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We continue to explore the consequences of the recently discovered Minkowski space structure of the
Higgs potential in the two-Higgs-doublet model. Here, we focus on the vacuum properties. The search for
extrema of the Higgs potential is reformulated in terms of 3-quadrics in the 3� 1-dimensional Minkowski
space. We prove that 2HDM cannot have more than two local minima in the orbit space and that a twice-
degenerate minimum can arise only via spontaneous violation of a discrete symmetry of the Higgs
potential. Investigating topology of the 3-quadrics, we give concise criteria for existence of noncontrac-
tible paths in the Higgs orbit space. We also study explicit symmetries of the Higgs potential/Lagrangian
and their spontaneous violation from a wider perspective than usual.
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I. INTRODUCTION

A. The Higgs potential in 2HDM and its complexity

The standard model relies on the Higgs mechanism of
the electroweak symmetry breaking (EWSB). Its simplest
realization is based on a single weak isodoublet of scalar
fields, which couple to the gauge and matter fields and self-
interact via the quartic potential, for a review see [1,2].
Extended versions of the Higgs mechanisms are based on
more elaborate scalar sectors. The two-Higgs-doublet
model (2HDM) [3], where one introduces two Higgs dou-
blets �1 and�2, is one of the most economic extensions of
the Higgs sector beyond the standard model. This model
has been extensively studied in literature from various
points of view, see [1,4–7] and references therein. The
minimal supersymmetric extension of the standard model
(MSSM) uses precisely a specific version of the 2HDM to
break the electroweak symmetry, [8].

The Higgs potential of the most general 2HDM VH �
V2 � V4 is conventionally parametrized as
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It contains 14 free parameters: real m2
11,m2

22, �1, �2, �3, �4

and complex m2
12, �5, �6, �7. Such a large number free

parameters makes the analysis of the most general 2HDM
and its phenomenological consequences rather compli-
cated. Even the very first step, finding the minimum of
the Higgs potential, is prohibitively difficult in the most
general 2HDM.

On the one hand, in many phenomenological applica-
tions one does not actually need to consider the most
general 2HDM. Even if one sets several parameters to
zero, there is still room for interesting phenomenology,
and the straightforward algebra is usually sufficient for
the complete treatment of EWSB.

On the other hand, it is obvious that by studying several
particular simplified cases one cannot imagine the full
spectrum of possibilities offered in 2HDM. This is espe-
cially timely now because within a few years the LHC is
expected to discover experimentally the ESWB mecha-
nism realized in nature. In order to safely interpret the
LHC data, theorists should know beforehand which phe-
nomena can or cannot happen in various particular scenar-
ios of EWSB, in particular, in 2HDM.

A clear view of the general situation in 2HDM will also
help understand which among the free parameters of the
Higgs potential are crucial, in the sense that they shape the
phenomenology, and which are redundant, that is, they
modify only numerical values of the vacuum expectation
values (v.e.v.’s) of the fields and the Higgs masses.

One particular situation where this knowledge becomes
indispensable is when one attempts to use the existing
experimental data to place bounds on the parameters of
2HDM, for a recent analysis see [9]. The tricky point here
is that there are regions in the parameter space when the
Higgs potential has two different minima in the orbit space,
see detailed discussion in [10,11]. In this situation one
must be aware of the presence of the other minimum,
when it exists, and make sure that the minimum one
compares with the data is the global one. In principle, a
method has been developed in which one compares the*Igor.Ivanov@ulg.ac.be
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depth of the potential at different extrema and related it to
some observables such as mass squared of some Higgs
bosons, [10–12]. However, this method gives rather lim-
ited information about the structure of the potential; in
particular, it can distinguish minima from saddle points
only after substantial algebraic manipulations.

Finally, experience gained when studying the most gen-
eral 2HDM should prove useful, when one turns to even
more involved Higgs sectors, for which the direct algebra
with a nontrivial set of parameters becomes even more
difficult.

B. Geometric approaches to the most general 2HDM

Since the straightforward algebraic calculations are pos-
sible only within very restricted versions of 2HDM, one
needs to develop other approaches on how to treat the most
general case. These approaches should aim not at precise
analytical calculation of the v.e.v.’s, Higgs masses, etc. (as
the algebraic complexity of the most general 2HDM is
unavoidable), but at understanding of the general structure
in the space of all 2HDM’s.

Since long ago there has been a general understanding
that questions of this type can be answered within a more
geometrical rather than analytical approach to the minimi-
zation of a given potential, see [13] and references therein.
Back in the 1970’s–1980’s, there was much activity on
mathematical properties of various realizations of the sym-
metry breaking Higgs mechanisms. It was understood that
the problem of minimization of some group-invariant po-
tential is simplified if one switches from the space of Higgs
fields to the orbit space, [14]. This idea was exploited in
[13,15] to study the minima of a Higgs potential invariant
under the Lie group G with Higgs fields transforming
under various representations of this group. This general
approach has been even applied to 2HDM, see [16].

Last several years witnessed a renewed interest in the
study of the most general 2HDM. The idea was to exploit
the reparametrization properties of the 2HDM potential,
rewriting (1) as a convolution of some second and fourth-
rank Higgs field tensors with the corresponding tensors
constructed from the free parameters available, [17].
However, the machinery based on this tensorial approach
[6] lacked transparency and intuition, which was nicely
illustrated by its application to the problem ofCP-violation
in 2HDM, [18].

These drawbacks were avoided in the group-theoretic/
linear algebraic approach of [19]. This approach put to-
gether the benefits of the tensorial and geometric formal-
isms by discovering some simple structure in the tensors
used in the former. This idea was developed further in [7]
by considering the largest reparametrization group of the
Higgs potential, GL�2; C�, and observing that its subgroup
SL�2; C� induces the Minkowski space structure in the
orbit space of 2HDM. Reference [7] showed the prominent
role played by the light cone and some caustic surfaces in
this Minkowski space.

The linear algebraic/geometric properties of the 2HDM
were also studied in [20] and were later extended to the
general N-Higgs-doublet models in [21]. The geometric
point of view was also used in [22] to study the
CP-violation in 2HDM.

C. Plan of the paper

The plan of the paper is the following. In Sec. II we
review the Minkowski-space formalism introduced in [7].
In Sec. III we reformulate the minimization problem of the
Higgs potential in terms of geometry of 3-quadrics em-
bedded in the Minkowski space. We prove there that the
2HDM, if it has a discrete set of minima, can have no more
than two local minima. We also introduce there the valley
of the Higgs potential and discuss the consequences of its
nontrivial topology. Section IV deals with discrete symme-
tries of the Higgs Lagrangian/potential as well as their
spontaneous violation from a somewhat more general point
of view than usual. Then, in Sec. V, we take a closer at the
situation with a doubly degenerate global minimum. We
draw conclusions in Sec. VI, and in the appendix we give
some useful formulas and prove the lemma that we use in
Propositions 4 and 5.

We find it useful to summarize here, in plain words, the
main results of this paper:

(i) The search for the global minimum of the Higgs
potential is equivalent to the search of a second-order
3D surface that touches but never intersects the
future light cone LC� in the Minkowski space.

(ii) The geometry of this and similar surfaces, which is
related in a very transparent way to the parameters of
the potential, plays an important role in various
phenomena in the scalar sector of 2HDM. For ex-
ample, we prove that the (tree-level) Higgs potential
cannot have more than two local minima and that a
doubly degenerate vacuum can appear only as a
result of spontaneous violation of a specific repara-
metrization symmetry of the potential. These sur-
faces can also have nontrivial topology and give rise
to noncontractible paths in the Higgs orbit space,
leading possibly to metastable quasitopological ex-
citations within the scalar sector of 2HDM.

(iii) We list all reparametrization symmetries the Higgs
Lagrangian can have, underline differences between
symmetries of the potential and of the whole Higgs
Lagrangian, and establish that the maximal sponta-
neous violation of a discrete symmetry in 2HDM
consists in removing one Z2 factor.

