2) = 58 <27w’ v 2 )
W or 0z

(57)

When evaluating the partial derivatives in Eq. (56) and (57)
using the expressions in Egs. (50) and (51) we do not let the
derivatives act on the 6 functions. We note that ignoring the
surface derivatives is quite consistent with current conser-
vation and should therefore lead to a valid expression for
the magnetic field throughout the bubble interior. The
current of the W fields with the initial condition of
Eq. (52) is proportional to the result in Eqgs. (56) and
(57), namely,

Jal7,2) = jol(7, 2) sin(y! — y*), (58)

again up to an irrelevant overall phase.
Because the electromagnetic current has the form given
in Eq. (55), the electromagnetic field has this form also,

a,(7, 2) = (a,(7, 2), xa(r, 2)). (59)

Maxwell’s equation becomes quite simple in the (7, z) with
the axial gauge, a, = 0, namely,
82
——al(r,2) = 47j(x, 7). (60)
0z
Applying the boundary conditions on the a(, z) field,
namely, a(z., z) = 0 and d,a(7 = 0, z), we find
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a(t,z) = —47sz d7’ fz Jj(7, 7M)d7". (61)

The magnetic field B! is the curl of A' EM where A! M =
(xa(7, ), ya(7, z), 0) in the axial gauge with a(7, z) given in
Eq. (61). Thus,
B =0, B* = —4my fz j(7, 2))dz,
. - (62)

B = 47Txf j(7, 2)d7.

Clearly, as in the work of Kibble and Vilenkin, the B field is
entirely azimuthal, encircling the axis of collision.

VI. NUMERICAL RESULTS

In this section we compute the magnetic field using the
theory developed above, which assumes a nonconducting
medium o = 0 and a terminal wall speed v,; = 1. We
will compare our magnetic fields to the results obtained in
the Abelian Higgs model under the same assumptions.

Although, as we admitted earlier, the assumptions of
o = 0 and vy,; = 1 are unrealistic for the actual EWPT,
the corrections have been thoroughly studied in
Refs. [11,12]. The corrections are therefore well-
understood, and they will be easy to apply to our results
since they are not specific to the source of the electromag-
netic current. We will also do this below.

We first show our azimuthal field B? using our results in
Egs. (48), (49), (56), and (62). The mass appearing in the
expressions for the W= fields is of course the mass of the W
boson, my, = 80.6 GeV. To facilitate the comparison to
the Abelian Higgs model in Ref. [12], we will assume, as
there, that bubbles nucleate at points symmetrically placed
on the z-axis at =R at time ¢ = 0, that they expand from
the point of nucleation with a speed approaching the speed
of light, and that they collide at time t = ¢, = R. They
present their results in terms of the time after collision,
which we will call &¢, so that t =tc + 6t and 7=

We write the overall normalization of the electromag-
netic current by combining the factor containing the cou-
pling parameters appearing explicitly in Eq. (56) and the
square of the normalization of the W* fields appearing
explicitly in Egs. (48) and (49). This normalization is thus

/

2 88
Using the values of g and g’ quoted below Eq. (3) and the

value of w specified in Eq. (A5) of the appendix, we find
that Eq. (63) becomes

(63)

w

/
w288~ 385+ 1.36T, GeV = 2.32my, (64)

taking 7, = 166 GeV from Ref. [19].

PHYSICAL REVIEW D 77, 023501 (2008)

Figure 3 shows our calculated field at a sequence of
times 6t after the time of collision assuming that the
bubbles nucleated at a distance of *10 from the origin
(R = 10). The magnetic field shown in this figure is the
value of the azimuthal field in the symmetry plane, which
is the plane perpendicular to the axis of collision at the
point where the bubbles first collide. Distance and time are
expressed in units of 1/m,, and the magnetic field in units
of m3,. It is clear that the strength of the field is largest in
the outermost region of the surface of the expanding over-
lap region and that this region narrows as the bubble
expands. The fact that the speed of expansion can be
superluminal is not in contradiction with relativity, as
discussed in Ref. [13].

This is to be compared to the result in the Abelian Higgs
model, shown in Fig. 4. A convenient expression for the
magnetic field is given in Eq. (29) of Ref. [13]. We have
taken [12] 6, = 1, the charge e = 1, again expressing
distance and time in units of inverse mass and the magnetic
field in mass squared, where the mass in this case is that of
the vector boson in that model.

There are several points to be made from the comparison
of Figs. 3 and 4. The first point is that the magnitude of the
magnetic field in the present model is about the same size
as the one obtained in the Abelian Higgs model. This is the
case even though the description of the physics is quite
different in the two cases, with the source of the EM
current in the present model being charged gauge bosons
that originate in the plasma. Once these W* pass through
the bubble wall they (1) evolve in space and time according
to our equations of motion and do so coherently with the
Higgs field to which they couple; and, (2) populate the
bubble preserving the number density to the extent allowed
by overall energy-momentum conservation, as discussed in
the appendix.

