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The minimal supersymmetric standard model (MSSM) is plagued by two major fine-tuning problems:
the �-problem and the proton decay problem. We present a simultaneous solution to both problems within
the framework of a U�1�0-extended MSSM (UMSSM), without requiring R-parity conservation. We
identify several classes of phenomenologically viable models and provide specific examples of U�1�0

charge assignments. Our models generically contain either lepton number violating or baryon number
violating renormalizable interactions, whose coexistence is nevertheless automatically forbidden by the
new U�1�0 gauge symmetry. The U�1�0 symmetry also prohibits the potentially dangerous and often
ignored higher-dimensional proton decay operators such asQQQL andUcUcDcEc which are still allowed
by R-parity. Thus, under minimal assumptions, we show that once the �-problem is solved, the proton is
sufficiently stable, even in the presence of a minimum set of exotics fields, as required for anomaly
cancellation. Our models provide impetus for pursuing the collider phenomenology of R-parity violation
within the UMSSM framework.
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I. INTRODUCTION

Supersymmetry (SUSY) at the terascale has been the
leading candidate for physics beyond the standard model
(SM). We do not know the concrete manifestation of
supersymmetry at low energies, but the minimal super-
symmetric standard model (MSSM) already incorporates
most of the advantages of supersymmetry and has proved
to be a useful playground for investigations of the possible
SUSY signatures at high energy colliders such as the
Tevatron and the Large Hadron Collider (LHC). In spite
of its successes, however, the MSSM does not exhaust all
possibilities and, given its shortcomings discussed below, it
is certainly worth pursuing alternative, more general low-
energy supersymmetric theories.

One of the most celebrated successes of low-energy
supersymmetry is the resolution of the gauge hierarchy
problem of the SM. SUSY protects the Higgs mass and
the associated electroweak scale from the dangerous quad-
ratically divergent radiative corrections. However, the
MSSM itself suffers from its own fine-tuning problems.
First, there is the so-called �-problem [1], which is asso-
ciated with the following superpotential coupling of the
two MSSM Higgs doublets H1 and H2:

 W� � �H2H1: (1)

Since this coupling is allowed by both supersymmetry and
gauge symmetry, there is no natural (i.e. in terms of a
symmetry) explanation, at least within the MSSM, as to
why the value of the � parameter is so much smaller than
the fundamental (Planck or string) scale. To fix this prob-
lem in a natural way, one has to introduce a symmetry
which would prohibit the original � term (1). However, in
the end this symmetry needs to be broken, since a vanish-

ing � term would imply very light charginos, in violation
of the LEP search limits [2]. Therefore, a viable model
should dynamically generate an effective � term. This is
typically done by introducing a Higgs singlet S coupling to
the MSSM Higgs doublets as

 W�eff
� hSH2H1: (2)

The singlet S is charged under the new symmetry, so that
the original � term (1) is forbidden. The vacuum expecta-
tion value (VEV) of S would then break the symmetry and
play the role of an effective� parameter. Depending on the
type of the new symmetry, the models can be classified into
several categories [3]. For instance, when the symmetry is
a Z3 discrete symmetry, one obtains the next-to-MSSM
(NMSSM) [4], when the symmetry is an Abelian gauge
symmetry U�1�0, we have the U�1�0-extended MSSM
(UMSSM) [5], etc. [Other options include the minimal
nonminimal SSM (MNSSM) [6] and the essential SSM
(ESSM) [7].] In this study we shall work within the
UMSSM framework, and we shall use the additional
U�1�0 gauge interaction to forbid the original � term (1)
while allowing the effective � term (2). We shall com-
pletely specify the particle content of the model and will
demand that the new U�1�0 gauge symmetry is nonanom-
alous. An extra U�1� symmetry is supported by many new
physics paradigms including grand unified theories [8,9],
extra dimensions [10], superstrings [11], little Higgs [12],
dynamical symmetry breaking [13], and Stueckelberg
mechanism [14].

The other fine-tuning problem of the MSSM is related to
the existence of lepton number violating (LV) terms

 WLV � �0iH2Li � �ijkLiLjEck � �
0
ijkLiQjDc

k (3)
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and baryon number violating (BV) terms

 WBV � �00ijkU
c
i D

c
jD

c
k (4)

in the superpotential. Here i, j, k are generation indices and
summation over repeated indices is implied. The couplings
(3) and (4) are again allowed by all gauge symmetries and
supersymmetry and may even occur in the underlying
grand unified theory [15]. The presence of both types of
such terms would lead to unacceptably rapid proton decay
unless certain combinations of couplings are tuned to be
extremely small (��00 & 10�21, �0�00 & 10�27 [16]). The
standard practice for dealing with this fine-tuning problem
is again to impose a new symmetry, the so-called R-parity
[17], which is the only other new symmetry in the MSSM
besides supersymmetry. R-parity forbids both types of
problematic terms (3) and (4) and the proton appears to
be safe.

