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We analyze a toy Swiss-cheese cosmological model to study the averaging problem. In our Swiss-
cheese model, the cheese is a spatially flat, matter only, Friedmann-Robertson-Walker solution (i.e., the
Einstein-de Sitter model), and the holes are constructed from a Lemaı̂tre-Tolman-Bondi solution of
Einstein’s equations. We study the propagation of photons in the Swiss-cheese model, and find a
phenomenological homogeneous model to describe observables. Following a fitting procedure based on
light-cone averages, we find that the expansion scalar is unaffected by the inhomogeneities (i.e., the
phenomenological homogeneous model is the cheese model). This is because of the spherical symmetry of
the model; it is unclear whether the expansion scalar will be affected by nonspherical voids. However, the
light-cone average of the density as a function of redshift is affected by inhomogeneities. The effect arises
because, as the universe evolves, a photon spends more and more time in the (large) voids than in the
(thin) high-density structures. The phenomenological homogeneous model describing the light-cone
average of the density is similar to the �CDM concordance model. It is interesting that, although the
sole source in the Swiss-cheese model is matter, the phenomenological homogeneous model behaves as if
it has a dark-energy component. Finally, we study how the equation of state of the phenomenological
homogeneous model depends on the size of the inhomogeneities, and find that the equation-of-state
parameters w0 and wa follow a power-law dependence with a scaling exponent equal to unity. That is, the
equation of state depends linearly on the distance the photon travels through voids. We conclude that,
within our toy model, the holes must have a present size of about 250 Mpc to be able to mimic the
concordance model.
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I. INTRODUCTION

Most, if not all, observations are consistent with the
cosmic concordance model, according to which one-fourth
of the present mass energy of the universe is clustered and
dominated by cold dark matter (CDM). The remaining
three-quarters is uniform and dominated by a fluid with
negative pressure (dark energy, or �).

While the standard �CDM model seems capable of
accounting for the observations, 95% of the mass energy
of the present universe is unknown. This is either a feature,
and we are presented with the opportunity of discovering
the nature of dark matter and dark energy, or it is a bug, and
nature might be different than described by the �CDM
model. Regardless, until such time as dark matter and dark
energy are completely understood, it is useful to look for
alternative cosmological models that fit the data.

One nonstandard possibility is that there are large effects
on the observed expansion rate (and hence on other ob-

servables) due to the backreaction of inhomogeneities in
the universe (see, e.g., Refs. [1–4] and references therein).
The basic idea is that all evidence for dark energy comes
from the observational determinations of the expansion
history of the universe. Anything that affects the observed
expansion history of the universe alters the determination
of the parameters of dark energy; in the extreme it may
remove the need for dark energy.

The ‘‘safe’’ consequence of the success of the concord-
ance model is that the isotropic and homogeneous �CDM
model is a good phenomenological fit to the real inhomo-
geneous universe. This is, in some sense, a verification of
the cosmological principle: the inhomogeneous universe
can be described by means of an isotropic and homoge-
neous solution. However, this does not imply that a primary
source of dark energy exists, but only that it exists as far as
the phenomenological fit is concerned. For example, it is
not straightforward that the universe is accelerating. If dark
energy does not exist at a fundamental level, its presence in
the concordance model would tell us that the pure-matter
inhomogeneous model has been renormalized, from the
phenomenological point of view (luminosity-distance and
redshift of photons), into a homogeneous �CDM model.
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The issue is the observational significance of the back-
reaction of inhomogeneities. Our point of view is tied to
our past light cone: we focus on the effects of large-scale
nonlinear inhomogeneities on observables such as the
luminosity-distance-redshift relation. We will not discuss
averaged domain dynamics, even if we think it is a crucial
step in understanding how general relativity effectively
works in a lumpy universe [5,6].

Following this approach, we built in Ref. [7] a particular
Swiss-cheese model, where the cheese consists of a spa-
tially flat, matter only Friedmann-Robertson-Walker
(FRW) solution and the holes are constructed out of a
Lemaı̂tre-Tolman-Bondi (LTB) solution of Einstein’s
equations. We attempted to find a model that was solvable
and ‘‘realistic’’ (even if still toy), rather than finding a
model with interesting volume-averaged dynamics. The
model, however, will turn out to be useful to investigate
light-cone averages.

It has been indeed shown that the LTB solution can be
used to fit the observed dL�z� without the need of dark
energy (for example, see Ref. [8]). To achieve this result,
however, it is necessary to place the observer at the center
of a rather large-scale underdensity. To overcome this fine-
tuning problem, we built a Swiss-cheese model with the
observer in the cheese looking through a series of holes.

In Ref. [7] we studied this model in detail and discussed
the effects of large-scale nonlinear inhomogeneities on
observables such as the luminosity-distance-redshift rela-
tion. We found that inhomogeneities are able (at least
partly) to mimic the effects of dark energy.

In this paper we will analyze the same Swiss-cheese
model through the fitting scheme developed by Ellis and
Stoeger [9] in order to better understand how inhomoge-
neities renormalize the (matter only) Swiss-cheese model
allowing us to avoid a physical dark-energy component.
We think that this model fits well in that context and
therefore we might be able to shed some light on the
important topics discussed there. We will propose a fitting
procedure based on light-cone averages.

The paper is organized as follows: In Sec. II we will
specify the parameters of our Swiss-cheese model and
summarize the main results obtained in Ref. [7]. In
Sec. III, we develop our fitting procedure, and in Sec. IV
we discuss our results. Then, in Sec. V we study the
dependence of the best-fit parameters on the size of the
holes. Conclusions are given in Sec. VI.

II. THE SWISS-CHEESE MODEL

In this section we will briefly describe the model studied
in Ref. [7]; we refer the reader there for a more thorough
analysis. In our Swiss-cheese model, the cheese consists of
a spatially flat, matter only, Friedmann-Robertson-Walker
solution, and the spherically symmetric holes are con-
structed from a Lemaı̂tre-Tolman-Bondi solution.