II. MINKOWSKI SPACE STRUCTURE OF THE
ORBIT SPACE OF THE 2HDM

Here we briefly review the Minkowski space formalism
introduced in [7] and recall some of the results obtained
there.
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A. Extended reparametrization group

The starting point is the organization of the Higgs dou-
blets �1 and �2 into a hyperspinor �:

 � �
�1

�2

� �
:

The key observation then is that the potential (1) retains its
generic form under any linear transformation between
doublets �1 and �2. In other words, (1) is invariant under
a linear transformation of � accompanied with an appro-
priate transformation of the parameters �i and m2

ij (see
detailed discussion in [7]).

Let us introduce the four-vector r� � �r0; ri� �
��y���� with components
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The quantities r0 and ri are gauge-invariant as they do not
change when the electroweak gauge transformations act on
�1 and �2 simultaneously. Thus, r� parametrizes gauge
orbits of the Higgs fields. The SL�2; C� group of trans-
formations of the spinor � induces the proper Lorentz

group SO�1; 3� of transformations of r�. Thus, the orbit
space in which the Higgs potential is defined is equipped
with the Minkowski space structure.

An important remark is in order. Since the Higgs fields
are operators, the quantity r� is an operator-valued four-
vector. However, in the present investigation we are not
interested in the dynamics of 2HDM but aim only at the
understanding of the vacuum structure of 2HDM. To this
end, we will be interested not with r� itself, but with its
vacuum expectation value hr�i, which is a c-number.

We call this SO�1; 3� transformation group the extended
reparametrizaton group.

Now, since hr0i 	 0 and, due to the Schwartz lemma,
hr�ihr�i 
 hr0i

2 � hrii2 	 0, the space of all possible or-
bits, the orbit space, is given by the forward light cone
LC� in the Minkowski space. The extended reparametri-
zation group in the orbit space, SO�1; 3�, leaves the orbit
space invariant. Note that hr�ihr�i coincides with the
quantity Z introduced in [5,11].

The Higgs potential in the orbit space can be written in a
very compact form:

 V � �M�r� �
1
2���r�r�; (3)
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We repeat again that when searching for the minima of the
potential, we will understand r� in (3) in the sense of
vacuum expectation values.

Properties of ��� were explored in [7]. It was shown
that if one requires the Higgs potential to be positive-
definite at large quasiclassical values of the Higgs fields,
then ��� is positive-definite on and in the forward light
cone LC�. This is equivalent to the statement that ��� is
diagonalizable by an SO�1; 3� transformation and after
diagonalization it takes form

 

�0 0 0 0
0 ��1 0 0
0 0 ��2 0
0 0 0 ��3

0
BBB@

1
CCCA with �0 > 0 and

�0 >�1;�2;�3:

We will refer to �0 as the ‘‘timelike’’ eigenvalue of ���

and �i, i � 1, 2, 3, as its ‘‘spacelike’’ eigenvalues. For the

reader’s convenience, we collect in Appendix A some basic
formulas concerning manipulations with ���.

In principle, one can slightly relax the above condition
by requiring ��� to be non-negative instead of positive-
definite within LC�. This implies the possibilities of �0 �
0 and/or �i � �0 for some �i. These possibilities lead to
existence of ‘‘flat’’ directions of ��� and are viable only
when the mass term �M�r

� grows along these directions.

B. Extrema of the Higgs potential

Minimization (or in general, extremization) of the po-
tential in the Higgs space amounts to finding the minimum
(extremum) of (3) on or inside the future light cone LC�. It
can be easily shown that 2HDM potential bounded from
below cannot have nontrivial maxima, so all nontrivial
extrema are either minima or saddle points [7,14].

If the minimum lies on the surface of LC�, the v.e.v.’s of
the Higgs doublets can be brought by an appropriate gauge
transformation to the standard form
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with real v1, v2, �. This corresponds to the neutral vacuum,
since it remains invariant under residual U�1�EM gauge
transformations and the photon remains massless. If the
minimum lies strictly inside LC�, then gauge transforma-
tions can bring the v.e.v.’s to
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u
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with some nonzero real u. This situation corresponds to the
charge-breaking vacuum with massive photon.

The condition for the extremum strictly inside LC� is

 ���hr�i � M�: (7)

For nonsingular ���, it always exists and is unique.
However, it is realizable as a Higgs field configuration
only if m� � ��

�1���M
� lies inside LC�.

The condition for the extrema lying on the surface of
LC� are written with the aid of a Lagrangian multiplier � :

 ���hr�i � � � hr�i � M�: (8)

In general, there can be up to six neutral extrema. In
Ref. [7] it was shown that the sign of � determines the
sign of the mass square of the charged degrees of freedom.
Thus, one of the necessary conditions for a neutral extre-
mum to be minimum is � > 0. Geometrically, it means that
the potential increases as one shifts from the surface of
LC� inwards, or in other words, that the mass square of the
charged excitations is positive.

In [7] we found a simple criterion when the Higgs
potential has charge-breaking global minimum and proved
the theorem that neutral and charge-breaking minima can-
not coexist in 2HDM.

C. Nonstandard kinetic term

Transformations from the extended reparametrization
group modify the Higgs kinetic term. However, it can
also be rewritten in the explicitly reparametization-
covariant form:

 K � ��K�; �� � �D	��y���D	��; (9)

where D	 is the extended derivative, 	 denotes the usual
space-time coordinates, while �, as before, denotes the
coordinate in the Higgs orbit space. Note that reparamet-
rization transformation properties of �� are the same as r�.
The entire Higgs Lagrangian is simply L � K � V. In the
usual frame, the ‘‘kinetic’’ four-vector K� is simply K� �
�1; 0; 0; 0�. Boosts make K� a nontrivial vector, but it
always obeys K�K� � 1 and always lies inside the future
light cone.

Having a nonstandard kinetic term represents only a
minor inconvenience when one studies the general struc-
ture of the Higgs potential. The number of extrema, their

minimum/saddle point classification, the depth of the po-
tential are all insensitive to the nonstandard kinetic term. It
is only the exact numerical value of the v.e.v. and masses of
the physical Higgs bosons that do depend on K�. A non-
standard kinetic term also leads to distinction between the
symmetries of the potential and of the entire Higgs
Lagrangian, which will be discussed in Sec. IV C.

D. Prototypical model and the degree of algebraic
complexity of 2HDM

The extended reparametrization symmetry of the Higgs
potential reduces the number of the crucial parameters of
the potential.

The diagonalizability of ��� means that for any generic
2HDM upon performing a suitable linear transformation of
the Higgs doublets one can arrive at the Higgs potential
with parameters ��i, which satisfy the following relations:

 

�� 1 � ��2; ��6 � ��7 � 0; Im ��5 � 0; (10)

together with a generic set of �m2
ij and a generic kinetic

term. We call it the prototypical model of a given 2HDM.
The structure of the extrema (the number of the extrema,
their minimum/saddle point classification, their depth, and
symmetries) of the original Higgs potential are the same as
for the prototypical model and depends only on 7 parame-
ters: the four eigenvalues of ��� and the three ratios of the
components of M� that define its direction in the
Minkowski space in the prototypical model.

In the geometric treatment of the Higgs potential in a
generic 2HDM we manipulate with the eigenvalues of ���

and components M� of the prototypical model. If one
intends to obtain these values from the initial generic set
of �i and m2

ij, one has to solve the fourth-order character-
istic equation. One can say that the degree of algebraic
complexity of a generic 2HDM is four.

In special cases, when ��� is already block-diagonal,
this degree is lower. For example, in the often-considered
case �6 � �7 � 0, ��� is made of two blocks 2� 2. Its
degree of complexity is 2, and in order to diagonalize ���

one has to perform, independently, a boost along the third
axis a rotation in the ‘‘transverse’’ plane. This makes such a
model tractable with the straightforward calculations.

For the sake of illustration, let us note that in the tree-
level MSSM ��� is already diagonal, with the following
eigenvalues:

 �0 � �1 � �2 �
1
4g

2
2; �3 � �

1
4g

2
1 (11)

where g1, g2 are the EW gauge coupling constants.
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III. EQUIPOTENTIAL SURFACES, MINIMA, AND
THE VALLEY OF THE HIGGS POTENTIAL

Let us continue our investigation of the consequences of
the Minkowski space structure of the orbit space of the
2HDM.