Secondly, it is clear that the magnetic field extends more
deeply into the collision region in our theory, which makes
the volume-averaged azimuthal field in the surface of the
ring even larger than it is in the Abelian Higgs model. This

B(D
mgy,
A
3 o
N '\
2 W by
" [ R | |
SN v |
1 - Y /\\ll/ l,|
he - :/\l/ [N ||
AT
BEEE AT K] 20, 25 30 9Mw
v u
-1 \l

FIG. 3. Magnitude of the azimuthal magnetic field calculated
in the theory of the present paper. The field is shown as a
function of distance p from the axis of collision in the symmetry
plane at time 6¢ = 5, 10, 15, and 20.
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FIG. 4. Magnitude of the azimuthal magnetic field calculated
in the Abelian Higgs model. The field is shown as a function of
distance p from the axis of collision in the symmetry plane at
time 6t = 5, 10, 15, and 20.

possible source of enhancement is however mitigated by
the fact that the finite conductivity o damps the magnetic
field in the interior of the ring. The damping is effective
beginning at depth 8 p,,, from the surface of the ring,

o
OPring = 57— (65)
¢ 2m%Vpr1ng
where
o= 6.7T.,. (66)

The ring expands with the time elapsed after the initial
collision Ot as

Pring = V2Rv 1,

where R is the radius of a bubble when the collision
occurred and v is the wall speed [11].

Note also that the magnetic field in our theory drops to
zero at the outer boundary of the expanding overlap region
whereas it terminates suddenly in the Abelian Higgs
model. This unphysical feature was discussed in
Ref. [13] and was traced to the abrupt change in the
boundary condition at the point of collision. The same
behavior occurs in our theory in the W* fields, but its
effect on the magnetic field is evidently mitigated when
we evaluate the current with the charged W= as its source.

Next, we want to examine the magnetic field as we move
along the z direction at fixed radial distance p from the
collision axis. By comparing the results shown in Fig. 5
and 6 for our theory and that of the Abelian Higgs model,
respectively, we again see similar magnitudes of the mag-
netic fields. The azimuthal magnetic field in the Abelian
Higgs model again reaches its peak at the surface of the
intersection region, whereas in our theory it is generally
small there. Thus, again we see that when we take the
source of the electromagnetic current to be the charged W=
fields, the magnetic field created in collisions behaves in a
smoother fashion than it does in the Abelian Higgs model
with step-function boundary conditions. The tendency to

(67)
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FIG. 5. Magnitude of the azimuthal magnetic field calculated
in the theory of the present paper. The field is shown as a
function of distance z along the axis of collision at a distance
p = 1 from the axis of collision for times 6t = 5, 10, 15, and 20.

peak at the edge of the intersection region makes strong
longitudinal oscillations in B in the Abelian Higgs model,
particularly when we look deep within the overlap region.
Because this region characterized by relatively small p has
had more time to evolve than the regions closer to the outer
ring where p is large, the conductivity has its most pro-
nounced effect, strongly damping the fields as well as
concentrating them into a single peak [12].

The quantity we need to obtain from our calculation for
determining the effectiveness of magnetic field creation
during the electroweak phase transition seeding the galac-
tic and extra-galactic magnetic fields we see today is the
azimuthal magnetic field strength B(R) created at the sur-
face of the ring that is formed by the colliding bubbles. In
the Abelian Higgs model, the value of B(R) is given by
Eq. (24) of Ref. [12] as a function of v, the radius of the
bubbles R at the time of collision ¢t = 7., and the radius
Pring at the time of completion of the phase transition. This
result does not depend explicitly on the conductivity o.
This is because the conductivity damps out the magnetic
field in the interior of the bubble but not at the outer surface
of the ring where it is the largest. However, the finite wall
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FIG. 6. Magnitude of the azimuthal magnetic field calculated
in the Abelian Higgs model. The field is shown as a function of
distance z along the axis of collision at a distance p = 1 from the
axis of collision for times 6t = 5, 10, 15, and 20.
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speed does damp the magnetic field at the surface as shown
in Eq. (24) of Ref. [12]. Because this damping is a kine-
matic effect, it scales with the value of the magnetic field at
the surface of the ring. Hence, from knowledge of the value
of the magnetic field in the ring, we can obtain the appro-
priate B(R) for our theory by scaling it relative to the value
of the magnetic field in the ring in the Abelian Higgs
model.