At this point one might question whether it was really
necessary to forbid both (3) and (4). Indeed, since proton
decay requires both LV and BV interactions, forbidding
either of them would be sufficient to stabilize the proton. In
this sense, the imposition of R-parity is far from being the
minimalist approach, since it eliminates a large chunk of
potentially interesting phenomenology related to the phys-
ics of R-parity violation (RPV) [18]. In this study, we shall
therefore utilize the U�1�0 gauge symmetry to forbid some,
but not all R-parity violating interactions. More specifi-
cally, we shall look for models where the proton is stable in
the presence of either LV interactions (3) or BV interac-
tions (4). We shall find that, without ever demanding it, the
LVand BV terms are in fact naturally separated in the sense
that the U�1�0 symmetry may allow (3) or (4), but not both
at the same time. This result, which we shall refer to as
‘‘LV-BV separation,’’ is very general and relies only on the
following three simple assumptions:

(1) The MSSM Yukawa couplings are allowed by the
U�1�0 gauge symmetry.

(2) The�-problem is solved as in the UMSSM, namely,
the U�1�0 gauge symmetry forbids the original �
term (1) while allowing the effective � term (2).

(3) There are no new exotic SU�2� representations1

beyond the field content of the MSSM.

The proof of the LV-BV separation is very simple and will
be presented in Sec. II B.

At this point, giving up on R-parity may seem like a
rather steep price to pay. After all, R-parity ensures that the
lightest supersymmetric particle is stable and may provide
a dark matter candidate. However, it is an under-publicized
fact that R-parity by itself is not sufficient to stabilize the
proton [19–22]. While R-parity does prevent the proton
from decaying through the renormalizable operators (3)

and (4), it still allows for potentially dangerous dimension
five operators such as

 W5 �
1

�
CLijklQiQjQkLl �

1

�
CEijklU

c
i U

c
jD

c
kE

c
l

�
1

�
CNijklU

c
i D

c
jD

c
kN

c
l ; (5)

which violate both lepton number2 and baryon number.
Such operators are generically expected to appear at the
cutoff scale �. The problem with R-parity is that if, as
expected, � is on the order of the string scale or the Planck
scale and the coefficients C are of order one, the proton
would still decay too fast [19–22]. In this sense, R-parity
does not provide a complete and satisfactory solution to the
proton decay problem.3 The presence of the additional
U�1�0 symmetry, however, offers new possibilities for deal-
ing with the dangerous higher-dimensional operators (5).
In fact we shall see that under the same three simple
assumptions listed above, not only are the renormalizable
LV and BV interactions (3) and (4) naturally separated, but
also the dangerous nonrenormalizable operators of the type
(5) are automatically forbidden. In this sense, in compari-
son to R-parity, the U�1�0 gauge symmetry may provide a
more attractive alternative solution to the proton decay
problem.

Our work is complementary to a number of studies in the
literature which have already considered an extra nona-
nomalous U�1� gauge symmetry in lieu of R-parity to
address the proton stability problem [19–22,24–30].4

The more recent studies have adopted an even more eco-
nomical approach, where the U�1�0 gauge symmetry is
used to simultaneously solve both the �-problem and the
proton stability problem [27–30]. In those works the re-
normalizable R-parity violating interactions [as well as the
nonrenormalizable interactions (5)] are forbidden by the
U�1�0 symmetry.5 The price to pay, however, was to allow
for a relatively complicated spectrum, including e.g.
SU�2�L exotics [27,28], several pairs of Higgs doublets
(NH) [29] or several singlet representations (NS) [29,30].
Even though our motivation here was to allow for either LV
or BV interactions, we have also analyzed cases where the
U�1�0 symmetry forbids all RPV operators of lowest di-
mensions. Such examples are presented in Appendices A

1In general, our results also hold in the presence of a certain
number of additional pairs of Higgs doublets—see Sec. II B.