First, we introduce some notation. Let M be Minkowski
space of all possible four-vectors p�. As it was noted
above, only vectors lying on and inside the future light
cone LC� are physically realizable via Higgs fields (2).
Choose a vector p� from M and consider quadratic form
���p

�p�. Upon diagonalization of ���p
�p� by an ap-

propriate SO�1; 3� transformation, one can rewrite the
quadratic form as

 ���p�p� � �0p2
0 �

X
i

�ip2
i : (12)

Because of the properties of ���, this quadratic form is
positive definite if p� lies in the future light cone, but it is
not required to be positive definite in the entire Minkowski
space M.

Let us define the 3-manifold M0 as the locus of all p�

such that ���p�p� � 0. In addition, we also denote by
M� and M� the parts of the entire Minkowski space
where this quadratic form is positive and negative, respec-
tively. Clearly, M0 separates M� and M�.

More generally, we introduce a 3-manifold MC as the
locus of all p� such that ���p�p� � C, which separates
M into regions M<C and M>C. Note that 3-manifolds
MC are nested, in the sense that they never intersect and
MC1 lies in M>C2 if C1 >C2.

A. Geometry of 3-manifolds MC

Let us now study the geometry of a typical 3-manifold
MC. As can be seen from (12), it is a second-order 3-
surface (3-quadric) embedded in the 4D space. More spe-
cifically, it is a 3-hyperboloid (or a 3-cone for C � 0),
whose shape depends on the sign of C and of �i. Let us
list explicitly all the cases.

(i) All �i are positive. 3-quadric M0 is a pair of 3D
cones oriented along the ‘‘timelike’’ axis. Note that
due to �0 >�i these cones are wider than the light
cone LC. The interior of these cones is M�. To help
the reader visualize this construction, we show in
Fig. 1, left, the 2� 1-dimensional analogs of M0

together with LC. A 3-quadric MC with C> 0 or
C< 0 is a two-sheet or one-sheet 3-hyperboloid,
respectively, oriented along the ‘‘timelike’’ axis.

(ii) �1, �2 > 0, while �3 < 0. M0 is a peculiar cone,
specific for a higher dimensional space, defined by
equation:

 �1p
2
1 ��2p

2
2 � j�3jp

2
3 ��0p

2
0 � 0:

MC are similarly peculiar one-sheet 3-hyperboloids.
(iii) �1 > 0 while �2, �3 < 0. M0 is now a pair of

cones, similar to the all-positive case, but oriented

along the first spacelike, rather than timelike, axis.
Again, we illustrated this case in Fig. 1, right, with
the 2� 1-dimensional analogs. Its interior now is
M�. MC with negative C lie inside this cone and
are two-sheet 3-hyperboloids, again oriented along
the first axis. MC with positive C are one-sheet 3-
hyperboloids.

(iv) All �i are negative. In this case ��� is positive
definite in the entire Minkowski space, so M0 is
reduced to the single point at origin, p� � 0. 3-
surfaces MC with negative C do not exist, while
MC with positive C are 3-ellipsoids defined by

 j�1jp2
1 � j�2jp2

2 � j�3jp2
3 ��0p2

0 � C:

(v) If there is a zero among �i, e.g. �k � 0, then the
above 3-manifolds MC become cylindric along the
kth axis.

B. Relation to the minimization problem

Let us now demonstrate the following simple geometric
fact: the search for the neutral extrema of the Higgs
potential can be always reformulated as the search for
such 3-quadrics that touch the forward light cone LC�.

Let us first assume that ��� is nonsingular, i.e. its
eigenvalues �i � 0. Then ��1

�� exists, and one can rewrite
the Higgs potential (3) as

 V � 1
2����r� �m���r� �m�� � V0;

m� � ��
�1���M

�; V0 � �
1
2��

�1���M
�M�:

(13)

Let us now denote p� � r� �m�. Then, the 3-surface
MC is in fact the surface of equal values of the potential,
V � V0 � C=2. Intersection of MC with (the surface and
interior of) the future light cone LC� defines the corre-
sponding equipotential 3-surface.

Note that the 3-manifolds MC are constructed starting
from the base point r� � m�. Therefore, MC are shifted
from LC, and the shape of their intersection can be
nontrivial.

Minimization of the Higgs potential, therefore, amounts
to finding the minimal value of C, Cmin, for which the
equipotential surface exists. This 3-surface, which we label

FIG. 1. Examples of the manifolds M0 in the 2�
1-dimensional picture. Left pane: all �i > 0, right pane: �1 >
0, �2 < 0. In each case, the light cone LC� is also shown for
comparison.
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as MCmin , never intersects but only touches1 LC�. This is
what makes MCmin unique among all MC. To facilitate the
visualization, Fig. 2 shows a 2� 1-dimensional example
of the contact between MCmin and LC for a specific case
when �1 > 0, �2 < 0 and m� lying outside LC�.

Since 3-surfaces MC are nested, all MC with C< Cmin

form a region M<Cmin in M, which is disjoint from LC�,
while all 3-surfaces MC with C> Cmin, forming region
M>Cmin , intersect LC�. Among the latter there might be
other 3-quadrics that in addition to intersection also touch
LC� at some point. These are the other extremal 3-
manifolds, which correspond either to the local minimum
or a saddle point.

Let us now consider the case of singular ���. To con-
sider a concrete example, suppose that only �3 � 0. If
M3 � 0, then the above shift of the base point cannot be
used in its initial form. Instead consider this shift in the
subspace where ��� is not singular:
 

V � 1
2��0�r0 �m0�

2 ��1�r1 �m1�
2 ��2�r2 �m2�

2��

�M3r3 � �V0; (14)

Note that V is now linear, not quadratic, in r3. Thus, a
generic MC (whose definition now includes the M3r3
term) is now a 3-paraboloid with one spacelike parabolic
direction. So, here again, the search for the stationary
points of the potential is cast into the form of finding
paraboloids that touch the forward light cone LC�. The
case of �0 � 0, �i < 0 is analyzed in a similar way. The
generic MC is again an elliptical 3-paraboloid with the
timelike parabolic direction.

C. The number of local minima

Let us now apply the above constructions to the question
of the number of local minima, at the tree level, in the most
general 2HDM. We will first consider one very particular

case, show that there can be no more than two local
minima, and then prove that this number bounds also the
generic situation.

We start with a special case of 2HDM with ���, whose
eigenvalues �i are all positive and distinct, and with M�

lying on the future direction (in the diagonal basis): M� �

�M0; 0; 0; 0�. This situation can be treated with the straight-
forward algebra (in the diagonal basis), but it is instructive
to study this case geometrically.

Consider first the ‘‘horizontal’’ 3-section at some posi-
tive r0 of the construction described in the previous sub-
section (i.e. the Light cone LC� and the family of 3-
manifolds MC constructed at the base point m�). Then,
rescale all the spacelike coordinates by introducing ~ri �
ri=r0. Then, in the ~ri space, the 3-section of the surface of
LC� is always the unit sphere, while the 3-sections of MC

are ellipsoids, with the same symmetry center as the
sphere. If MC is an extremal 3-surface, then this ellipsoid
touches sphere in two opposite points.

Now, consider any of the three two-dimensional sections
inside this 3-section that passes through the common sym-
metry point and is parallel to two ���’s eigenvectors, say,
e1 and e2. The 2-section of LC� is then the unit circle,
while the section of MC is an ellipse.

If MC is an extremal 3-surface and if the contact points
belong to this 2-section, then one can have either of the first
two situations depicted in Fig. 3. Here, the circle is the 2-
section of LC�, the ellipse shown in the thick line is the
section of MC and the shaded area is the section of M<C.

The fact that the section of MC is an ellipse, i.e. a
second-order curve, makes the intersection shown in
Fig. 3, right, impossible in 2HDM. Indeed, two second-
order curves can have at most four intersection points or at
most two contact points (here, by ‘‘contact’’ or touch we
mean again a 2-point intersection). This means that within
the symmetric geometry we consider, if the circle touches
the ellipse in two points, then it must lie completely inside
(Fig. 3, left) or completely outside (Fig. 3, middle) the
ellipse.

