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Ground-based gravitational wave detectors may be able to constrain the nuclear equation of state using
the early, low frequency portion of the signal of detected neutron star–neutron star inspirals. In this early
adiabatic regime, the influence of a neutron star’s internal structure on the phase of the waveform depends
only on a single parameter � of the star related to its tidal Love number, namely, the ratio of the induced
quadrupole moment to the perturbing tidal gravitational field. We analyze the information obtainable from
gravitational wave frequencies smaller than a cutoff frequency of 400 Hz, where corrections to the
internal-structure signal are less than 10%. For an inspiral of two nonspinning 1:4M� neutron stars at a
distance of 50 Megaparsecs, LIGO II detectors will be able to constrain � to � � 2:0� 1037 g cm2 s2 with
90% confidence. Fully relativistic stellar models show that the corresponding constraint on radius R for
1:4M� neutron stars would be R � 13:6 km (15.3 km) for a n � 0:5 (n � 1:0) polytrope with equation of
state p / �1�1=n.
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I. BACKGROUND AND MOTIVATION

Coalescing binary neutron stars are one of the most
important sources for gravitational wave (GW) detectors
[1]. LIGO I observations have established upper limits on
the event rate [2], and at design sensitivity LIGO II is
expected to detect inspirals at a rate of �2=day [3].

One of the key scientific goals of detecting neutron star
(NS) binaries is to obtain information about the nuclear
equation of state (EoS), which is at present fairly uncon-
strained in the relevant density range �� 2� 8�
1014 g cm�3 [4]. The conventional view has been that for
most of the inspiral, finite-size effects have a negligible
influence on the GW signal, and that only during the last
several orbits and merger at GW frequencies f * 500 Hz
can the effect of the internal structure be seen.

There have been many investigations of how well the
EoS can be constrained using these last several orbits and
merger, including constraints from the GW energy spec-
trum [5], and, for black hole/NS inspirals, from the NS
tidal disruption signal [6]. Several numerical simulations
have studied the dependence of the GW spectrum on the
radius [7]. However, there are a number of difficulties
associated with trying to extract equation of state informa-
tion from this late time regime: (i) The highly complex
behavior requires solving the full nonlinear equations of
general relativity together with relativistic hydrodynamics.
(ii) The signal depends on unknown quantities such as the
spins of the stars. (iii) The signals from the hydrodynamic
merger (at frequencies * 1000 Hz) are outside of LIGO’s
most sensitive band.

The purpose of this paper is to demonstrate the potential
feasibility of instead obtaining EoS information from the
early, low frequency part of the signal. Here, the influence
of tidal effects is a small correction to the waveform’s
phase, but it is very clean and depends only on one pa-
rameter of the NS—its Love number [8].

II. TIDAL INTERACTIONS IN COMPACT
BINARIES

The influence of tidal interactions on the waveform’s
phase has been studied previously using various ap-
proaches [8–13]. We extend those studies by
(i) computing the effect of the tidal interactions for fully
relativistic neutron stars, i.e. to all orders in the strength of
internal gravity in each star, (ii) computing the phase shift
analytically without the assumption that the mode fre-
quency is much larger that the orbital frequency, and
(iii) performing a computation of how accurately the
Love number can be measured.

The basic physical effect is the following: the l � 2
fundamental f-modes of the star can be treated as forced,
damped harmonic oscillators driven by the tidal field of the
companion at frequencies below their resonant frequen-
cies. Assuming circular orbits they obey equations of
motion of the form [14]

 �q� � _q�!2
0q � A�t	 cos
m��t	�; (1)

where q�t	 is the mode amplitude, !0 the mode frequency,
� a damping constant, m is the mode azimuthal quantum
number, ��t	 is the orbital phase of the binary, and A�t	 is a
slowly varying amplitude. The orbital frequency!�t	 � _�
and A�t	 evolve on the radiation reaction time scale which
is much longer than 1=!0. In this limit the oscillator
evolves adiabatically, always tracking the minimum of its
time-dependent potential. The energy absorbed by the
oscillator up to time t is

 E�t	 �
!2

0A�t	
2

2�!2
0 �m

2!2	2
� �

Z t

�1
dt0

m2!�t0	2A�t0	2

!4
0 �m

2!�t0	2�2 :

(2)

The second term here describes a cumulative, dissipative
effect which dominates over the first term for tidal inter-
actions of main sequence stars. For NS-NS binaries, how-
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ever, this term is unimportant due to the small viscosity
[11], and the first, instantaneous term dominates.