In Table I we list the units we will use for mass density,
time, the radial coordinate, the expansion rate, and two
quantities, Y�r; t� and W�r�, that will appear in the metric.
The time t appearing in Table I is not the usual time in
FRW models. Rather, t � T � T0, where T is the usual
cosmological time and T0 � 2H�1

0 =3 is the present age of
the universe. Thus, t � 0 is the present time and t � tBB �
�T0 is the time of the big bang. Finally, the initial time of
the LTB evolution is defined as �t.

Both the FRW and the LTB metrics can be written in the
form (in the synchronous and comoving gauge)

 ds2 � �dt2 �
Y02�r; t�

W2�r�
dr2 � Y2�r; t�d�2; (1)

where here and throughout, the ‘‘prime’’ superscript de-
notes d=dr and the ‘‘dot’’ superscript will denote d=dt. It is
clear that the Robertson-Walker metric is recovered with
the substitution Y�r; t� � a�t�r and W2�r� � 1� kr2.

A. The cheese

We choose for the cheese model a spatially flat, matter-
dominated universe [the Einstein-de Sitter (EdS) model].
In the cheese there is no r dependence to � or H.
Furthermore, Y�r; t� factors into a function of tmultiplying
r [Y�r; t� � a�t�r], and in the EdS model W�r� � 1. In this
model �M � 1, so in the cheese, the value of � today,
denoted as �0, is unity in the units of Table I. In order to
connect with the LTB solution, we can express the line
element in the form

 ds2 � �dt2 � Y02�r; t�dr2 � Y2�r; t�d�2: (2)

In the cheese, the Friedmann equation and its solution
are

 H2�t� � 4
9��t� �

4
9�t� 1��2 (3)

 Y�r; t� � ra�t� � r
�t� 1�2=3

��t� 1�2=3
; (4)

where the scale factor is normalized so that at the begin-
ning of the LTB evolution it is a��t� � 1.

B. The holes

1. The General LTB model

The holes are chosen to have a LTB metric [10–12]. The
model is based on the assumptions that the system is
spherically symmetric with purely radial motion and the
motion is geodesic without shell crossing (otherwise we
could not neglect the pressure).

It is useful to define a ‘‘Euclidean’’ mass M�r� and an
‘‘average’’ mass density ���r; t�, as

 M�r� � 4�
Z r

0
��r; t�Y2Y0dr �

4�
3
Y3�r; t� ���r; t�: (5)

In spherically symmetric models, in general there are two
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expansion rates: an angular expansion rate, H? �
_Y�r; t�=Y�r; t�, and a radial expansion rate, Hr �
_Y0�r; t�=Y0�r; t�. (Of course in the FRW model Hr � H?.)

The angular expansion rate is given by

 H2
?�r; t� �

4

9
���r; t� �

W2�r� � 1

Y2�r; t�
: (6)

Unless specified otherwise, we will identify H? � H.
To specify the model we have to specify initial condi-

tions, i.e., the position Y�r; �t�, the velocity _Y�r; �t�, and the
density ���t� of each shell r at time �t. In the absence of shell
crossing it is possible to give the initial conditions at
different times for different shells r: let us call this time
�t�r�. The initial conditions fix the arbitrary curvature func-
tion W�r�:

 W2�r� � 1 � 2E�r� �
�

_Y2 �
1

3�
M
Y

���������r;�t
; (7)

where we can choose Y�r; �t� � r so that M�r� �
4�

R
r
0 �� �r; �t��r

2d �r.
In a general LTB model there are therefore three arbi-

trary functions:1 ��r; �t�,W�r�, and �t�r�. Their values for the
particular LTB model we study are specified in the follow-
ing subsection.

2. Our LTB model

First of all, for simplicity we choose �t�r� � �t; i.e., we
specify the initial conditions for each shell at the same
moment of time.

We now choose ��r; �t� and W�r� in order to match the
flat FRW model at the boundary of the hole: i.e., at the
boundary of the hole �� has to match the FRW density and
W�r� has to go to unity. A physical picture is that, given a
FRW sphere, all the matter in the inner region is pushed to
the border of the sphere while the quantity of matter inside
the sphere does not change. With the density chosen in this
way, an observer outside the hole will not feel the presence
of the hole as far as local physics is concerned (this does
not apply to global quantities, such as the luminosity-

distance-redshift relation). In this way we can imagine
putting in the cheese as many holes as we want, even
with different sizes and density profiles, and still have an
exact solution of the Einstein equations (as long as there is
no superposition among the holes and the correct matching
is achieved). So the cheese is evolving as an FRW universe
while the holes evolve differently. This idea was first
proposed by Einstein and Straus [13].

As anticipated in the Introduction, we are building in
this way a model exactly solvable and realistic (even if still
toy) at the price of not having any interesting volume-
averaged dynamics. The volume evolution of this Swiss-
cheese model is indeed unaffected by the inhomogeneities.
We are not concerned about this because we think that
average dynamics is not directly correlated to observable
quantities. We will see however that this model will be
interesting for light-cone averages.

In Fig. 1 we plot the chosen Gaussian density profile.
The hole ends at rh � 0:042, which is 350 Mpc in size,2

roughly 25 times smaller than rBB. Note that this is not a
very big bubble. But it is an almost empty region: in the
interior the matter density is roughly 104 times smaller
than in the cheese. Our model consists of a sequence of five
holes with the observer looking through them. The idea,
however, is that the universe is completely filled with these
holes, which form a sort of lattice. In this way an observer
in the cheese will see an isotropic CMB along the two
directions of sight shown in Fig. 2.

To have a realistic evolution, we demand that there are
no initial peculiar velocities at time �t, i.e., that the initial
expansion H is independent of r. This implies

 E�r� �
1

2
H2

FRW��t�r
2 �

1

6�
M�r�
r

: (8)

The function E�r� chosen in this way is shown in Fig. 1. As
seen from the figure, the curvature E�r� is small compared
with unity. In spite of its smallness, the curvature plays a
crucial role to allow a realistic evolution of structures.