In order to understand whether a given configuration
corresponds to the minimum or a saddle point, one must
shift away from the contact point in all directions still
staying on the surface of LC�. If one gets into the shaded
region, then this shift happens to minimize the potential
further, so it cannot be the minimum. This is so for Fig. 3,
middle, but not for Fig. 3, left.

Repeating this analysis for all the 2-sections, one arrives
at the conclusion that there exists only one ellipse that
corresponds to the minima, the one that lies completely
inside the ellipsoid. The others correspond to the saddle
points. It means that there are at most two minima in the
orbit space in this special version of 2HDM.

Now, the same inspection can be repeated for 2HDM
with nonpositive �i. In this case one will encounter not
only ellipses but also hyperbolas and parabolas (if some �i

FIG. 2. A 2� 1-dimensional illustration of the contact of
MCmin with LC�. The thick point indicates the position of m�.

1Here by ‘‘touch’’ we mean that the two 3-manifolds not only
pass through this point, but also have parallel normals at this
point.
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are zeros). In all these cases one finds that the above
conclusion— there are at most two minima—still holds.

The only exception is when some of �i > 0 coincide. In
this case, the 2-section of MC generated by the corre-
sponding eigenvectors will be not the ellipse but the circle,
and can lead to a continuum of minima. So, the above
conclusion of two minima applies to the situations when
the number of minima is finite.

The second step is to prove that the above analysis with
the very special choice of M� is in fact representative of
the most general situation with largest possible number of
extrema.

To this end, we recall some relevant results from [7]. The
space of all possible four-vectors M� is naturally broken
into regions with different numbers of extrema. The 3-
separatrices of these regions are the forward LC� and
backward LC� light cones as well as up to two caustic
surfaces. These caustic surfaces are aligned with the time-
like eigenvector of ���. The number of neutral extrema (in
the orbit space) was given by Proposition 7 of [7]:

(1) if M� lies outside LC�, at least one neutral extre-
mum exists;

(2) if M� lies inside LC�, at least two neutral extrema
exist;

(3) if M�, in addition, lies inside one of the caustic
cones, two neutral extrema appear, in addition to
criteria (1) or (2);

(4) if M� lies inside both caustic cones, four neutral
extrema appear, in addition to criteria (1) or (2).

The key feature is that the spectrum (the number and the
minimum/saddle point nature) of stationary points remains
the same for all M� inside any given region. In order to
change the number or nature of the stationary points, one
must cross the 3-separatrix.

In particular, the entire innermost region (with M� lying
inside LC� and both caustic cones) has the same spectrum
of extrema no matter what representative M� one chooses.
Let us choose M� along the future direction: M� �

�M0; 0; 0; 0�. Then the spectrum of extrema in this case
(with generic nonequal values of �i) will represent the
largest possible number of extrema in the orbit space: 6
neutral plus one charge-breaking saddle point plus one EW
symmetric maximum at the origin. Our analysis tells us

that no more than two of them are minima. This completes
the proof of the following statement:

Proposition 1. The most general 2HDM with a discrete
set of minima can have at most two local minima.

Note that the number of local minima in 2HDM (at the
tree level) was discussed recently in [10]. There, authors
use the straightforward algebra together with the Morse
theory and analyze the number of stationary points and, in
particular, minima of the 2HDM. Unfortunately, they work
not in the orbit space but deal with the typical representa-
tives of these orbits, which sometimes leads to double
counting.

In particular, they argued that two pairs of degenerate
minima plus a minimum at origin can take place in 2HDM
upon a suitable choice of parameters. Even if each of these
pairs corresponds to a single orbit, this statement would
imply existence of three minima in 2HDM, which contra-
dicts the Proposition we just proved.2

In addition, authors of [10] found, by extensive numeri-
cal search, that it is possible to have coexisting
CP-conserving and spontaneously CP-violating minima
in 2HDM, although, as they say, ‘‘the combination of
parameters corresponding to this situation are extremely
rare.’’ Since spontaneous CP-violating minima always
come in pairs, this also implies existence of three distinct
minima in the orbit space, which again contradicts the
above Proposition. In fact, even a more general statement
follows from Proposition 1:

Corollary: Whatever the discrete symmetry of the Higgs
potential is, minima that conserve and violate this symme-
try cannot coexist in 2HDM.

The fact that CP-conserving and spontaneous
CP-violating minima cannot coexist in 2HDM was noted
also in [11]. The more general statement proved in
Proposition 1, to our knowledge, has never been discussed
in literature.

It is very possible that a shorter and more direct proof of
Proposition 1 exists based on geometric properties of the
family of nested 3-quadrics.

FIG. 3. The possible 2-sections of MC and LC� for the case when all �i > 0. The left and middle plots correspond to the minimum
and the saddle point, respectively, while the right plot cannot happen in 2HDM.

2In fact, it can be shown by simple arguments that the
minimum at origin cannot coexist with any other stationary
point.
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D. The valley of the Higgs potential

Consider again M�, that is the region in the Minkowski
space where ����r

� �m���r� �m��< 0. For simplicity,
we consider here nonsingular ���. Let us introduce the
valley V of the Higgs potential as the intersection of M�

with the interior and the surface of LC�. The intersection
of M� with the surface of LC� will be called the bottom
of the valley.

By construction, V is the set of all physically realizable
points r� that lie strictly deeper than V0. It follows imme-
diately that if the valley exists, then all local minima of the
potential lie in the valley.

The concept of the valley is most useful if the base point
r� � m� lies inside the future light cone LC�. In this case,
there is the following (almost tauthological) criterion for
the existence of the valley: it exists if and only if ��� is not
positive definite in the entire Minkowski space M. Indeed,
since m� lies inside LC�, then all points r� sufficiently
close to it (in the sense that all components of r� �m� can
be made arbitrarily small) are physically realizable. Then,
by looking at (13) one sees that in order for the valley to
exist, it is necessary and sufficient that at least one of �i is
positive.

If the base point r� � m� lies outside the future light
cone LC�, then the positiveness of at least one �i is
necessary, but not sufficient for existence of the valley.
Geometry of M� can be such that it ‘‘misses’’ the light
cone LC�, so no valley exists. This, however, can happen
only when there is still at least one negative �i. If not, i.e. if
all �i > 0, then the valley always exists provided that the
EW symmetry is broken, which can be understood from the
above geometric constructions.

The notion of the valley allows one to give a very short
proof of noncoexistence of neutral and charge-breaking
minima in any 2HDM (Proposition 3 in [7]). Indeed, if
m� lies outside LC�, then there is no charge-breaking
extremum at all. If m� lies inside LC�, then consider the
valley of the Higgs potential. If it is absent, then there are
no neutral minima, so that the minimum is charge break-
ing. If it is present, then the charge-breaking extremum is a
saddle point, while the minima of the potential must lie on
the surface of LC�, corresponding to the neutral vacuum.
Indeed, if some r� lies in the valley, then one can go along
the ray from m� passing through r� and still further into
the valley, down to its bottom.

If the point r� � m� lies inside the future light cone
LC�, then there is room for nontrivial topology of the
valley. Indeed, since the base point itself, r� � m�, is
excluded from V , the topology of V coincides with the
topology of the bottom of the valley. It depends on the
number of positive �i and can be understood from the
geometric descriptions given above. In particular,

(i) If all three �i are positive, then (the bottom of) the
valley is simply connected and is homotopic to the 2-
sphere S2. It has nontrivial second homotopy group


2�V � � Z.
(ii) If only two of �i are positive, the valley is con-

nected, but not simply connected. It is homotopic
to the circle S1 and has nontrivial fundamental group

1�V � � Z.

(iii) If only one among �i is positive, then the valley is
disconnected. Each of its two connected components
is simply connected.

In Fig. 4 we provide an illustration of the valley in the 2�
1-dimensional case, which should help visualize the
construction.