The instantaneous effect is somewhat larger than often
estimated for several reasons: (i) The GWs from the time
varying stellar quadrupole are phase coherent with the
orbital GWs, and thus there is a contribution to the energy
flux that is linear in the mode amplitude. This affects the
rate of inspiral and gives a correction of the same order as
the energy absorbed by the mode [10]. (ii) Some papers
[9,11,12] compute the orbital phase error as a function of
orbital radius r. This is insufficient as one has to express it
in the end as a function of the observable frequency, and
there is a correction to the radius-frequency relation which
comes in at the same order. (iii) The effect scales as the
fifth power of neutron star radius R, and most previous
estimates took R � 10 km. Larger NS models with e.g.
R � 16 km give an effect that is larger by a factor of�10.

III. TIDAL LOVE NUMBER

Consider a static, spherically symmetric star of mass m
placed in a time-independent external quadrupolar tidal
field Eij . The star will develop in response a quadrupole
moment Qij. In the star’s local asymptotic rest frame
(asymptotically mass centered Cartesian coordinates) at
large r the metric coefficient gtt is given by (in units with
G � c � 1) [15]:

 

�1� gtt	
2

� �
m
r
�

3Qij

2r3

�
ninj �

�ij

3

�
�

Eij
2
xixj � . . .

(3)

where ni � xi=r; this expansion defines the traceless ten-
sors Eij and Qij. To linear order, the induced quadrupole
will be of the form

 Qij � ��Eij: (4)

Here � is a constant which we will call the tidal Love
number (although that name is usually reserved for the
dimensionless quantity k2 �

3
2G�R

�5). The relation (4)
between Qij and Eij defines the Love number � for both
Newtonian and relativistic stars. For a Newtonian star, �1�
gtt	=2 is the Newtonian potential, and Qij is related to the
density perturbation �� by Qij �

R
d3x���xixj �

r2�ij=3	.
We have calculated the Love numbers for a variety of

fully relativistic NS models with a polytropic pressure-
density relation P � K�1�1=n. Most realistic EoS’s re-
semble a polytrope with effective index in the range n ’
0:5–1:0 [16]. The equilibrium stellar model is obtained by
numerical integration of the Tolman-Oppenheimer-
Volkhov equations. We calculate the linear l � 2 static
perturbations to the Schwarzschild spacetime following
the method of [17]. The perturbed Einstein equations
�G�

� � 8��T�� can be combined into a second order
differential equation for the perturbation to gtt. Matching

the exterior solution and its derivative to the asymptotic
expansion (3) gives the Love number. Form=R� 10�5 our
results agree well with the Newtonian results of
Refs. [9,18]. Figure 1 shows the range of Love numbers
for m=R � 0:2256, corresponding to the surface redshift
z � 0:35 that has been measured for EXO0748-676 [19].
Details of this computation will be published elsewhere.

IV. EFFECT ON GRAVITATIONAL WAVE SIGNAL

Consider a binary with masses m1, m2 and Love num-
bers �1, �2. For simplicity, we compute only the excitation
of star 1; the signals from the two stars simply add in the