2The lepton number of Nc is given by�1 in the presence of an
H2LN

c term in the superpotential, which will be one of our
assumptions later on (Sec. II A). Strictly speaking, WLV of
Eq. (3) should also contain right-handed neutrino terms such
as NcNc, NcNcNc, and SNcNc when a lepton number is assigned
to Nc.

3See, for instance Ref. [23], to see how grand unified theories
can help with this problem.

4For anomalous U�1� approaches, see, for example, Ref. [31]
and references therein.

5Previous studies [26] which considered R-parity violating
interactions within the U�1�0 framework did not address the
�-problem.
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and B. First, in Appendix A we consider the novel case of
NH � 4, while in Appendix B we treat the case of NH � 3
which was previously discussed in Ref. [29]. We shall
show that in both of those cases the nonlinear U�1�0 anom-
aly conditions factorize and all anomaly conditions essen-
tially reduce to linear constraints. Furthermore, the case of
NH � 3, NS � 3 exhibits an additional simplification: the
quadratic and cubic U�1�0 anomaly conditions are not
independent, and we find a three-parameter class of
anomaly-free solutions which generalize the single model
found in Ref. [29].

Previous studies found that the additional gauge sym-
metry usually also requires exotic fields for the cancella-
tion of certain anomalies [27–30]. This tends to ruin the
successful gauge coupling unification which is a hallmark
of supersymmetry [32].6 Here we do not require gauge
coupling unification, and follow a bottom-up approach by
introducing only the minimal set of exotic fields (three
vectorlike pairs of colored triplets Ki and Kc

i , see
Sec. III A) required for anomaly cancellation. For simplic-
ity, we will also assume family-universal U�1�0 charges for
all MSSM fields, including the right-handed neutrinos, but
will let the exotics have family nonuniversal charges.

Our paper is organized as follows. In Sec. II we describe
the general properties of our solutions. For this purpose, we
shall only need to use the linear constraints on the U�1�0

charges following from the Yukawa-type couplings in the
superpotential, plus the U�1�0 � �SU�2�L�2 anomaly con-
dition from Sec. III B. We begin by introducing our formal-
ism and notation in Sec. II A and proceed to derive some of
our main results in the remainder of Sec. II. In Sec. II B we
explicitly show the LV-BV separation, namely, that the
renormalizable LV terms and BV terms cannot coexist: if
we allow for the LV terms (3) in the superpotential, then
the BV terms (4) are automatically forbidden by the U�1�0

gauge symmetry, and vice versa. Then in Sec. II C we
extend our discussion to the case of the nonrenormalizable
RPV terms such as (5) and show that those are absent as
well. In Sec. II D we derive a simple expression for the
U�1�0 charge of the right-handed neutrino in terms of the
U�1�0 charges of the other UMSSM fields, and discuss the
origin of neutrino masses in our scenario. Finally, in
Sec. II E we present the general solution to the linear
constraints discussed in Sec. II A and then its specific
form for the LV case or the BV case alone. In Sec. III we
discuss the remaining constraints on the U�1�0 charges
arising from the absence of gauge anomalies. We consider
the anomaly conditions one at a time and discuss their
implications for the model building to follow in the next
three sections. In Sec. IV we present our simplest models

(NH � 1) with either LV or BV, but not both, types of
interactions. We summarize and conclude in Sec. V. In
Appendix A (Appendix B) we discuss models with NH �
4 (NH � 3) in which both types of RPV terms are forbid-
den by the U�1�0 symmetry. In Appendix C, we discuss a
special case of NH � NS � 1 with an altered particle
spectrum.

II. GENERAL PROPERTIES OF THE U�1�0

MODELS

A. Setup and formalism

In the same spirit as the earlier works [27–30], we
consider the U�1�0-extended MSSM where both the �
term and the R-parity violating terms in the superpotential
are controlled by the U�1�0 gauge symmetry. In contrast to
previous studies along these lines, we shall not forbid all
renormalizable RPV terms from the very beginning.
Instead, we shall in principle allow for the presence of
either LVor BV terms in the superpotential. We will not be
particularly concerned whether the RPV terms (3) and (4)
arise at the renormalizable level or through a higher-
dimensional operator. In fact, we shall find examples of
both types below. We shall then demonstrate that, as a
result of the U�1�0 symmetry, the proton is nevertheless
still sufficiently stable, even at the nonrenormalizable
level. Our result is quite general and relies only on our
three simple assumptions listed in the introduction.