If the point r� � m� lies outside the future light cone
LC�, then the valley has trivial topology. The light cone
LC� cuts a single line segment from each ray 	p� that
belongs to M�. Thus, the valley consists of simply con-
nected regions in M.

E. Noncontractible paths in the orbit space

The nontrivial topology of valley V of the Higgs po-
tential allows one to construct noncontractible loops or
spheres in the Higgs orbit space, which follow the bottom
of the valley. They might lead to the existence of meta-
stable quasitopological configurations of the vacuum
h�ii � h�ii�x

��. Note that they are possible only in the
case when m� lies inside LC�.

If two among �i are positive, then the valley is homo-
topically equivalent to the circle. This noncontractible loop
can give rise to the domain wall metastable against sponta-
neous decay. In such a wall, in the usual coordinate space,
the v.e.v. of the Higgs fields depend on one of the coor-
dinates, say x, v1 � v1�x� and v2 � v2�x�, so that at x �

1 the v.e.v.’s vi approach asymptotically their global
minimum values, while in between they follow the corre-
sponding values along the loop.

While going along the loop, one can pass either saddle
points or other local minima. In the simplest case, one
passes only one saddle point. In this case the domain
wall separates two regions of the true vacuum. If there is
another local minimum in the valley, then the domain wall
can have a layered structure with the false vacuum wall

m

LC

µ

FIG. 4. 2� 1-dimensional illustration of the nontrivial topol-
ogy of the valley when m� lies inside LC�. The shaded band is
the bottom of the valley on the surface of LC�.
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sandwiched between the two high surface tension walls.
An interesting case takes place when the two minima are
degenerate, which can happen in the case of spontaneous
violation of a discrete symmetry.

If these domain walls were stable enough, they would
have intriguing phenomenological properties via interac-
tion with the fermions. First, a stable fermion approaching
the wall can be trapped inside or reflected back, since the
domain wall will act as an effective thin potential barrier.
The fermions trapped between the two colliding domain
walls can bounce back and forth accelerating until they can
leak outside (i.e. until their wavelength becomes smaller
than the width of the domain wall).

If all three �i are positive, then the valley is homotopi-
cally equivalent to S2, and one can have a noncontractible
sphere in the Higgs orbit space. The relevant topological
defect would be the string; however, it must be stabilized
against shrinking.

Such topological defects in the two-Higgs-doublet
model have been studied in the literature, see [23]. Here
we would like just to make three comments. First, the
examples discussed there resulted from the straightforward
search in the space of Higgs potential parameters. In our
discussion we gave absolutely general and concise criteria
for existence of such defects in terms of positivity of �i
and location ofm�. Second, our defects involve only scalar
fields and not the gauge bosons, and third, they correspond
to noncontractible paths in the space of gauge orbits rather
than in the space of scalar fields. It would be interesting to
see a quantitative characterization of these configurations
in the reparametrization covariant way.

IV. DISCRETE SYMMETRIES AND THEIR
SPONTANEOUS VIOLATION

The large number of free parameters in the Higgs po-
tential (1) makes it possible to introduce into 2HDM new
symmetries in addition to the electroweak symmetry.
These are reparametrization symmetries: they involve not
the electroweak transformations inside the doublets, but
transform or mix the doublets themselves.

Investigation of these symmetries, possibility of their
spontaneous violation, as well as their phenomenological
consequences is one of the most interesting aspects of the
2HDM research, see e.g. [5]. The most studied case of such
a symmetry is the spontaneous CP-violation in 2HDM,
[3,5,18,20,22].

Until recently, the study of the presence (or absence) of
the spontaneous violation of a discrete symmetry in 2HDM
has been sporadic and was limited to some simple specific
cases. A geometric approach makes it clear that the
CP-symmetry is just one specific representative of a gen-
eral class of symmetries of the Higgs Lagrangian with
purely geometric origin, [7,19]. A detailed treatment of
this more general class of symmetries was performed in
[22].

Here we present an even more general point of view on
the reparametrization symmetries in 2HDM.

A. Classification of explicit reparametrization
symmetries possible in 2HDM

As we have explained in Sec. II, the Higgs Lagrangian
remains invariant under an appropriate simultaneous trans-
formation of fields and parameters of the Lagrangian. It
can happen, however, that the Lagrangian is invariant
under some specific transformation of fields (or parame-
ters) alone. We call this symmetry the explicit (reparamet-
rization) symmetry of the Higgs Lagrangian.

In the orbit space, this symmetry corresponds to such a
map of the Minkowski space M that leaves invariant,
separately, ���r

�r�, M�r
�, and kinetic term K��

�. The
notion of explicit symmetry is invariant under the Lorentz
group of the orbit space transformations.

We start with classification of explicit reparametrization
symmetries that a Higgs Lagrangian can possess.

Proposition 2. Suppose that the Higgs Lagrangian is
explicitly invariant under some transformations of r�.
LetG be the maximal group of such transformations. Then:

(a) G is nontrivial if and only if there exists an eigen-
vector of ��� orthogonal both to M� and K�;

(b) group G is one of the following groups: Z2, �Z2�
2,

�Z2�
3, O�2�, O�2� � Z2, or O�3�.

Proof. Consider parameters of different parts of the
Higgs Lagrangian in the prototypical model (see
Sec. II D): ���, which is already diagonal, and two four-
vectors M� and K�. Let us call their spacelike parts �ij,
Mi, and Ki, respectively.

Any allowed map of M that realizes an explicit repar-
ametrization symmetry must preserve the orbit space LC�.
Let us denote the group of all allowed symmetries of ���

by G�, and, the groups of all allowed symmetries of M�

and K� by GM and GK, respectively. Obviously,

 G � G� \GM \GK: (15)

The allowed symmetry cannot flip the ‘‘timelike’’ axis;
therefore, in the frame where ��� is diagonal the groups
G�, GM, GK are in fact the symmetry groups of �ij, Mi,
and Ki, respectively.

Consider now G�. If all eigenvalues of �ij are different,
then its only symmetries are reflections of each of the
spacelike eigenaxes. Such reflections form the groupG� �
�Z2�

3. If two eigenvalues coincide, then G� is promoted to
O�2� � Z2, and if all three of them are equal, then G� �
O�3�. Note that zeros among the eigenvalues of ��� do not
lead to any additional reparametrization symmetry.

Note that in all of these cases the following statement
holds: if some Z2 group is a subgroup of G�, then the
generator of this Z2 group flips the direction of an eigen-
vector of �ij.
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Similarly, GM is O�2� (rotations around the axis defined
by Mi), if Mi is a nonzero vector, and O�3� otherwise. The
same holds also for Ki, the only difference being the
direction of the axis. It is plain to see that

 GM \GK �

8<
:
O�3� if Mi � Ki � 0;
O�2� if Mi and Ki are collinear;
Z2 if Mi and Ki are noncollinear:

If we want G to be nontrivial, then the lowest possible
symmetry of Mi and Ki, Z2, must be also the symmetry of
�ij. With the above remark, it means that this symmetry
flips one of the eigenvectors of �ij. In other words, bothMi

andKi are orthogonal to this eigenvector. Finally, since this
eigenvector is also the purely spacelike eigenvector of
���, we arrive at the first statement of this Proposition.

Detailed classification depends on the number of eigen-
vectors of �ij that are orthogonal to Mi and Ki.

(i) If Mi and Ki are orthogonal to all three eigenvectors,
which can be possible only when they both are zero
vectors, then G � G�.

(ii) If Mi and Ki are orthogonal to two eigenvectors,
which is possible only when Mi and Ki are collinear
and are themselves eigenvectors of �ij, then G �
�Z2�

2 or O�2�.
(iii) Finally, if there is only one eigenvector of �ij or-

thogonal both toMi andKi, then the symmetry group
is Z2.