FIG. 1. [Top] The solid lines bracket the range of Love num-
bers � for fully relativistic polytropic neutron -star models of
mass m with surface redshift z � 0:35, assuming a range of
0:3 � n � 1:2 for the adiabatic index n. The top scale gives the
radius R for these relativistic models. The dashed lines are
corresponding Newtonian values for stars of radius R.
[Bottom] Upper bound (horizontal line) on the weighted average
~� of the two Love numbers obtainable with LIGO II for a binary
inspiral signal at distance of 50 Mpc, for two nonspinning,
1:4M� neutron stars, using only data in the frequency band f <
400 Hz. The curved lines are the actual values of � for relativ-
istic polytropes with n � 0:5 (dashed line) and n � 1:0 (solid
line).
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phase. Let !n, �1;n and Qn
ij be the frequency, the contri-

bution to �1 and the contribution toQij of modes of the star
with l � 2 and with n radial nodes, so that �1 � �n�1;n

and Qij � �nQn
ij. Writing the relative displacement as

x � �r cos�; r sin�; 0	, the action for the system is

 

S �
Z
dt
�

1

2
� _r2 �

1

2
�r2 _�2 �

M�
r

�
�

1

2

Z
dtQijEij

�
X
n

Z
dt

1

4�1;n!
2
n

�
_Qn
ij

_Qn
ij �!

2
nQ

n
ijQ

n
ij

�
: (5)

Here M and � are the total and reduced masses, and Eij �
�m2@i@j�1=r	 is the tidal field. This action is valid to
leading order in the orbital potential but to all orders in
the internal potentials of the NSs, except that it neglects
GW dissipation, because Qij and Eij are defined in the
star’s local asymptotic rest frame [20].

Using the action (5), adding the leading order, Burke-
Thorne GW dissipation terms, and defining the total quad-
rupole QT

ij � Qij ��xixj ��r
2�ij=3 with Qij � �nQ

n
ij,

gives the equations of motion

 

�xi �
M

r2 n
i �

m2

2�
Qjk@i@j@k

1

r
�

2

5
xj
d5QT

ij

dt5
; (6a)

�Qn
ij �!

2
nQn

ij � m2�1;n!2
n@i@j

1

r
�

2

5
�1;n!2

n

d5QT
ij

dt5
: (6b)

By repeatedly differentiating QT
ij and eliminating second

order time derivative terms using the conservative parts of
Eqs. (6), we can express d5QT

ij=dt
5 in terms of xi, _xi, Qn

ij

and _Qn
ij and obtain a second order set of equations; this

casts Eqs. (6) into a numerically integrable form.
When GW damping is neglected, there exist equilibrium

solutions with r � const, � � �0 �!t for which QT
ij is

static in the rotating frame. Working to leading order in
�1;n, we have QT

11 �Q0 �Q cos�2�	, QT
22 �Q0 �

Q cos�2�	, QT
12 �Q sin�2�	, QT

33 � �2Q0, where

 Q �
1

2
�r2 �

X
n

3m2�1;n

2�1� 4x2
n	r3 ;

Q0 �
1

6
�r2 �

X
n

m2�1;n

2r3

(7)

and xn � !=!n. Substituting these solutions back into the
action (5), and into the quadrupole formula _E � � 1

5 �

hQ
:::T
ijQ
:::T
iji for the GW damping, provides an effective de-

scription of the orbital dynamics for quasicircular inspirals
in the adiabatic limit. We obtain for the orbital radius,
energy and energy time derivative

 

r�!	 � M1=3!�2=3

�
1�

3

4

X
n

�ng1�xn	
�
; (8a)

E�!	 � �
�
2
�M!	2=3

�
1�

9

4

X
n

�ng2�xn	
�
; (8b)

_E�!	 � �
32

5
M4=3�2!10=3

�
1� 6

X
n

�ng3�xn	
�
; (8c)

where �n � m2�1;n!
10=3m�1

1 M�5=3, g1�x	 � 1� 3=�1�
4x2	, g2�x	 � 1� �3� 4x2	�1� 4x2	�2, and g3�x	 �
�M=m2 � 2� 2x2	=�1� 4x2	. Using the formula
d2�=d!2 � 2�dE=d!	= _E for the phase ��f	 of the
Fourier transform of the GW signal at GW frequency f �
!=� [21] now gives for the tidal phase correction

 ���f	 � �
15m2

2

16�2M5

X
n

�1;n

Z v

vi
dv0v0�v3 � v03	g4�x0n	;

g4�x	 �
2M

m2�1� 4x2	
�

22� 117x2 � 348x4 � 352x6

�1� 4x2	3
:

