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Until recently, dynamical supersymmetry breaking seemed an exceptional phenomenon, involving
chiral gauge theories with a special structure. Recently it has become clear that requiring only metastable
states with broken supersymmetry leads to a far broader class of theories. In this paper, we extend these
constructions still further, finding new classes which, unlike earlier theories, do not have unbroken,
approximate R symmetries. This allows construction of new models with low energy gauge mediation.
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I. INTRODUCTION: RETROFITTING
O’RAIFEARTAIGH MODELS

Until recently, dynamical supersymmetry (susy) break-
ing seemed an exceptional phenomenon [1]. An analysis of
the Witten index indicated that such breaking can only
occur in chiral gauge theories, and even then only under
rather special circumstances. Recently, however,
Intriligator, Shih, and Seiberg (ISS) [2] exhibited a class
of vectorlike gauge theories which possess metastable,
supersymmetry-breaking minima. Feng, Silverstein, and
one of the present authors showed that this phenomenon
is quite common [3]. One can take a generic Fayet-
Iliopoulos model, and simply replace the scales appearing
there with dynamical scales associated with some under-
lying, supersymmetry-conserving, dynamics.

Consider, for example, a theory with chiral fields, A, Y,
and Z, and superpotential:

 W � �Z�A2 ��2� �mYA: (1)

This is a theory which breaks supersymmetry. The scale,
�, can be generated dynamically by introducing a dynami-
cal gauge theory and replacing �2 by the expectation value
of some suitable composite operator. One simple possibil-
ity is to take the extra sector to be a pure gauge theory, say
SU�N�, and introduce a coupling

 

Z
d2�

Z
4M

W2
�: (2)

This structure can be enforced by discrete symmetries. The
gauge theory has a ZN discrete symmetry, so if A and Y
transform likeW�, while Z is neutral, the only couplings of
dimension three or less which are invariant are those above.
Integrating out the gauge fields, leaves a superpotential:

 W � �ZA2 �
�3e�8�Z=b0

M
�mYA: (3)

The resulting potential has a minimum at Z! 1, i.e. it

exhibits runaway behavior. But the Coleman-Weinberg
corrections give rise to a local minimum at Z � 0.

This simple theory can be used in an interesting way as a
hidden sector in a supergravity theory. Previously, most
known models of dynamical supersymmetry breaking con-
tained no gauge singlets. As a result, one could not write
dimension five operators giving rise to gaugino masses,
and the leading contributions arose from anomaly media-
tion.1 But in these ‘‘retrofitted’’ models, there is no ob-
struction to the existence of a coupling of Z to the various
gauge fields, so there is no difficulty generating gaugino
masses. One still faces the problem of large potential flavor
violation.

Various strategies were discussed in [3] to break super-
symmetry at lower scales. However, it was difficult within
the examples presented there, to build realistic models.
(Alternative strategies based on the ISS models were put
forward in [4].) The difficulty is illustrated by our simple
model. At low energies, the model has a continuousU�1� R
symmetry. Under this symmetry, the fields Y and Z carry
charge two. This symmetry forbids gaugino masses.
Within simple models with chiral fields only, it is difficult
to find examples where the analogs of the Y and Z fields
acquire expectation values, breaking the symmetry.

On the other hand, at least since Witten’s work on the
‘‘inverted hierarchy’’ long ago [5], gauge interactions have
been known to destabilize the origin of moduli potentials in
O’Raifeartaigh models. In this paper, we exhibit examples
with gauge symmetries where the potential has a local
minimum away from, but not far away from, the origin.
The symmetry is broken and a rich phenomenology is
possible.

In the next section, we generalize further the construc-
tions of [3]. It is troubling that the simplest retrofitted
models introduce additional mass parameters in the
Lagrangian, and we explain how these can also be under-
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1An exception was provided by the Intriligator-Thomas mod-
els [15,16]. In general, naturalness arguments would require an
anomalous discrete R symmetry in these theories, but this will be
required in our models below, as well. Models with local minima
with broken supersymmetry have been considered in the past as
well, e.g. [17,18].
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stood dynamically, in terms of a single set of gauge inter-
actions. In Sec. III, we introduce the gauged model, com-
pute the potential, and verify that R symmetry is broken for
a range of parameters. We then turn to the construct of low
energy (direct) models of gauge mediation. We implement
a solution of the � problem which follows on the ideas of
Giudice, Rattazzi, and Slavich [6,7]. In the conclusions we
discuss issues of stability, fine-tuning, and directions for
future work.