In Fig. 1 we also plot k�r� � �2E�r�=r2, which is the
generalization of the factor k in the usual FRW models (it is
not normalized to unity). As one can see, k�r� is very nearly

TABLE I. Units for various quantities. We use geometrical units, c � G � 1. Here, the present
critical density is �C0 � 3H2

0;Obs=8�, with H0;Obs � 70 kms�1Mpc�1. In order to have the
proper distance today we have to multiply the comoving distance by a�t0� ’ 2:92.

Quantity Notation Unit Value

Mass density ��r; t�, ���r; t� �C0 9:2� 10�30 g cm�3

Time t, T, �t, tBB, T0 �6��C0�
�1=2 9.3 Gyr

Comoving radial coordinate r �6��C0�
�1=2 2857 Mpc

Metric quantity Y�r; t� �6��C0�
�1=2 2857 Mpc

Expansion rate H�r; t� �6��C0�
1=2 3

2H0;Obs

Spatial curvature term W�r� 1 � � �

1One of these three functions only expresses the gauge free-
dom as discussed in Ref. [7], Appendix A. 2To get this number from Table I, multiply rh by a�t0� ’ 2:92.
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constant in the empty region inside the hole. This is another
way to see the reason for our choice of the curvature
function: we want to have in the center an empty bubble
dominated by negative curvature.

C. The dynamics

In Fig. 3 we show the evolution of Y�r; t� for 3 times:
t � �t � �0:8 (the big bang is at tBB � �1), t � �0:4, and
t � 0 (corresponding to today). From Fig. 3 it is clear that

outside the hole, i.e., for r 	 rh, Y�r; t� evolves as a FRW
solution, Y�r; t� / r.

The inner almost empty region is expanding faster than
the outer (cheese) region. The density ratio between the
cheese and the interior region of the hole increases by a
factor of 2 between t � �t and t � 0. Initially the density
ratio was 104, but the model is not sensitive to this number
since the evolution in the interior region is dominated by
the curvature [k�r� is much larger than the matter density].

The evolution is realistic, as one can see from Fig. 3,
which shows the density profile at different times.
Overdense regions start contracting and become thin shells
(mimicking structures), while underdense regions become
larger (mimicking voids), and eventually occupy most of
the volume.

Let us explain why the high-density shell forms and the
nature of shell crossing. Because of the distribution of
matter, the inner part of the hole is expanding faster than
the cheese; between these two regions there is the initial
overdensity. It is because of this that there is less matter in
the interior part. (Remember that we matched the FRW
density at the end of the hole.) Now we clearly see what is
happening: the overdense region is squeezed by the interior

FIG. 2 (color online). Sketch of our model. The shading
mimics the initial density profile: darker shading implies larger
denser. The uniform gray is the FRW cheese. The photons pass
through the holes as shown by the arrows and are revealed by the
observer placed in the cheese.

FIG. 3 (color online). Behavior of Y�r; t� with respect to r, the
peculiar velocities v�r; t� with respect to r, and the density
profiles ��r; t� with respect to rFRW � Y�r; t�=a�t�, for the curved
case at times t � �t � �0:8, t � �0:4, and t � t0 � 0. The
straight lines for Y�r; t� are the FRW solutions while the dashed
lines are the LTB solutions. For the peculiar velocities, the
matter gradually starts to move toward high-density regions.
The solid vertical line marks the position of the peak in the
density with respect to r. For the densities, note that the curve for
��r; 0� has been divided by 10. Finally, the values of ��1; t� are
1, 2.8, and 25, for t � 0;�0:4;�0:8, respectively.

FIG. 1 (color online). Bottom: The densities ��r; �t� (solid
curve) and ���r; �t� (dashed curve). Here, �t � �0:8 (recall tBB �
�1). The hole ends at rh � 0:042. The matching to the FRW
solution is achieved as one can see from the plot of ���r; �t�. Top:
Curvature k�r� and E�r� necessary for the initial conditions of no
peculiar velocities.

MARRA, KOLB, AND MATARRESE PHYSICAL REVIEW D 77, 023003 (2008)

023003-4



and exterior regions, which act as a clamp. Shell crossing
eventually happens when more shells—each labeled by its
own r—are so squeezed that they occupy the same physi-
cal position Y, that is when Y0 � 0. Nothing happens to the
photons other than passing through more shells at the same
time: this is the meaning of the grr metric coefficient going
to zero.

Remember that r is only a label for the shell whose
Euclidean position at time t is Y�r; t�. In the plots of the
energy density we have normalized Y�r; t� using rFRW �
Y�r; t�=a�t�.

D. Redshift histories

As shown in Fig. 4, this model does not feature sub-
stantial redshift effects: it is anyhow natural to expect a
compensation, due to the spherical symmetry, between the
incoming path and the outgoing path inside the same hole.

However, there is a compensation already on the scale of
half a hole as it is clear from the plots. This mechanism is
due to the density profile chosen, that is one whose average
matches the FRW density of the cheese: roughly speaking,
we know that z0 � H / � � �FRW � ��. We chose the
density profile in order to have h��i � 0, and therefore
in its journey from the center to the border of the hole the
photon will see a hHi 
HFRW and therefore there will be
compensation for z0.

Let us see this analytically. We are interested in comput-
ing a line average of the expansion along the photon path in

order to track what is going on. Therefore, we shall not use
the complete expansion scalar,

 � � �k0k � 2
_Y
Y
�

_Y0

Y0
; (9)

but, instead, only the part of it pertinent to a radial line
average,

 �r � �1
01 �

_Y0

Y0
� Hr; (10)

where �k0k are the Christoffel symbols and � is the trace of
the extrinsic curvature.

Using Hr, we obtain

 hHri �

Rrh
0 drHrY

0=WRrh
0 drY

0=W
’

_Y
Y

��������r�rh

� HFRW; (11)

where the approximation comes from neglecting the
(small) curvature and the last equality holds thanks to the
density profile chosen. This is exactly the result we wanted
to find. However, we have performed an average at con-
stant time and therefore we did not let the hole and its
structures evolve while the photon is passing; the evolution
of structures will partially break this compensation.