(9)

Here v � ��Mf	1=3, vi is an arbitrary constant related to
the initial time and phase of the waveform, and x0n �
�v0	3=�M!n	. In the limit !� !n assumed in most pre-
vious analyses [8,9,11,12], we get

 �� � �
9

16

v5

�M4

��
11
m2

m1
�
M
m1

�
�1 � 1$ 2

�
; (10)

which depends on internal structure only through �1 and
�2. Here we have added the contribution from star 2. The
phase (10) is formally of post-5-Newtonian (P5N) order,
but it is larger than the point-particle P5N terms (which are
currently unknown) by ��R=M	5 � 105.

V. ACCURACY OF MODEL

We will analyze the information contained in the portion
of the signal before f � 400 Hz. This frequency was
chosen to be at least 20% smaller than the frequency of
the innermost stable circular orbit [22] for a conservatively
large polytropic NS model with n � 1:0, M � 1:4M�, and
R � 19 km. We now argue that in this frequency band, the
simple model (10) of the phase correction is sufficiently
accurate for our purposes.

We consider six types of corrections to (10). For each
correction, we estimate its numerical value at the fre-
quency f � 400 Hz for a binary of two identical m �
1:4M�, R � 15, n � 1:0 stars: (i) Corrections due to
modes with l 
 3 which are excited by higher order tidal
tensors Eijk; . . . . The l � 3 correction to E�!	, computed
using the above methods in the low frequency limit, is
smaller than the l � 2 contribution by a factor of
65k3R2=�45k2r2	, where k2, k3 are apsidal constants. For
Newtonian polytropes we have k2 � 0:26, k3 � 0:106 [8],
and the ratio is 0:58�R=r	2 � 0:04�R=15 km	2. (ii) To as-
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sess the accuracy of the !� !n limit underlying (10) we
simplify the model (5) by taking

 !n � !0 for all n; (11)

so that Qn
ij=�1;n is independent of n. This simplification

does not affect (10) and increases the size of the finite
frequency corrections in (9) since !n 
 !0

1. This will
yield an upper bound on the size of the corrections. (Also
the n 
 1 modes contribute typically less than 1%–2% of
the Love number [9].) Fig. 2 shows the phase correction
�� computed numerically from Eqs. (6), and the approx-
imations (9) and (10) in the limit (11). We see that the
adiabatic approximation (9) is extremely accurate, to better
than 1%, and so the dominant error is the difference
between (9) and (10). The fractional correction to (10) is
�0:7x2 � 0:2�f=f0	

2, where f0 � !0=�2�	, neglecting
unobservable terms of the form 	� 
f. This ratio is &

0:03 for f � 400 Hz and for f0 
 1000 Hz as is the case
for f-mode frequencies for most NS models [13]. (iii) We
have linearized in �1; the corresponding fractional correc-
tions scale as �R=r	5 � 10�3�R=15 km	5 at 400 Hz.
(iv) The leading nonlinear hydrodynamic corrections can
be computed by adding a term �	Q0

ijQ
0
jkQ

0
ki to the

Lagrangian (5), where 	 is a constant. This corrects the
phase shift (10) by a factor 1� 285	�2

1;0!
2=968�

0:9995, where we have used the models of Ref. [23] to
estimate 	. (v) Fractional corrections to the tidal signal due
to spin scale as �f2

spin=f
2
max, where fspin is the spin fre-

quency and fmax the maximum allowed spin frequency.
These can be neglected as fmax * 1000 Hz for most mod-
els and fspin is expected to be much smaller than this.
(vi) Post-1-Newtonian corrections to the tidal signal (10)
will be of order �M=r� 0:05. However these corrections
will depend only on �1 when !� !n, and can easily be
computed and included in the data analysis method we
suggest here.

Thus, systematic errors in the measured value of � due
to errors in the model should be & 10%, which is small
compared to the current uncertainty in � (see Fig. 1).