The necessary and sufficient condition formulated in
Proposition 2a can be written in a reparametrization-
invariant way. The method is essentially the same as in
[19]. We introduce

 K0� 
 K�; K1� 
 ��
�K�;

K2� 
 ��
2��

�K�; K3� 
 ��
3��

�K�;
(16)

where �k is the kth power of ���. The same series can be
written for M�. For any four four-vectors a�, b�, c�, and
d� we introduce the shorthand notation

 �a; b; c; d� 
 �����a�b�c�d�:

Then the condition ‘‘there exists an eigenvector of ���

orthogonal to K�’’ can be written as

 �K0; K1; K2; K3� � 0: (17)

Note that since K� always lies inside the future light cone,
it can be orthogonal only to spacelike eigenvectors of ���,
which is exactly what is needed. Then, the statement of
Proposition 2a can be reproduced if we accompany (17)
with the similar condition for M�,

 �M0;M1;M2;M3� � 0; (18)

and the condition that these two 4-vectors be orthogonal to
the same eigenvector of ���, for example:

 �M0;M1;M2; K0� � 0: (19)

Note that these conditions can be straightforwardly
checked in any frame of reference once ���, M�, and
K� are known, although their relation with the conditions
formulated in [18–20] might be complicated.

B. Phenomenologically interesting discrete symmetries

Let us focus now on the situation when all �i are
distinct, which means that there can be only discrete ex-
plicit symmetries. According to the above Proposition, this
group can be �Z2�

k with k � 1, 2, 3, and in the diagonal
basis is generated by flipping of the eigenaxes of �ij.

In the representation (2), flips of the axes correspond to
the following transformations of the Higgs fields (index 	
indicates the upper and lower components in each the
doublet):

 

flip of the first axis: �1	 ! ��1	; �2	 ! ���2	;

flip of the second axis: �1	 ! ��1	; �2	 ! ��2	;

flip of the third axis: �1	 $ ��2	: (20)

The discrete symmetries that are usually discussed in the
context of 2HDM can be constructed from these elemen-
tary blocks.

(i) Explicit CP-conservation takes place when, after an
appropriate reparametrization, all parameters of the
Higgs Lagrangian are real. It means that in this basis
Im��y1�2� does not appear in the Lagrangian. This
situation corresponds precisely to the Higgs
Lagrangian being symmetric under the flipping of
the second axis. In the diagonal basis, this symmetry
takes place if M� and K� have their second compo-
nents equal to zero.

(ii) What is conventionally called the explicit
Z2-symmetry of the Higgs potential is the invariance
under transformation �1 ! �1, �2 !��2 (which
implies m2

12 � 0 and �6 � �7 � 0). It corresponds
to the simultaneous flipping of the first and second
axes. The only way to have this symmetry in 2HDM
is to require that vectorsMi andKi be invariant under
separate flips of the first and second axes. In other
words, it corresponds to the Higgs potential with the
symmetry group at least Z2 � Z2 (so, the standard
terminology here is a misnomer). In the diagonal
basis, it implies that Mi and Ki are both aligned
along the third axis.

One can say that explicit CP-conservation serves as a
‘‘prototypical’’ case of the explicit Z2 symmetry, while
what is conventionally called ‘‘Z2-symmetry’’ serves as a
prototypical case of the Z2 � Z2 symmetry. It means also
that the conventional ‘‘Z2-symmetry’’ immediately implies
explicit CP-conservation.
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C. Symmetries of potential vs symmetries of
Lagrangian

It has been noted above that the exact value of the kinetic
four-vector K� is not important when one studies the
general structure of the extrema of the 2HDM orbit space.
Thus, it makes sense to distinguish the symmetries of the
Higgs Lagrangian, which is what we just discussed, and
the symmetries of the Higgs potential. The latter is given
by the group G� \GM and can be larger than G.

A very simple case of a potential whose symmetry group
is larger than the symmetry group of the entire Higgs
Lagrangian is

 V � 16�
�
��y1�1� �

v2

2

�
2
� �

�
��y2�2� �

4v2

2

�
2
: (21)

This potential is symmetric under �2 $ 2�1, while the
kinetic term of the Higgs Lagrangian is not.

We stress that the explicit symmetries of the potential
are more important for the study of the general structure of
the vacuum in 2HDM than the symmetries of the entire
Higgs Lagrangian. Section V provides an illustration of its
importance.

D. What is the maximal spontaneous violation of a
discrete symmetry?

Even if the Higgs potential is invariant under some
transformation of �, the vacuum expectation values h�i
do not necessarily have to respect the same symmetry. In
the orbit space of 2HDM, if the Higgs potential is invariant
under groupG of transformation of r�, then the position of
the global minimum hr�imight be invariant only under the
proper subgroup of G. In such situations one talks about
spontaneous violation of the symmetry. Note that the set of
all minima still respects the explicit reparametrization
symmetry.

Again, let us focus on the generic situation, i.e. when all
eigenvalues of ��� are nonzero and different. The sym-
metry group of the potential is then �Z2�

k with k � 1, 2, or
3. An interesting question is: what is the maximal violation
of the explicit symmetry in 2HDM? The answer is given by
the following Proposition:

Proposition 3. The maximal spontaneous violation of an
explicit discrete symmetry of the 2HDM potential or
Lagrangian consists of removing one Z2 factor.

Proof. Let us start with the spontaneous violation of a
discrete symmetry of the Higgs potential.

A 2HDM Higgs potential with an explicit �Z2�
k symme-

try, with k � 1, 2, or 3, implies that in the diagonal basis
there are exactly k eigenaxes along which Mi has zero
components. The question is how many zero components
hr�i can have in this basis.

First, note that the charge-breaking extremum never
breaks the explicit symmetry. It follows from the fact
that there can be only one charge-breaking minimum and

the above remark that the set of all minima is invariant
under the explicit symmetry transformations.

Turning to the neutral vacuum, recall the equation for a
neutral extremum of the potential

 ���hr�i � � � hr�i � M�; (22)

with some real parameter � . Vector hr�i is restricted to lie
on the surface of the forward light cone LC�. The crucial
fact is that the surface of LC� is a manifold with codi-
mension 1. It means that when we search for an extremum
located on the surface of LC�, we need to introduce only
one Lagrange multiplier � in (22).

Now, let us rewrite (22) in the diagonal basis:

 ��0 � �� � hr0i � M0; ��i � �� � hrii � Mi:

Recall that k components of Mi are zeros. The least pos-
sible numbers of zeros in among the coordinates of hrii is
k� 1. Indeed, one can adjust � equal to one of �i so that
the corresponding component of hrii can be nonzero. Since
all �i are different, then all other �i � � are nonzero, and
the corresponding components of hrii must be set to zero.
Thus, the symmetry of hr�i is lower than the symmetry of
the potential by a single Z2 factor.

Turning now to the spontaneous violation of a discrete
symmetry of the Higgs Lagrangian, note that in this case
the symmetry group of the potential alone is �Z2�

n, where
n 	 k, while �Z2�

k is the common symmetry of the poten-
tial and the kinetic term. The symmetry of the potential can
be broken spontaneously down to �Z2�

n�1, so the symmetry
of the hr�i is at least �Z2�

k�1.
This Proposition has immediate consequences for estab-

lishing the conditions of spontaneous CP-violation. The
vacuum of 2HDM can spontaneously violate
CP-symmetry, if and only if there are no discrete symme-
tries under which hr�i is invariant. Indeed, if there were
even a single Z2 factor, then by redefinition of the Higgs
fields one would arrive at hr�i in the form of ��; �; 0; ��,
where � labels a generic value. This means that it would be
possible to perform a reparametrization transformation that
removes the relative phase between the v.e.v.’s of the
doublets.

But according to this Proposition, this can take place
only when the group of the explicit symmetries of the
Higgs Lagrangian in exactly Z2. Too symmetric Higgs
Lagrangian, with G larger than Z2, cannot lead to sponta-
neous CP-violation. This particular conclusion was also
reached in [7].

Note that Proposition IV D related the ‘‘strength’’ of
spontaneous violation of discrete symmetries to the ge-
ometry of the strata of the 2HDM orbit space. Roughly
speaking, a stratum can be defined as a set of points of the
orbit space that can be connected by an extended repara-
metrization transformation. In 2HDM, the groups of ex-
tended reparametrization transformation is GL�2; C�,
which induces proper Lorentz group times dilatations in
the orbit space. We thus obtain three strata: the vertex of
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the cone LC�, the surface of LC� and the interior of LC�,
[16].