II. NATURALNESS IN THE RETROFITTED
MODELS

The model of Eq. (1) has, in addition to �2, the dimen-
sionful parameter m. Some strategies to obtain both mass
terms dynamically were discussed in [3], but these often
run afoul of naturalness criteria. A simple variant of the
ideas above works here as well, however. Suppose, again,
that one has a pure gauge theory with a large scale, �. Then
the scales �2 and M can be replaced by couplings:

 W� � ZA2 �
1

M4
p
ZW4

� �
1

M2
p
W2
�AY: (4)

We have taken the scale here to be the Planck scale, but one
could well imagine that some other large scale (the grand
unified theory (GUT) scale, for example) would determine
the size of these operators. Now

 �2 �
�6

M4
p

; M �
�3

M2
p

(5)

andM and� are naturally of the same order. This structure
can readily be compatible with a discrete ZN R symmetry.
For example, if � is an Nth root of unity,
 

W2
� ! �W2

�; Z! ��1Z;

A! �A; B! ��1B:
(6)

It is also necessary to impose a Z2, under which A andB are
odd, to prohibit the coupling A2B (additional restrictions
may be necessary for particular values of N). In the model
we consider in the next section, the extra Z2 is not neces-
sary; the gauge symmetries forbid the unwanted coupling.

In [3], still another mechanism to obtain dimensional
parameters naturally was described: it was shown that one
can naturally obtain Fayet-Iliopoulos terms. We will not
exploit this in our model building in this paper, but this
may also be a useful tool.

III. INCLUDING GAUGE INTERACTIONS:
COLEMAN-WEINBERG CALCULATION

The basic model is a U�1� gauge theory, with charged
fields Z� and ��, and a neutral field, Z0. The superpoten-
tial of the model is

 W � M�Z��� �M�Z��� � �Z0����� ��2�: (7)

The model breaks supersymmetry. For simplicity, we take
M� � M� � M. If jM2j< j�2�2j, at the minimum of the
potential:

 �� � �� � v; v2 �
�2�2 �M2

�2 (8)

(up to phases) while

 FZ� � FZ� � Mv; FZ0 �
M2

�
: (9)

There is a flat direction with

 Z� � �
�Z0��

M
: (10)

As in the previous section, both the parameters M and �
can arise from dynamics at some much larger scale; the
structure can be enforced by discrete symmetries.

It is easy to compute the potential at large Z. In this limit,
the theory is approximately supersymmetric, and the gauge
fields, as well as certain linear combinations of the Z’s, are
massive. It is then possible to integrate out the massive
fields, writing a supersymmetric effective action for the
light fields. It is also helpful to work in a limit of large M,
M� ��, so that the F components of Z� are larger than
that of Z0. Any supersymmetry breaking should show up
from the F components of the various fields, i.e. as terms of
the form

 

Z
d4��Z�yZ�f� Z�yZ�g� Z0yZ0h�; (11)

where f, g, h are functions of the Z’s.
So we need to compute Feynman diagrams (super-

graphs) with external Z fields. These are greatly simplified
by isolating the pieces of the form FyF, noting that the
external lines all have two �’s. We need the propagators in
a generalized ’t Hooft-Feynman gauge:
 

hZ�Z�yi �
i

p2 �M2
V

� �1� �-dependent�;

hV��1�V��2�i � �
1

2

i���1 � �2�

p2 �M2
V

:
(12)

There are essentially two graphs. In the diagram with two
external Z0’s an internal �� and �� (with mass �Z0), the
theta’s at the interaction vertices are soaked up by the F’s,
and the graph is simply

 �2jFZ0 j2
Z d4p

�2��4
1

�p2 � j�2Z0j2�2

�
�2

16�2 jFZ0 j2 ln�j�Z0j2�: (13)

For the gauge interactions, the diagrams are equally sim-
ple. The leading interaction is Z�yZ��2gV�. Now one hasR
d4� at each vertex, but the delta function in the gauge

boson propagator soaks up the remaining �’s. So we have
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 � 2g2�jFZ�j
2 � jFZ�j

2�
Z d4p

�2��4p2�p2 �M2
V�

� �
4g2jFZ�j

2

16�2 ln�g2jZ�j2�: (14)

So overall, the asymptotic behavior of the potential is given
by

 V �
1

16�2 �jFZ0 j2�2 � 4g2jFZ�j
2� ln�Z02=�2� (15)

for a cutoff, �.