To set up our discussion, in Table I we list the particles of
the UMSSM with their corresponding SM quantum num-
bers and U�1�0 charges. The first column lists the corre-
sponding field, and the next two columns give its
representation under SU�3�C and SU�2�L. The last two
columns show the hypercharge y�F� and the U�1�0 charge
z�F� of a field F. In addition to the MSSM fieldsQ,Uc,Dc,
L, Ec, H1, and H2, we also include three right-handed

TABLE I. Chiral fields in the model and their quantum num-
bers. z�F� denotes the U�1�0 charge of a field F. In general, we
consider NH pairs of Higgs doublets H1 and H2 with identical
quantum numbers, and NS copies of SM Higgs singlets S.

Field SU�3�C SU�2�L U�1�Y U�1�0

Q 3 2 1
6 z�Q�

Uc �3 1 � 2
3 z�Uc�

Dc �3 1 1
3 z�Dc�

L 1 2 � 1
2 z�L�

Ec 1 1 1 z�Ec�
Nc 1 1 0 z�Nc�

H2 1 2 1
2 z�H2�

H1 1 2 � 1
2 z�H1�

S 1 1 0 z�S�
Ki 3 1 y�Ki� z�Ki�
Kc
i

�3 1 �y�Ki� z�Kc
i �

6Reference [33] considered an UMSSM with family nonun-
iversal charges which was free of exotics. However, in that case
one cannot write down Yukawa couplings for all fermions at tree
level, and in Ref. [33] nonholomorphic terms were introduced in
order to radiatively generate the problematic Yukawa couplings.
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neutrinos Nc. The Higgs singlet S is introduced in order to
generate the effective � term (2), and a successful solution
to the �-problem requires that

 z�S� � �z�H1� � z�H2� � 0: (6)

In what follows, we shall make repeated use of this equa-
tion which is nothing but the second of our three basic
assumptions listed in the introduction. In general, we shall
consider NH pairs of Higgs doublets H1 and H2 with
identical quantum numbers, and NS SM Higgs singlets of
type S. The Abelian gauge symmetry U�1�0 is assumed to
be broken at the TeV scale where all Higgs fields (S, H1,
and H2) get VEV’s of that order. An effective � term
(�eff � hhSi) is thus dynamically generated at the TeV
scale, completing the solution to the �-problem. This is
very similar to the case of the NMSSM, but having the
U�1�0 gauge symmetry of the UMSSM has the additional
advantage of eliminating the domain wall problem associ-
ated with the discrete symmetry of the NMSSM [34].7 As
we mentioned earlier, a minimum set of vectorlike colored
exotics Ki, Kc

i (i � 1, 2, 3) is also required for anomaly
cancellation (see Sec. III A). At this point, the hyper-
charges of the exotics and the U�1�0 charges of all fields
listed in Table I are yet to be determined.

In the remainder of this section we shall analyze the
main properties of our solutions, based on a limited set of
linear constraints for the U�1�0 charges. The remaining
constraints will be analyzed in Sec. III. We shall first list
the set of relevant equations, and proceed to analyze them
in the subsequent subsections.

In addition to (2), we also require that the U�1�0 sym-
metry allows the usual Yukawa couplings in the super-
potential

 WYukawa � yDjkH1QjDc
k � y

U
jkH2QjUc

k � y
E
jkH1LjEck

� yNjk

�
S
�

�
a
H2LjN

c
k: (7)

Here capital letters denote the superfields of the MSSM
whose quantum numbers are listed in Table I. Because of
the observed smallness of the neutrino masses, we have in
general allowed neutrino Yukawa couplings to arise from a
nonrenormalizable operator suppressed by some high scale
� [36]. However, in principle we do not exclude the
possibility of a � 0. We discuss the possible appearance
of a Majorana mass term for Nc in Sec. II D. The presence
of the Yukawa terms (7) leads to the following constraints:

 YD: z�H1� � z�Q� � z�D
c� � 0; (8)

 YU: z�H2� � z�Q� � z�U
c� � 0; (9)

 YE: z�H1� � z�L� � z�Ec� � 0; (10)

 YN: z�H2� � z�L� � z�Nc� � az�S� � 0: (11)

We supplement these with Eq. (6) which we write as

 YS: z�S� � z�H1� � z�H2� � 0 (12)

and the U�1�0 � �SU�2�L�
2 anomaly condition from

Sec. III B
 

A2: 9z�Q��3z�L��NH�z�H1��z�H2���A2�exotics�� 0:

(13)

The set of six equations (8)–(13) is the starting point for
our analysis in the remainder of this section. These six
equations exactly correspond to our three basic assump-
tions listed in the introduction: the existence of the Yukawa
terms (7) is guaranteed by Eqs. (8)–(11), the solution to the
�-problem is implied by Eq. (12), and the absence of
SU�2�L exotics among our particle content in Table I
simply means that there is no additional contribution to
the U�1�0 � �SU�2�L�2 anomaly and A2�exotics� � 0 in
Eq. (13).