It is the surface of LC� (manifold with codimension 1)
that happens to correspond to neutral vacua. If there were
other strata with codimension p, then one would need p
Lagrange multipliers, and then the spontaneous violation
could reduce the explicit symmetry by �Z2�

p.
Finally, the fact that the surface of LC� is a manifold

with codimension 1, is related to the very nature of the
electroweak symmetry breaking. In EWSB we reduce the
initial four-dimensional SU�2� �U�1� electroweak sym-
metry to the one-dimensional U�1�EM symmetry. The co-
dimension 1 of the boundary of LC� comes from the 1
degree of freedom of the remaining symmetry.

It appears that the relation between the maximal strength
of the spontaneous violation of discrete symmetries and the
dimension of the remaining symmetry after EWSB is not
specific to 2HDM but is more universal.

V. THE GLOBAL MINIMUM AND ITS
BIFURCATION

In our discussion of the global minimum of the potential
we assume as usual that ��� has already been diagonal-
ized. As it was shown in [7,24], there can be up to six
neutral extrema of the Higgs potential of a generic 2HDM.
Let us fix ��� and change M�. As parameters of the
potential change, the positions and depths of these extrema
will continuously change until a bifurcation occurs, when
several extrema merge or one extremum splits.

In our previous analysis in [7] we did not distinguish the
global minimum from the other extrema, and no method
was proposed of how to recognize when it is the global
minimum that bifurcates, and not the other extrema. Here,
we fill this gap with the aid of the above geometric
constructions.

The starting point is the fact that the depth of the global
minimum is given by such a 3-surface MCmin that barely
touches, but never intersects, the future light cone LC�.
This makes the global minimum distinct from the other
extrema, whose MC not only touch, but also intersect
LC�.

Let us study the properties of the contact between MCmin

and LC�.
We first note that MCmin and LC� can touch in not more

than two points. Indeed, each of these 3-surfaces is a
quadric. Intersection of two 3-quadrics is described by
fourth degree polynomials. Each contact point is a degen-
erate case of a sphere with zero radius and requires at least
a two-degree polynomial. Thus, a fourth degree polyno-
mial can define no more than two contact points.

Alternatively, one could simply apply our Proposition 1.
The immediate consequence is that the 2HDM vacuum

cannot be degenerate more than twice. The question now
arises: when can it be degenerate? The answer is given by
the following Proposition:

Proposition 4. The vacuum can be twice degenerate only
as a result of spontaneous violation of a discrete Z2 sym-
metry of the potential.

Proof. Let us first introduce a definition. Let P be a
quadric in the (pseudo) Euclidean space Rn defined by
equation

 P�xi� � aijxixj � 2bixi � c � 0; xi 2 Rn: (23)

We call two quadrics P and P0 aligned if the corresponding
matrices aij and a0ij have the same eigenvectors. In plain
words, quadrics P and P0 are oriented in the same direc-
tions, although they can be shifted in respect to each other.

In the frame where ��� is diagonal, the 3-quadrics
MCmin , whose equation is

 �0p
2
0 ��1p

2
1 ��2p

2
2 ��3p

2
3 � Cmin; (24)

and the forward light cone LC� are aligned.
In Appendix B we prove Lemma 6, which states that if

two aligned quadrics have exactly two contact points, then
they have a common Z2 symmetry, which is generated by
reflection of one of the axes. The two points are mapped
onto each other by this reflection; so, they have all the
coordinates equal except the one that transforms under the
reflection.

The properties of MCmin are defined by the parameters of
the potential: its shape is given by eigenvalues �0, �i,
while the position of its symmetry center is given by m�.
The statement of Lemma 6 implies, in our language, that
m� (and, therefore, M�) lies in the 3-plane orthogonal to
one of the eigenvectors of ���. That is, an explicit discrete
symmetry of the Higgs potential is realized in this coor-
dinate frame.

The fact that the contact points (i.e. the values of hr�i
that realize the global minimum) do not lie in the above-
mentioned 3-plane means that the vacuum does not possess
this symmetry. In other words, this symmetry is sponta-
neously violated.

Note that this Proposition deals with the symmetries of
the potential, not of the entire Higgs Lagrangian. It might
happen that the Higgs Lagrangian does not have any dis-
crete symmetry at all and still has the twice-degenerate
minimum. The Proposition just proven affirms that in this
case the potential has a certain hidden symmetry, which
might be not obvious from the simple inspection of the
Lagrangian.

Clearly, the Proposition just proven also implies that the
Higgs potential with two nearly degenerate minima nec-
essarily implies existence of an approximate symmetry of
the potential.

As shown in [7], multiple minima can take place only
whenm� lies inside certain caustic cones. If one starts with
the double-minimum configuration, fixesm0, and increases
spacelike coordinates mi, mi ! 	mi, then the two minima
approach each other and at some point the double mini-
mum plus a saddle point merge into a single minimum.
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Geometrically, this is the four-point contact of LC� and
MCmin . Passing though such a point leads to the bifurcation
of the extrema of the potential.3

In principle, not only degenerate global minima but also
degenerate saddle points lead to an explicit discrete sym-
metry. The following Proposition gives the criterion, when
it is the global minimum, not just an arbitrary stationary
point, that experiences the bifurcation:

Proposition 5. The global minimum exhibits spontane-
ous violation of the Z2 symmetry along the kth eigenaxis of
��� only if the corresponding eigenvalue �k is positive
and is the largest spacelike eigenvalue.

Proof. Let us first show that if all �i are negative, then
there can be no bifurcation, and hence the vacuum cannot
be degenerate.

First, it is obvious that two convex nonintersecting
bodies cannot touch in two and only two separate points.
Indeed, if they touch in two points, then all points lying on
the line segment between them belong to each of the two
convex bodies. So, either they touch along a line segment
or they intersect.

The forward light cone LC� together with its interior is
a convex body. If all �i < 0 then M<Cmin is a 3-ellipsoid,
which is also a convex body. When looking for the neutral
vacua, we are interested in the situation when m� lies
outside the LC� (otherwise, the global minimum would
be the charge-breaking one). Thus, LC� and MCmin touch
but do not intersect. Since both are convex and since MCmin

does not contain any line segment, they cannot touch in
more than a single point, so there can be no bifurcation of
the global minimum in this case.

Now suppose that at least one �i is positive. Then,
according to discussion in Sec. III, any 3-surface MC is
a 3-hyperboloid or 3-paraboloid whose shape and topology
depend on the signs of �i and on C.

Consider now the two contact points of MCmin and LC�.
According to Lemma 6, they lie symmetrically in respect
to the common symmetry 3-plane of MCmin and LC�. Let

us denote the coordinate orthogonal to this plane as x1.
Then, the two contact points are

 r�� � �x0; x1; x2; x3� and r�� � �x0;�x1; x2; x3�:

Consider now a two-dimensional section of the two
quadrics MCmin and LC� by a plane than passes through
these two contact points and spanned by the eigenvectors
e1 and e2. The section of LC� by this plane gives a circle,
while the section of MCmin can yield an ellipse/parabola/
hyperbola, which has two common contact points with the
circle.

There are four possibilities to be considered, which are
shown in Fig. 5. In each case, the shaded region corre-
sponds to the section of M<Cmin ; by definition, the circle
must be disjointed from this region. By direct inspection
one can see that in all three cases �1 >�2. Now, one can
repeat the same check for another section, spanned by
eigenvectors e1 and e3, and obtain �1 >�3.

The overall conclusion is that if the global minimum
exhibits spontaneous violation of the Z2 symmetry gener-
ated by the flip of the kth axis, then �k must be positive and
be the largest spacelike eigenvalue of ���.

This Proposition shows, in particular, that in spontane-
ous CP-violation can take place only when �2 is positive
and is larger than �1, �3. This result was also found in [7]
by straightforward algebra.

VI. CONCLUSIONS AND OUTLOOK

The aim of this paper is to deepen the geometric under-
standing of the phenomena that can happen in a general
2HDM. Following the Minkowski-space approach intro-
duced in [7], we investigated the geometric properties of
the Higgs potential in the orbit space and its minima.