For a range of g and �, then, the potential grows at large
Z0. We wish to determine whether, within this range, there
is a range for which the potential has negative curvature at
small Z. The answer is yes. At small Z, it is simplest to do
the Coleman-Weinberg calculation directly. In Fig. 1, we
have plotted the potential for several values of g and �,
and, indeed, for a range of parameters, there is a minimum
at nonzero Z0.

In general, for small Z0,

 V�Z� � const�m2
ZjZ

0j2: (16)

The constant is obtained by diagonalizing the full mass
matrix. The condition that m2

Z < 0 is a condition on the
ratio of gauge to Yukawa couplings, as is the condition that
the potential should rise at 1. The bands of allowed g and
�, for different values of h, are indicated in Fig. 2.

Note that Z0, Z� at the minimum are of order �. So by
dialing the dynamical scale, one can obtain supersymmetry
breaking at any scale. In addition, the accidental R sym-
metry of the low energy theory is spontaneously broken.
The would-be Goldstone boson gains a substantial mass
once couplings to supergravity are included, as explained
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FIG. 1. Z potential with g � :4, � � 1, M � 1, � � 1:5.
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FIG. 2 (color online). Graphs of the regions of parameter space where there is a local R-breaking minimum. Below the upper line is
the region where the potential grows positive at large Z0 and above the lower line is the region where the potential curves down at the
origin. The values of h are h � :5, h � :1, h � :66, and h � 2 in (a), (b), (c), and (d), respectively.
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in [8]. This, then, is just the sort of structure we would like
in gauge-mediated models [9]. We can now couple Z0, for
example, to messenger fields. We will initiate a study of
such models in the next section.

IV. LOW ENERGY, DIRECT MEDIATION

In the model we have described above, the scale of
supersymmetry breaking is a free parameter, and the scale
of R-symmetry breaking is of the same order. This is
clearly only one of a large class of possible models. By
making different choices of charges, for example, one can
avoid introducing the dimensionful parameter, M. (One
can, and in general should, introduce two independent
mass parameters in the original model). One can now
make a model of direct gauge mediation by introducing a
set of messenger fields, M and �M, with the quantum
numbers of a 5 and �5 of SU�5�, and with couplings to Z0:

 �0Z0 �MM: (17)

Then the standard gauge mediation computation yields a
positive mass-squared for squarks and sleptons. Note that
in this case, if Z0 is neutral under the discrete R symmetry,
no symmetry forbids a large mass term for �MM. This
problem arises because of our choice of coupling in
Eq. (2). In order that symmetries forbid a �MM mass
term, one needs that Z transform nontrivially under the
discrete symmetry, as discussed in Sec. II.

One might worry that in this model, in addition to the far
away supersymmetric minimum, there is a close-by one
with

 �0 �MM� ��2 � 0: (18)

For suitable � and �0, our candidate minimum remains a
local minimum of the potential, however; it is also suffi-
ciently metastable. To see this, note that in the metastable
minimum, the quadratic terms in the M, �M potential are

 �0F	
Z0

�MM� c:c:� j�0Zoj2�jMj2 � j �Mj2�: (19)

We can work in a regime where ��� M. In this regime,
at the minimum

 Z� 
�Z0 
M=�; FZ0


M2

�
(20)

so the curvature of the M, �M potential is positive provided
�0 � �. (The first relation in Eq. (20) follows from the fact
that the potential for Z� will exhibit structure on the scale
of the �� expectation values; the second from the vanish-
ing ofF�� .) Numerically, we find that the situation is better
than this; FZ0 is typically significantly smaller than jZ0j

2,
even when ��
M.

Note that the energy difference between the metastable
and the supersymmetric vacuum is of order

 �E � M2v2: (21)

The barrier height, on the other hand, is of order the shift in
�� times the �� masses in the metastable minimum, or

 V0 
 �2�4: (22)

So a thin walled treatment is appropriate [10], and the
bounce action is at least as large as

 S

�2S4

1

2�E3 ; (23)

where

 S1 
 ��
3: (24)

This gives an estimate for the bounce action:

 S
 �2��2

�
�6�6

M6

�
: (25)

� and M2=�2�2 were, by assumption, our small parame-
ters, and the decay amplitude can easily be extremely
small, even if the small parameters are not.