We have, therefore, seen that the compensation in red-
shift on the scale of half a hole is due to the density profile
chosen. Even if we relax this requirement, we will still
have a compensation on the scale of the hole. This can be
seen in Fig. 4: inside each hole, the plot is antisymmetric
with respect to the center of the hole (the center of sym-
metry). This is only approximate at early times when
structure evolution is fast enough to change the second
half of the hole with respect to the first half.

This discussion sheds light on the fact that photon
physics seems to be affected by the evolution of the in-
homogeneities more than by the inhomogeneities them-
selves. We can argue that there should be perfect
compensation if the hole will have a static metric such as
the Schwarzschild one. In the end, this is a limitation of our
assumption of spherical symmetry.

E. Luminosity and angular-diameter distances

We show in Fig. 5 the results for the luminosity distance
and angular distance. The solution is compared to the one
of the �CDM model with �M � 0:6 and �DE � 0:4. It has
an effective q0 � �M=2��DE � �0:1.

The distance modulus is plotted in the top panel of
Fig. 5. The solution shows an oscillating behavior that is
due to the simplification of this toy model in which all the
voids are inside the holes and all the structures are in thin
spherical shells. For this reason a fitting curve was plotted:
it is passing through the points of the photon path that are
in the cheese between the holes. Indeed, they are points of
average behavior and represent well the coarse graining of
this oscillating curve. The simplification of this model tells
us also that the most interesting part of the plot is farthest

FIG. 4 (color online). Redshift histories for a photon that
travels from one side of the five-hole chain to the other where
the observer will detect it at the present time. The dotted curve is
for the FRW model. The vertical lines mark the edges of the
holes. The plots are with respect to the coordinate radius r.
Notice also that along the voids the redshift is increasing faster:
indeed z0�r� � H�z� and the voids are expanding faster.

LIGHT-CONE AVERAGES IN A SWISS-CHEESE UNIVERSE PHYSICAL REVIEW D 77, 023003 (2008)

023003-5



from the observer, let us say at z > 1. In this region we can
see the effect of the holes clearly: they move the curve from
the EdS solution to the �CDM one with �M � 0:6 and
�DE � 0:4. Of course, the model in not realistic enough to
reach the ‘‘concordance’’ solution.

Summarizing, because of our assumption of spherical
symmetry, we found no significant redshift effects. The
effects we found came from the angular-diameter distance
which is affected by the evolution of the inhomogeneities.

III. THE FITTING PROBLEM

Now that we have seen how the luminosity-distance-
redshift relation is affected by inhomogeneities, we want to
study the same model from the point of view of light-cone
averaging to see if we can gain insights into how inhomo-
geneities renormalize the matter Swiss-cheese model and
mimic a dark-energy component.

As explained in Ref. [9], there are, broadly speaking,
two distinct approaches that have been applied to under-
stand the large-scale structure of the universe.

The standard approach is to make the assumption of
spatial homogeneity and isotropy on a large enough scale,

and to assume this guarantees that the universe is repre-
sented by a FRW model. In other words, it is assumed that
the dynamics of an inhomogeneous universe with density
�� ~x� is identical to the dynamics of a homogeneous uni-
verse of density h�� ~x�i. The main problem with this ap-
proach is that it simplifies the way the real lumpy universe
should be averaged. It does not really specify any type of
averaging procedure necessary to make use of the FRW
model, and it assumes that, in any case, the dynamics is not
affected by inhomogeneities. Therefore, there is no infor-
mation on what scales such a model is supposed to be
applicable, if any.

The concordance model fits very well the experimental
data: the direct consequence of its success is, indeed, that
the isotropic and homogeneous �CDM model is a good
phenomenological fit to the real inhomogeneous universe.
This is, in some sense, a reflection of the cosmological
principle of spatial homogeneity and isotropy on a large
enough scale: the inhomogeneous universe can be de-
scribed by means of a isotropic and homogeneous solution.
However, this does not imply that a primary dark-energy
component really exists, but only that it exists effectively
as far as the phenomenological fit is concerned. For ex-
ample, it is not an observational consequence that the
universe is globally accelerating (although it is usually
stated as such). If primary dark energy does not exist,
observational evidence coming from the concordance
model would tell us that the pure-matter inhomogeneous
model has been renormalized from the phenomenological
point of view (e.g., the luminosity-distance and redshift of
photons), into a homogeneous �CDM model.

The other approach is to make no a priori assumption of
global symmetry, and build up our universe model only on
the basis of astronomical observations. The main problem
with such an approach is the practical difficulty in imple-
menting it.

An approach which is intermediate between the two
outlined above is based on the fitting procedure. It asks
the question about which FRW model best fits our lumpy
universe. This question will lead to a procedure that will
allow us to understand better how to interpret the large-
scale FRW solution.

The best-fit procedure will be implemented along the
past light cone. This is because a meaningful fitting pro-
cedure should be related directly to astronomical
observations.

A remark is in order here: in the previous section we did
not fit the dL�z� with an FRW solution. We have simply
compared the shape of the dL�z� for the Swiss-cheese
model with the one of a �CDM model.

We intend now to fit a phenomenological FRW model to
our Swiss-cheese model. The FRW model we have in mind
is a spatially flat model with a matter component with
present fraction of the energy density �M � 0:25, and
with a phenomenological dark-energy component with

FIG. 5 (color online). On the bottom the luminosity distance
dL�z� in the five-hole model (jagged curve) and the �CDM
solution with �M � 0:6 and �DE � 0:4 (regular curve) are
shown. In the middle is the change in the angular-diameter
distance, �dA�z�, compared to a �CDM model with �M �
0:6 and �DE � 0:4. The top panel shows the distance modulus
in various cosmological models. The jagged line is for the five-
hole LTB model. The regular curves, from top to bottom, are a
�CDM model with �M � 0:3 and �DE � 0:7, a �CDM model
with �M � 0:6 and �DE � 0:4, the best smooth fit to the LTB
model, and the EdS model. The vertical lines mark the edges of
the five holes.
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present fraction of the energy density �� � 0:75. We will
assume that the dark-energy component has an equation of
state

 w�a� � w0 � wa

�
1�

a
a0

�
� w0 � wa

z
1� z

: (12)

Thus, the total energy density in the phenomenological
model evolves as

 

�FIT

�0

� �M�1� z�
3 ����1� z�

3�1�w0�wa�

� exp
�
�3wa

z
1� z

�
: (13)

We will refer to this model as the phenomenological model
throughout this paper.