We introduced the equipotential surfaces in the orbit
space and showed that they are intersections of two 3-
quadrics in the Minkowski space M. The search for the
global minimum was reformulated as the search of such a
3-quadric that touches but never intersects the forward
light cone LC�.

This reformulation led us to several observations about
the minima of any 2HDM. Namely, we proved that if
2HDM has a discrete set of minima, then it cannot have

FIG. 5. The four possible cases of how the two-dimensional section (spanned by e1 and e2) of MCmin and LC� can look like; (a): �1,
�2 > 0; (b) and (c): �1 > 0, �2 < 0; (d): �1 > 0, �2 � 0. In all cases �1 >�2. The shaded region is the section of M<Cmin .

3Here we only mean that a bifurcation happens upon continu-
ous change of the free parameters of the potential. Whether it
corresponds to a real finite-temperature phase transition requires
further study.
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more than two minima. This means, in particular, than the
2HDM with the explicit CP-symmetry cannot have simul-
taneously CP-conserving and CP-violating minima. These
statements are in contradiction with the results of numeri-
cal studies reported in [10]. We also proved that if the
global minimum happens to be doubly degenerate, then it
can take place only as a result of spontaneous breaking of a
certain Z2 symmetry of the potential. The eigenvalue of
��� associated with this symmetry must be the largest
among all the spacelike eigenvalues.

We defined the valley of the Higgs potential and dis-
cussed its topological properties. In particular, we observed
that nontrivial topology of the valley makes it possible to
construct noncontractible loops in the Higgs orbit space,
leading to metastable topological configurations (either
walls or strings) purely within the scalar sector of
2HDM. We gave concise reparametrization-invariant cri-
teria when such configurations can take place.

We also discussed discrete symmetries of 2HDM from a
more general point of view than is usually done. We
discussed differences between explicit symmetries of the
Higgs potential and the entire Higgs Lagrangian and gave
their complete classification. We also found what the
maximal spontaneous violation of a discrete explicit sym-
metry consists in removing only one Z2 factor, which is
related to the residual symmetry after EWSB.

The geometric constructions introduced in this work are
not specific for the 3� 1-dimensional geometry.
Hopefully, one can apply them to the analysis of the
general N-Higgs doublet model, whose analysis was
started in [20,21,25].
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APPENDIX A: MANIPULATION WITH 4-TENSOR
���

Here we collect some simple facts about the real sym-
metric 4-tensor ���.

Let us first give explicit expressions for ��� with raised
indices:

 ��� �
�00 �0j

�0i �ij

� �
;

��
� � ��	g

	� �
�00 ��0j

�0i ��ij

� �
;

��� �
�00 ��0j

��0i �ij

� �
:

(A1)

Note that ��
� is not symmetric anymore.

The eigenvalues �i and eigenvectors e�
�i� of ��� are

defined according to

 ���e
�
�i� � �ig��e

�
�i�; ��

�e�i�� � �ie�i��: (A2)

Note the presence of g�� in the first line here. The fact that
��

� is not symmetric means that the (spacelike) eigenval-
ues will be, in general, complex. However, as it was proved
in [7], positive definiteness of ��� on and inside the
forward light cone LC� makes the spacelike eigenvalues
real and smaller than �0.

In the diagonal basis, one has:

 ��� �

�0 0 0 0
0 ��1 0 0
0 0 ��2 0
0 0 0 ��3

0
BBB@

1
CCCA;

��
� �

�0 0 0 0
0 �1 0 0
0 0 �2 0
0 0 0 �3

0
BBB@

1
CCCA:

If one consider a quadratic form in the space of 4-vectors
p� constructed on ���, then in the diagonal basis it looks
as

 ���p�p� � �0p2
0 �

X
i

�ip2
i :

This quadratic form is positive definite in the entire space
of nonzero vectors p�, if and only if all �i are negative.
One could think of ��� as defining a new metric in the
space of vectors p�. If all �i are negative, this metric has
the usual euclidean signature.

APPENDIX B: QUADRICS WITH TWO CONTACT
POINTS

Here we prove the lemma that was used in Propositions
4 and 5.

Let P be a quadric in the Euclidean space Rn defined by
equation

 P�xi� � aijxixj � 2bixi � c � 0; xi 2 Rn: (B1)

We call two quadrics P and P0 aligned, if the correspond-
ing matrices aij and a0ij have the same eigenvectors, or, in
plain words, if quadrics P and P0 are oriented in the same
directions (although they can be shifted in respect to each
other).

Two n� 1-dimensional quadrics can intersect along a
fourth-order n� 2-dimensional manifold in Rn. In special
cases the intersection reduces just to two isolated contact
points. Here, the contact point, in contrast to the intersec-
tion point, means that the two quadrics not only pass
through this point, but also have parallel normals at this
point.
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Lemma 6. If two aligned quadrics P and P0 in Rn have
exactly two contact points, then P and P0 have a common
Z2 symmetry, and the two contact points are mapped onto
each other under this symmetry.

Proof. The proof will go as follows. We will consider the
two contact points together with the normals at these points
as some ‘‘initial data’’ and will proceed by reconstructing
the quadrics that satisfy these data. We will find that if two
different quadrics satisfying these data are aligned, then
they must have a common symmetry and the initial data are
symmetric.

Let us first choose the coordinate frame in which the two
contact points are

 x
i � �
x1; 0; . . . ; 0�;

where x1 � 0. The generic equation of the quadric is

 P�xi� � aijxixj � 2bixi � c � 0; (B2)

with some symmetric nonzero aij. Here, c is also nonzero,
because the origin of the chosen coordinate frame does not
belong to the quadrics (otherwise, a line would intersect a
quadric at three points). Thus, we can always set c � 1 in
(B2).

The fact that the quadric goes through both x� and x�

leads to

 a11x2
1 � 1; b1 � 0: (B3)

The normals to the quadric at x
 are defined by

 ti 
 @P=@xi � 2aijxj � 2bi:

The first coordinate of ti at the contact points x
 is t
1 �

2a11x1 � 
2=x1, while all the other coordinates are

 t
i � 
2a1ix1 � 2bi; i � 1:

Alternatively, the direction of t
i can be given by coeffi-
cients c
�i� defined via:

 
 2a11x1c


�i� � 
2a1ix1 � 2bi; i � 1: (B4)

If these coefficients are known, then the parameters of the
quadric can be written as:

 bi �
2

x1
�c�
�i� � c

�
�i��; a1i �

1

2x2
1

�c�
�i� � c

�
�i��; i� 1:

(B5)

In other words, if the initial data (x1 and the values of c

�i�)

are given, then all bi and a1i (including i � 1) are uniquely
reconstructed, while aij for i, j � 1 can be chosen at will.

Now, suppose we have two quadrics that satisfy these
initial data, whose aij and a0ij can differ only for i, j � 1.
The alignment of the two matrices aij and a0ij is equivalent
to �a; a0� � 0.

Consider first the case of completely symmetric initial
data, which implies

 c�
�i� � c

�
�i� � 0 8 i � 1:

This leads to a1i � 0 8 i � 1. Together with b1 � 0, it
makes Eq. (B2) symmetric under the change of the sign of
x1, which generates the required Z2 symmetry. In other
words, all quadrics that satisfy the same symmetric initial
data are symmetric under the same Z2 symmetry. In par-
ticular, this family of quadrics contains pairs of completely
aligned quadrics with all eigenvalues ~ai � ~a0i 8 i � 1.
The last requirement is essential because if ~am � ~a0m for
some m � 1, then the two quadrics will touch not in two
points, but along a whole second-order curve.

Now, suppose that the initial data are not completely
symmetric. It means that at least for somem, c�

�m� � c
�
�m� �

0. In this case, explicit calculations show that the commu-
tator �a; a0� can be zero only at the expense of having equal
eigenvalues ~am � ~a0m for some m � 1. Again, this leads to
the contact along a whole curve, which contradicts the
assumption.

The conclusion is that the only way for two aligned
quadrics to touch exactly in two points is to do it
symmetrically.
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