VI. MEASURING THE LOVE NUMBER

The binary’s parameters are extracted from the noisy
GW signal by integrating the waveform h�t	 against theo-
retical inspiral templates h�t; �i	, where �i are the parame-
ters of the binary. The best-fit parameters �̂i are those that
maximize the overlap integral. The probability distribution
for the signal parameters for strong signals and Gaussian
detector noise is p��i	 �N exp��1=2�ij��

i��j	 [24],
where ��i � �i � �̂i, �ij � �@h=@�i; @h=@�j	 is the
Fisher information matrix, and the inner product is defined
by Eq. (2.4) of Ref. [24]. The rms statistical measurement

error in �i is then
��������������
���1	ii

p
.

Using the stationary phase approximation and neglect-
ing corrections to the amplitude, the Fourier transform of
the waveform for spinning point masses is given by ~h�f	 �
Af�7=6 exp�i�	. Here the phase � is

 

��f	 � 2�ftc ��c �
�
4
�

3M
128�

��Mf	�5=3

�
1�

20

9

�
743

336
�

11

4

�
M

�
v2 � 4�4�� 
	v3 � 10

�
3058673

1016064
�

5429

1008

�
M

�
617

144

�2

M2 � 

�
v4 �

�
38645�

252
�

65

3

�
M

�
lnv�

�
11583231236531

4694215680
�

640�2

3
�

6848�
21

�
v6

�
�
M

�
15335597827

3048192
�

2255�2

12
�

47324

63
�

7948

9

�
v6 �

�
76055

1728

�2
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127825

1296

�3

M3 �
6848

21
ln�4v	

�
v6

� �
�
77096675

254016
�

378515

1512

�
M
�

74045

756

�2

M2

�
v7

�
; (12)

FIG. 2 (color online). [Top] Analytic approximation (10) to the
tidal perturbation to the gravitational wave phase for two iden-
tical 1:4M� neutron stars of radius R � 15 km, modeled as n �
1:0 polytropes, as a function of gravitational wave frequency f.
[Bottom] A comparison of different approximations to the tidal
phase perturbation: the numerical solution (lower dashed, green
curve) to the system (6), and the adiabatic analytic approxima-
tion (9) (upper dashed, blue), both in the limit (11) and divided
by the leading order approximation (10).

1Buoyancy forces and associated g-modes for which !n � !0 have a negligible influence on the waveform’s phase [14].
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where v � ��Mf	1=3, 
 and 
 are spin parameters, and �
is Euler’s constant [25]. The tidal term (10) adds linearly to
this, yielding a phase model with 7 parameters
�tc; �c;M;�;
;
; ~�	, where ~� � 
�11m2 �M	�1=m1 �
�11m1 �M	�2=m2�=26 is a weighted average of �1 and
�2. We incorporate the maximum spin constraint for the
NSs by assuming a Gaussian prior for 
 and 
 as in
Ref. [24].

Figure 1 [bottom panel] shows the 90% confidence
upper limit ~� � 20:1� 1036 g cm2 s2 we obtain for
LIGO II (horizontal line) for two nonspinning 1:4M�
NSs at a distance of 50 Mpc (signal-to-noise of 95 in the
frequency range 20–400 Hz) with cutoff frequency fc �
400 Hz, as well as the corresponding values of � for
relativistic polytropes with n � 0:5 (dashed curve) and
n � 1:0 (solid line). The corresponding constraint on ra-
dius assuming identical 1:4M� stars would be R �
13:6 km (15.3 km) for n � 0:5 (n � 1:0) polytropes.
Current NS models span the range 10 km & R & 15 km.

Our phasing model (12) is the most accurate available
model, containing terms up to post-3.5-Newtonian (P3.5N)
order. We have experimented with using lower order phase
models (P2N, P2.5N, P3N), and we find that the resulting
upper bound on ~� varies by factors of order�2. Thus there
is some associated systematic uncertainty in our result. To
be conservative, we have adopted the most pessimistic
(largest) upper bound on ~�, which is that obtained from
the P3.5N waveform.

In conclusion, even if the internal structure signal is too
small to be seen, the analysis method suggested here could
start to give interesting constraints on NS internal structure
for nearby events.
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