Our Swiss-cheese model is a lattice of holes as sketched
in Fig. 2: the scale of the inhomogeneities is therefore
simply the size of a hole. We are interested in understand-
ing how the equation of state of the ‘‘dark energy’’ in the
phenomenological model changes with respect to rh, and,
in particular, why. Of course, in the limit rh ! 0, we
expect to find w � 0, that is, the underlying EdS model
out of which the cheese is constructed.

The procedure developed by Ref. [9] is summarized by
Fig. 6. We refer the reader to that reference for a more
thorough analysis and to Ref. [14] and references therein
for recent developments. We will focus now in using our
Swiss-cheese model as (toy) cosmological model.

A. Choice of vertex points

We start choosing the two observers to be compared. In
the homogeneous FRW model every observer is the same

thanks to spatial homogeneity. We choose an observer in
the cheese as the corresponding observer in our Swiss-
cheese model, in particular, the one shown in Fig. 2.

Our model allows us to choose also the time of obser-
vation, which, in general, is a final product of the compari-
son. We now explain why.

The FRW model we will obtain from the fit will evolve
differently from the Swiss cheese: the latter evolves as an
EdS model, while the former will evolve as a quintessence-
like model. They are really different models. They will
agree only along the light cone, that is, on our observations.

Now, for consistency, when we make local measure-
ments3 the two models have to give us the same answer:
local measurements indeed can be seen as averaging mea-
surements with a small enough scale of averaging, and the
two models agree along the past light cone.

Therefore, we choose the time in order that the two
observers measure the same local density. This feature is
already inherent in Eq. (13): the phenomenological model
and the Swiss-cheese model evolve in order to have the
same local density, and therefore the same Hubble parame-
ter, at the present time.

B. Fitting the 4-velocity

The next step is to fit the four-velocities of the observers.
In the FRW model we will choose a comoving observer,
the only one who experiences an isotropic CMB. In the
Swiss-cheese model, we will choose, for the same reason, a
cheese-comoving observer. Again, our Swiss-cheese
model considerably simplifies our work.

C. Choice of comparison points on the null cones

Now that the past null cones are uniquely determined,
we have to choose a measure of distance to compare points
along each null cone.

First, let us point out that, instead of the entire two-
sphere along the null cone, we will examine, only a point
on it. This is because of the simplified setup of our Swiss-
cheese model in which the observer is observing only in
two opposite directions, as illustrated in Fig. 2. This means
that we can skip the step consisting in averaging our
observable quantities over the surface of constant redshift,
which generally is necessary in order to be able to compare
an inhomogeneous model with the FRW model [9].

Coming back to the main issue of this section, we will
use the observed redshift z to compare points along the null
cones. Generally, the disadvantage of using it is that it does
not directly represent distances along the null cone. Rather,
the observed value z is related to the cosmological redshift

FIG. 6. In the null data best fitting, one successively chooses
maps from the real cosmological model U to the FRW model U0

of the null cone vertex p0, the matter 4-velocity at p0, a two-
sphere S0 on the null cone of p0, and a point q0 on the 2-sphere.
This establishes the correspondence  of points on the past null
cone of p0, C��p0�, to the past null cone of p, C��p0�, and then
compares initial data at q0 and at q; from Fig. 2 of [9].

3Conceptually, it could not be possible with a realistic universe
model to make local measurements that could be directly com-
pared to the smoothed FRW model. We are allowed to do this
thanks to our particular Swiss-cheese model in which the cheese
well represents the average properties of the model.
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zC by the relation

 1� z � �1� zO��1� zC��1� zS�; (14)

where zO is the redshift due to the peculiar velocity of the
observer O and zS that due to the peculiar velocity of the
source. The latter, in particular, is a problem because local
observations cannot distinguish zS from zC.

However, our setup again simplifies this task. The ob-
servers chosen are, indeed, both comoving (in the Swiss-
cheese model because the observer is in the cheese, and in
the phenomenological model by construction), and there-
fore zO � 0. Regarding the sources, we know exactly their
behavior because we have a model to work with.

The sources are also comoving; however, there are
structure-formation effects that should be disentangled
from the average evolution. For this reason we will perform
averages between points in the cheese (the meaning of this
will be clear in the next section) in order to smooth out
these structure-formation effects.

D. Fitting the null data

Now we are ready to set up the fitting of our Swiss-
cheese model. Reference [15] studied the approach based
on volume averaging outlined in Ref. [9]. This approach,
however, is appropriate for studies concerning global dy-
namics, as in Refs. [6,16]. As stressed previously, here we
are instead interested in averages directly related to obser-
vational quantities, and we constructed our model follow-
ing this idea: it is a model that is exactly solvable and
realistic (even if still toy) at the price of no interesting
volume-averaged dynamics.

Therefore, we will follow a slightly different approach
from the ones outlined in Ref. [9]: we are going to fit
averages along the light cone. This method will be inter-
mediate between the fitting approach and the averaging
approach.

We will focus on the expansion scalar and the density.
We will see that these two quantities behave differently
under averaging. We denote by QSC�r; t� a quantity in the
Swiss-cheese model we want to average. We denote by
QFIT�t� the corresponding quantity we want to fit to the
average ofQSC�r; t�. Note thatQFIT�t� does not depend on r
because the phenomenological model we will employ to
describe the Swiss-cheese model is homogeneous.

Again, the fit model is a phenomenological homogene-
ous model (just referred to as the phenomenological
model). It need not be the model of the cheese.

The procedure is as follows. First we will average
QSC�r; t� for a photon that starts from the emission point
E of the five-hole chain and arrives at the locations of
observers Oi of Fig. 7. We have chosen those points
because they well represent the average dynamics of the
model. Indeed, these points are not affected by structure
evolution because they are in the cheese. Then, we will
compare this result with the average of QFIT�t� for the

phenomenological and homogeneous source with density
given by Eq. (13) with an equation of state w given by
Eq. (12).