Determining the magnetic seed field remnant of the
EWPT requires an average over initial conditions. For us,
this means averaging over the relative phase vy of the initial
w™ fields, and in the Abelian Higgs model averaging over
the allowed values of the initial phase difference of the
Higgs fields specified by 6,. The acceptable range for 6,
0 < 0O, < 7/8, is fixed by the requirement that the Higgs
field remain uniform within the bubble overlap region [13].
Thus, averaging over 0 gives a factor 77/16. In our theory,
we have verified from Eq. (8) that the scalar field in
colliding bubbles remains uniform over the full range of
possible relative phases, and thus the average, from
Eq. (58), gives a factor 1/2. To obtain “‘typical” magnetic
field distributions, the results in Figs. 3—6 should be scaled
by these values.

Upon averaging over initial conditions, it follows from
this discussion and the scaling discussed in the preceding
paragraph that our MSSM seed fields are comparable to or
slightly larger than the estimate obtained from the Abelian
Higgs model for the galactic dynamo and given in Eq. (30)
of Ref. [12].

VII. SUMMARY AND CONCLUSIONS

Methods suitable for exploring magnetic seed field cre-
ation during a first-order EW phase transition have been
developed for the MSSM. We obtain equations of motion
from the MSSM Lagrangian in the SM sector, omitting
fermions, that couple the Higgs field and the gauge fields.
One of the most important features of these equations is
that the non-Abelian W= fields are the sole source of the
electromagnetic current, and therefore the magnetic seed
fields. This is in sharp contrast to the Abelian Higgs model
([11-13]), where the magnetic field arises from gradients
in the phase of the Higgs field.

We studied numerically the magnetic fields produced in
collisions of the bubbles of the first-order electroweak
phase transition with our equations of motion and found,
for gentle collisions (where fluctuations in the Higgs field
are relatively small in bubble collisions), that the W= fields
required for calculating the current may be obtained by
solving linear equations. Numerical solutions of the partial
differential equations were obtained by applying simple
boundary conditions that fix the fields at the time of bubble
collision, similar to those employed in Refs. [11-13]. The
magnetic seed fields we obtained with the charged W= as
their source are comparable to those estimated in the
Abelian Higgs model.

PHYSICAL REVIEW D 77, 023501 (2008)

These results establish the electroweak phase transition
in the MSSM as a promising source for production of seed
fields for large-scale galactic and extra-galactic fields ob-
served today. In our future work [21] on magnetic field
generation we will explore sensitivity to some of the more
restrictive assumptions we make in this work.
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APPENDIX: NORMALIZATION OF CHARGED W+
FIELDS

The process by which thermal modes of the plasma
make the transition into the bubble is a complicated
many-body problem that we are unable to simulate. In
order to obtain numerical estimates, we introduce instead
a model for determining the normalization of the charged
W= fields. Our main assumption is that the number density
of W= quanta in the bubble is the same as the number
density of the quanta in the thermal plasma in the modes
from which they originated. The density of the W* outside
the bubble that are able to make the transition, py, is

(7) = K1) d’k 1
Pw j;) Q2m)3? T -1’

(AD)
where & is fixed by overall energy-momentum conserva-
tion. Energy conservation is an issue because in the plasma
the W* are massless (having energy k), whereas inside
the bubble their energy is the same as their mass [see
Eq. (36)]. Overall energy-momentum conservation is a
weaker constraint than insisting that energy and momen-
tum be conserved in each collision, and is a valid constraint
when multiple simultaneous collisions occur at the bubble
wall, as we assume to happen at the high densities of
interest here. Application collision-by-collision will lead
to a finite wall speed [20]. The total energy of the W= in a
single bubble is given by their mass times the density in
Eq. (Al).

Overall energy conservation thus determines the portion
of the spectrum (k < k) that populates the bubble as it
grows,

5 K1) Bk 1 5 K(T) P Pk 1
m — = S
W ﬁ) Q)3 kT — 1 ﬂ) (2m)3 HT — 1

(A2)

The factors of 2 arise from the fact that there are only two
spin directions for massless vector bosons in the plasma.
We show the solution k(7) of Eq. (A2) in Fig. 7. In the
region of temperature shown, k = 3my,/2. The density py,
of W= inside the bubble is then
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The number of quanta filling the bubble clearly grows as
the bubble expands and displaces a larger volume of the
plasma. Thus, inside the bubble the number of W= boson
pairs N is N = py (T)Q, where Q = 47/3(R3 + )32 is
the volume of the bubble.

For a single W=, assuming relativistic normalization of
wave functions,

w = 1/2m,Q, (A4)

where Q is the volume of the bubble. Therefore, for N W=
bosons in a bubble,

w = N/\2m,Q =

For k given in Fig. 7, w is nearly linear in temperature and
is given over the same temperature range as

pw(T)
me ’

(AS)

w(T)? = —127. + 4.49T (A6)

in units of GeV. It is unlikely that more W from the plasma
than allowed by energy-momentum conservation would
drop into the coherent mode since the excess energy would
lead to heating that would impede the phase transition.
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