The problems of generating suitable � and B� terms in
gauge-mediated models are well known. If we simply
couple Z0 to �HH, with a small coupling, this can generate
a small B� but this will lead to a very small � term. In this
framework, we can also generate a � and B� term of a
reasonable order of magnitude, following the ideas of
[6,7]. This approach involves introducing a singlet, S
with couplings similar to those of the next to minimal
supersymmetric standard model (NMSSM) [6]. It is also
necessary to double the messenger sector, i.e. to have fields
Mi, �Mi, i � 1, 2. We can take the additional terms in the
superpotential to be (we avoid giving names to all of the
various couplings at this stage):

 W � Z0�y1M1
�M1 � y2M2

�M2� � hSM1
�M2 � S3: (26)

The renormalizable couplings can be restricted to this form
by a discrete R symmetry. For example, taking

 � � e�2�i=N� (27)

and supposing Z0 transforms with phase ��1, we can take

 M1 ! �2M1; �M1 ! �M1; M2 ! M2;

�M2 ! �2 �M2; S! ��3SHU; HD ! ��1HUHD:

(28)

This still allows some dangerous couplings; in particular,
Z0S0. This can be forbidden by an additional Z2, for
example, under which S0 is odd, and one of HU or HD is
odd.
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In [6,7], it was shown that the one loop corrections to the
Smass vanish (to order F2) in a model such as this, and the
two loop contributions can be negative. As a result, the S
vacuum expectation value (vev) is one loop order, the �
term one loop order, and the B� term two loop order.

V. CONCLUSIONS

This paper can perhaps be viewed as the culmination of
the program initiated by ISS [2]. ISS exhibited vectorlike
models with nonvanishing Witten index, in which there are
metastable states in which supersymmetry is dynamically
broken. Reference [3] enlarged the set of possible models,
by simply taking O’Raifeartaigh theories and replacing all
mass parameters by dynamically generated scales. As
noted in [3], because these models often contain singlets
neutral under gauge symmetries and discrete R symme-
tries, they open up new possibilities for building super-
gravity models with supersymmetry broken dynamically in
a hidden sector. This may be particularly interesting in
light of recent studies of the landscape of string vacua
[11]. In many string constructions, large chiral theories of
the type previously thought needed for dynamical super-
symmetry breaking seem rare. Nonchiral theories with
singlets seem far more common. R symmetries may be
rare, however [12].

One can ask about the cosmology of the susy-breaking
vacuum states. First, there is the issue of metastability. We
would expect the susy-breaking states in the retrofitted
models to be highly metastable. Even before coupling to
gravity, the supersymmetric minimum lies far away in field
space, and the amplitudes are suppressed by huge expo-
nentials. Before worrying about gravity, the decay ampli-
tudes are typically extremely small,

 �
 e�cM
4=�4

; (29)

where c is a number of order 1. Once coupled to gravity,
the standard Coleman-DeLuccia analysis will give vanish-
ing amplitude in most cases for decays to big crunch
spacetimes. A number of papers have appeared recently
discussing the question: can the system find its way into the

metastable vacuum. In the ISS case, if one assumes that the
system was in thermal equilibrium after inflation, one finds
that the broken susy minimum is thermodynamically fa-
vored [13]. In the O’Raifeartaigh models, the same can be
true; the analysis is in fact simpler. For example, in our
models, we have large numbers of messenger fields, which
are light in the metastable vacuum. More generally, the low
energy theory has accidental, approximate symmetries
near the origin of field space, and even nonthermal effects
(e.g. in cosmologies with low reheating temperatures) may
favor these points.

Our principle interest in this paper was to construct
models of direct mediation. For this, in both the models
of [2,3] there was an obstacle: the low energy theories
possessed an accidental continuous R symmetry. In this
paper, we have shown how, by adding gauge interactions,
one can break the R symmetry spontaneously. It is straight-
forward to add messengers to implement dynamical super-
symmetry breaking. In this way, one could construct
models with susy-breaking scale as low as 10’s of TeV.
One still must confront the standard difficulties in gauge
mediation, especially the � problem and the question of
fine-tuning. We have considered one mechanism for solv-
ing the � problem in these theories, and argued that it is
technically natural. The models, at low energies, look like
the conventional NMSSM. Ameliorating the tuning prob-
lems will require a hidden sector with more fields, in which
the squarks are not parametrically heavy compared to the
doublet sleptons. This question will be explored elsewhere
[14], as will further studies of the � term.
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