The two quantities to be compared are therefore

 hQSCiEOi
�

�Z Oi

E
drY0=W

�
�1

�
Z Oi

E
drQSC�r; t�r��Y0�r; t�r��=W�r�

hQFITiEOi
�

�Z Oi

E
draFIT

�
�1

�
Z Oi

E
drQFIT�tFIT�r��aFIT�tFIT�r��;

(15)

where t�r� and tFIT�r� are the photon geodesics in the
Swiss-cheese model and in the phenomenological one,
respectively. The functions tFIT�r�, aFIT, and other quanti-
ties we will need are obtained solving the Friedmann
equations with a source described by Eq. (13) with no
curvature. The points Oi in the Swiss-cheese model of
Fig. 7 are associated to points in the phenomenological
model with the same redshift, as discussed in Sec. III C.

We will then find the w that gives the best fit between
hQFITi and hQSCi, that is, the choice that minimizes

 

X
i

�hQFITiEOi
� hQSCiEOi

�2: (16)

Of course, in the absence of inhomogeneities, this method
would give w � 0.

Let us summarize the approach:
(i) We choose a phenomenological quintessencelike

model that, at the present time, has the same density
and Hubble parameter as the EdS-cheese model.

(ii) We make this phenomenological model and the
Swiss-cheese model correspond along the light
cone via light-cone averages of Q.

(iii) We can substitute the Swiss-cheese model with the
phenomenological model as far as the averaged
quantity Q is concerned.

The ultimate question is if it is observationally mean-
ingful to consider Q, as opposed to the other choice of
domain averaging at constant time, which is not directly
related to observations. We will come back to this issue
after having obtained the results.

FIG. 7 (color online). An illustration of the points chosen for
the averaging procedure.
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1. Averaged expansion

The first quantity in which we are interested is the
expansion rate. To average the expansion rate we will
follow the formalism developed in Sec. II D. We will
therefore apply Eqs. (15) and (16) to QSC � Hr � _Y0=Y0,
where we remember that Hr is the radial expansion rate.
The corresponding quantity in the phenomenological
model is QFIT � _aFIT=aFIT.

For the same reason there is good compensation in
redshift effects (see Sec. II D), we expect hHri to behave
very similarly to the FRW cheese solution. Indeed, as one
can see in Fig. 8, the best fit of the Swiss-cheese model is
given by a phenomenological source with w ’ 0, that is,
the phenomenological model is the cheese-FRW solution
itself as far as the expansion rate is concerned.

2. Averaged density

The situation for the density is very different. The pho-
ton is spending more and more time in the (large) voids
than in the (thin) high-density structures. We apply
Eqs. (15) and (16) toQSC � �SC. The corresponding quan-
tity in the phenomenological model is QFIT � �FIT, where
�FIT is given by Eq. (13). The results are illustrated in
Fig. 9: the best fit is for w0 � �1:95 and wa � 4:28.

As we will see in Sec. V, we can achieve a better fit to the
concordance model with smaller holes than the ones of
350 Mpc considered here. We anticipate that, for a holes of
radius rh � 250 Mpc, we have w0 � �1:03 and wa �
2:19.

We see, therefore, that this Swiss-cheese model could be
interpreted, in the FRW hypothesis, as a homogeneous
model that is initially dominated by matter and subse-
quently by dark energy: this is what the concordance model
suggests. We stress that this holds only for the light-cone
averages of the density.

IV. DISCUSSION

A. Explanation

Let us first explore the basis for what we found. In
Fig. 10 we show the density along the light cone for both
the Swiss-cheese model and the EdS model for the cheese.
It is clear that the photon is spending more and more time
in the (large) voids than in the (thin) high-density
structures.

To better show this, we plotted in Fig. 11 the constant-
time, line-averaged density as a function of time. The
formula used for the Swiss-cheese model is

 

Z rh

0
dr��r; t�Y0�r; t�=W�r�

�Z rh

0
drY0=W; (17)

while for the cheese, because of homogeneity we can just
use ��t� of the EdS model. As one can see, the photon is

FIG. 8 (color online). Average expansion rate. The yellow
points are hHSCiEOi

while the crosses are hHFITiEOi
. EOi means

that the average was performed from E and Oi with respect to
Fig. 7. The best fit is found for w ’ 0; that is, the phenomeno-
logical model is the cheese-FRW solution itself as far as the
expansion rate is concerned.

FIG. 9 (color online). Average density in �C0 units. The yellow
points are h�SCiEOi

while the crosses are h�FITiEOi
. EOi means

that the average was performed from E and Oi with respect to
Fig. 7. The parametrization of �FIT is from Eq. (13). The best fit
is found for w0 � �1:95 and wa � 4:28.

FIG. 10 (color online). Density along the light cone for the
Swiss-cheese model (the spiky curve) and the EdS model of the
cheese (the regular curve). The labeling of the x-axis is the same
one of Fig. 7.
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encountering less matter in the Swiss-cheese model than in
the EdS cheese model. Moreover, this becomes increas-
ingly true with the formation of high-density regions as
illustrated in Fig. 11 by the evolution of the ratio of the
previously calculated average density: it decreases by 17%
from the starting to the ending time.

The calculation of Eq. (17) is actually, except for some
factors like the cross section, the opacity of the Swiss-
cheese model. Therefore, a photon propagating through the
Swiss-cheese model has a different average absorption
history; that is, the observer looking through the cheese
will measure a different flux compared to the case with
only cheese and no holes. For the moment, in order to
explore the physics, let us make the approximation that,
during the entire evolution of the universe, the matter is
transparent to photons.

From the plots just shown we can now understand the
reason for the best-fit values of w0 � �1:95 and wa �
4:28 found in the case of holes of rh � 350 Mpc. We are
using a homogeneous phenomenological model, which has
at the present time the density of the cheese (see Fig. 11).
We want to use it to fit the line-averaged density of the
Swiss cheese, which is lower than the (volume) averaged
one. Therefore, going backwards from the present time, the
phenomenological model must keep its density low, that is,
to have a small w. At some point, however, the density has
to start to increase, otherwise it will not match the line-

averaged value that keeps increasing: therefore w has to
increase toward 0. It is very interesting that this simple
mechanism mimics the behavior of the concordance-model
equation of state. We stress that this simple mechanism
works thanks to the setup and fitting procedure we have
chosen; that is, the fact that we matched the cheese-EdS
solution at the border of the hole, the position of the
observer, and the observer looking through the holes.
Moreover, we did not tune the model to achieve a best
matching with the concordance model. The results shown
are indeed quite natural.

B. Beyond spherical symmetry

In this work we are interpreting the Swiss-cheese model
from the point of view of light-cone averages. In Ref. [7]
we have instead focused on the luminosity-distance–rela-
tion (see Fig. 5).

We have summarized the relationships between the re-
sults obtained in Ref. [7] and this work in the flow chart of
Fig. 12.

Regarding dL�z�, we found no important effects from a
change in the redshift: the effects on dL�z� all came from
dA driven by the evolution of the inhomogeneities.

Regarding light-cone averages, we found no important
effects with respect to the expansion: this negative result is
due to the compensation in redshift discussed in Sec. II D
and it is the same reason why we did not find redshift
effects with dL�z�. This is the main limitation of our model
and it is due ultimately to the spherical symmetry of the
model as explained in Sec. II D.

We found important effects with respect to the density:
however, this is not due to the effects driving the change in
dA. The latter is due to structure evolution while the former
to the presence of voids, so the two causes are not directly
connected. Indeed, it is possible to turn off the latter and
not the former.

We can therefore make the point that the expansion is
not affected by the inhomogeneities because of the com-
pensation due to the spherical symmetry. The density, on
the other hand, is not affected by the spherical symmetry,
so there are no compensations, and the photon systemati-
cally sees more and more voids than structures. We can
therefore argue that the average of the density is more

FIG. 11. At the top is the evolution of the energy density for
the EdS cheese model (higher curve) and for the phenomeno-
logical model with w0 � �1:95 and wa � 4:28. In the middle is
the constant-time line averaged density as a function of time for
the Swiss-cheese model (lower curve) and the cheese-EdS model
(higher curve). At the bottom is their ratio of the last two
quantities as a function of time.

FIG. 12. Flow chart regarding relationships between the results
obtained in Ref. [7] and this work; see Sec. IV B for a discussion.
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relevant than the average of the expansion because it is less
sensitive to the assumption of spherical symmetry, which is
one of the limitations of this model.

The next step is to define a Hubble parameter from this
average density: H2 / h�i�. In this way we are moving
from a Swiss cheese made of spherically symmetric holes
to a Swiss cheese without exact spherical symmetry. The
correspondence is through the light-cone averaged density
which, from this point of view, can be seen as a tool in
performing this step.

Summarizing again:
(i) We started with a Swiss-cheese model containing

only spherically symmetric holes. A photon, during
its journey through the Swiss cheese, undergoes a
redshift that is not affected by inhomogeneities.
However, the photon is spending more and more
time in the voids than in the structures. The lack of
an effect is due to spherical symmetry. We focus on
this because a photon spending most of its time in
voids should have a different redshift history than a
photon propagating in a homogeneous background.

(ii) Since the density is a quantity that is not particularly
sensitive to spherical symmetry, we try to resolve
the mismatch by focusing on the density alone and
getting from it the expansion (and therefore the
redshift history).

(iii) We ended up with a Swiss-cheese model with holes
that effectively are not spherically symmetric. In
this model there is an effect on the redshift history
of a photon due to the voids.

(iv) In practice this means that we will use the phe-
nomenological best-fit model found; that is, we will
use a model that behaves similarly to the concord-
ance model.

C. Motivations

Let us go back to the discussion of Sec. III D, that is, if it
is observationally meaningful to consider light-cone aver-
ages ofQ as the basis for the correspondence. For example,
domain averages at constant time are not directly related to
observations.

Here, we are not claiming that light-cone averages are
observationally relevant.4 Rather, we are using light-cone
averages as tools to understand the model at hand. The
approach has been explained in the previous section.

V. RENORMALIZATION OF THE MATTER
EQUATION OF STATE

In this section we will study how the parameters of the
phenomenological model depend on the size of the inho-
mogeneities, that is, on the size of the hole. We sketched in

Fig. 13 our setup: we keep the comoving position of the
centers of the holes fixed. The observer is located in the
same piece of cheese.

We changed the radius of the hole according to

 rh�n� �
rh

1:4n
; (18)

where rh is the radius we have been using until now, the
one that results in the holes touching. The choice of the 1.4
in the scaling is only for convenience. We let n run from 0
to 7.

In this analysis we will use, instead of the energy density
in Eq. (13), an energy density in which only one effective
source appears, and the effective source evolves as

 

�FIT

�0

� �1� z�3�1�w
R
0�w

R
a � exp

�
�3wRa

z
1� z

�

with wR�z� � wR0 � w
R
a

z
1� z

:

(19)

We put R as a superscript on the equation of state in
order to differentiate the parametrization of Eq. (19),
which we are now using to study the renormalization,
from the parametrization of Eqs. (12) and (13), which we
used to compare the phenomenological model to the con-
cordance model. We are not disentangling different sources
in Eq. (19) because we are interested in the renormalization
of the matter equation of state of the cheese, that is, on the
dependence ofwR upon the size of the hole. To this purpose
we need only one source in order to keep track of the
changes.

As one can see from Fig. 14, we have verified that wR �
0 for rh ! 0, i.e., we recover the EdS model as the best-fit
phenomenological model.

We are interested to see if the equation of state exhibits a
power-law behavior and, therefore, we use the following

FIG. 13 (color online). Sketch of how the size of the inhomo-
geneity is changed in our model. The shading mimics the initial
density profile: darker shading implies larger denser. The uni-
form gray is the FRW cheese. The photons pass through the
holes as shown by the arrows and are revealed by the observer
whose comoving position in the cheese does not change. The
size of the holes corresponds to n � 0, 2, 5 of Eq. (18).

4However, a density light-cone average is an indicator of the
opacity of the universe and therefore could be observationally
relevant, as explained in the discussion around Fig. 11.
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functions to fit wR0 and wRa :

 

wR0 �n�
wR0 �0�

� q0

�
rh�n�
rh�0�

�
p0 wRa �n�

wRa �0�
� qa

�
rh�n�
rh�0�

�
pa
: (20)

We performed a fit with respect to the logarithm of the
above quantities, the result is shown in Fig. 14. We found

 p0 � pa ’ 1:00 q0 � qa ’ 0:88: (21)

Summarizing, we found three important facts.
(i) The parameters of the equation of state as a function

of the size of the hole exhibit a power-law behavior.
(ii) The power laws ofwR0 andwRa have the same scaling

exponent. This is actually a check: once a physical
quantity exhibits a power-law behavior, we expect
that all its parameters share the same scaling
exponent.

(iii) The scale dependence is linear: the equation of
state depends linearly on the length of holes the
photon propagates through. We stress that the de-
pendence we are talking about is not on the scale of
the universe, but on the size of the holes.

We can finally ask which size of the holes will give us a
phenomenological model able to mimic the concordance
model. We found that for n � 1, that is for a holes of radius
rh � 250 Mpc, we have wR0 � 1:4 and wRa � �0:665,
which in terms of the energy density parametrization of
Eq. (13), corresponds to w0 � �1:03 and wa � 2:19.

VI. CONCLUSIONS

The aim of this investigation was to understand the role
of large-scale nonlinear cosmic inhomogeneities in the
interpretation of observational data. We focused on an
exact (if toy) solution, based on the Lemaı̂tre-Tolman-
Bondi (LTB) model. This solution has been studied exten-
sively in the literature [8,17–25]. It has been shown that it
can be used to fit the observed dL�z� without the need of
dark energy (for example in Ref. [8]). To achieve this
result, however, it is necessary to place the observer at
the center of a rather large-scale underdensity. To over-
come this fine-tuning problem, we built a Swiss-cheese
model, placing the observer in the cheese and having the
observer look through the holes in the Swiss cheese as
pictured in Fig. 2.

In Sec. II we defined the model and described its dy-
namics: it is a Swiss-cheese model where the cheese is
made of the usual FRW solution and the holes are made of
a LTB solution. The voids inside the holes are expanding
faster than the cheese. We reported also the results for
dL�z� obtained in Ref. [7], to which we refer the reader
for a more thorough analysis. We found that redshift effects
are suppressed because of a compensation effect due to
spherical symmetry. However, we found interesting effects
in the calculation of the angular distance: the evolution of
the inhomogeneities bends the photon path compared to
the FRW case. Therefore, inhomogeneities will be able (at
least partly) to mimic the effects of dark energy.

After having analyzed the model from the observational
point of view, we set up in Sec. III the fitting problem in
order to better understand how inhomogeneities renormal-
ize the matter Swiss-cheese model allowing us to eschew a
primary dark energy. We followed the scheme developed in
Ref. [9], but modified in the way to fit the phenomenologi-
cal model to the Swiss-cheese one. We chose a method that
is intermediate between the fitting approach and the aver-
aging one: we fitted with respect to light-cone averages.

In particular, we focused on the expansion and the
density. While the expansion behaved as in the FRW case
because of the compensation effect mentioned above, we
found that the density behaved differently thanks to its
intensiveness to that compensation effect: a photon is
spending more and more time in the (large) voids than in
the (thin) high-density structures. This effect is not directly
linked to the one giving us an interesting dA. The best fit we
found for holes of rh � 250 Mpc isw0 � �1:03 andwa �
2:19; qualitatively similar to the concordance model.

The flow chart of Fig. 12 summarizes the results ob-
tained. The insensitivity to the compensation effect made
us think that a Swiss cheese made of spherical symmetric
holes and a Swiss cheese without an exact spherical sym-
metry would share the same light-cone averaged density.
Knowing the behavior of the density, we are therefore able
to know the one of the Hubble parameter that will be the
one of the FRW solution with a phenomenological source

FIG. 14 (color online). At the top, dependence of wR0 (lower
points denoted by circles) and wRa (upper points denoted by �)
with respect of the size of the hole. At the bottom, fit as
explained in the text. Recall that rh is today 350 Mpc.
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characterized by the fit equation of state. In this way we
can think to go beyond the main limitation of this model,
that is, the assumption of spherical symmetry. From this
point of view, the light-cone averaged density can be seen
as a tool in performing this step.

Summarizing:
(i) We started with a Swiss-cheese model based on

spherically symmetric holes. A photon, during its
journey through the Swiss cheese, undergoes a red-
shift which is not affected by inhomogeneities.
However, the photon is spending more and more
time in the voids than in the structures. The lack of
an effect is due to the assumption of spherical sym-
metry. We focus on this because a photon spending
most of its time in voids should have a different
redshift history than a photon propagating in a ho-
mogeneous background.

(ii) Assuming that the density is a quantity that does not
heavily depend on the assumption of spherical sym-
metry, we tried to resolve the issue by focusing on
the density alone and getting from it the expansion
(and therefore the redshift history).

(iii) This resulted in a Swiss-cheese model with holes
that effectively are not perfectly spherical. In this

model the redshift history of a photon depends on
the time passed inside the voids.

(iv) In practice this means that we will use the phe-
nomenological best-fit model found; that is, we will
use a model that behaves similarly to the concord-
ance model.

Then, in Sec. V we studied how the equation of state of a
phenomenological model with only one effective source
depends on the size of the inhomogeneity. We found that
wR0 and wRa follow a power-law dependence with the same
scaling exponent which is equal to unity. That is, the
equation of state depends linearly on the distance the
photon travels through voids.

We finally asked which size of the holes will give us a
phenomenological model able to mimic the concordance
model. We found that for n � 1, that is for a holes of radius
rh � 250 Mpc, we have w0 � �1:03 and wa � 2:19.
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