B. LV-BV separation

Starting with Eqs. (8)–(13) and taking the linear combi-
nation 6YD � 3YU � 3YE � �NH � 3�YS � A2 gives the
following constraint among the U�1�0 charges
 

3�z�Uc� � 2z�Dc�� � 3�2z�L� � z�Ec��

� �NH � 3�z�S� � A2�exotics� � 0: (14)

We find this equation particularly useful both in illustrating
one of our main points, as well as in categorizing the
existing U�1�0 models in the literature. Each term in
Eq. (14) corresponds to a particular physical situation:

(1) The first term in Eq. (14) represents the baryon
number violating interactions of Eq. (4). If this
term is zero, BV interactions will be present in the
model. In order to forbid (4), one must have z�Uc� �
2z�Dc� � 0, which would require at least one of the
remaining three terms in Eq. (14) to be nonvanishing
as well.

(2) The second term in Eq. (14) represents the lepton
number violating interactions of Eq. (3). If this term
is zero, LV interactions will be present in the model.
In order to forbid (3), one must have 2z�L� �
z�Ec� � 0, which would require at least one of the
remaining three terms in Eq. (14) to be nonvanishing
as well.

(3) The third term in Eq. (14) simply counts the number
NH of Higgs doublet pairs in the model. This term
would vanish only if NH � 3, since the solution to
the �-problem requires z�S� � 0 [see Eq. (6)].

(4) The fourth term A2�exotics� represents the contribu-
tion to the U�1�0 � �SU�2�L�2 anomaly from states
not listed in Table I. It is a model-builder’s choice
whether this term is present or not.

7In addition, quantum gravity effects may violate a global
symmetry unless it is a remnant of a gauge symmetry [35].
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Equation (14) allows us to categorize the existing U�1�0

models according to how many and which of these four
terms are nonvanishing. For example, Ref. [29] forbids all
renormalizable RPV terms, hence the first two terms in
Eq. (14) are both nonzero. In fact, they cancel each other,
since Ref. [29] assumes three pairs of Higgs doublets
(NH � 3) and no SU�2�L exotics, so that the last two terms
in Eq. (14) are zero. On the other hand, the models of
Refs. [27,28] illustrate the case where all four terms in
Eq. (14) are nonvanishing: those models also forbid RPV
interactions, but contain SU�2�L exotics and have NH � 3.
Finally, the models of Ref. [30] have NH � 1 and no
SU�2�L exotic representations, so they illustrate the inter-
mediate case where three terms in Eq. (14) are
nonvanishing.

According to our third basic assumption (see introduc-
tion), our approach will be to assume that there are no
SU�2�L exotic representations so that A2�exotics� � 0, in
which case Eq. (14) becomes
 

3�z�Uc�� 2z�Dc��� 3�2z�L�� z�Ec��� �NH� 3�z�S� � 0:

(15)

We shall be mostly interested in cases withNH � 3, so that
the third term in Eq. (15) is nonzero. For simplicity, we
shall concentrate on NH � 1 in Sec. IV (the case of NH �
4 is treated in Appendix A). Under those circumstances,
Eq. (15) reveals that, at least at the renormalizable level,
the LV terms (3) and the BV terms (4) cannot coexist [i.e.
the first two terms in Eq. (15) cannot vanish simulta-
neously], since we need at least one of them to cancel the
nonvanishing third term proportional to z�S�. We refer to
this mutual exclusion as the ‘‘LV-BV separation.’’ The
proton is then safe from decaying through renormalizable
RPV interactions, even though R-parity is not present in the
model. Furthermore, one does not need both of the first two
terms in Eq. (15) in order to cancel the third one—only one
of the first two terms will suffice. Therefore we are free to
consider models where either the first or the second term in
Eq. (15) is zero and the corresponding RPV interactions are
allowed. For example, in the LV case, where 2z�L� �
z�Ec� � 0, Eq. (15) gives

 z�Uc� � 2z�Dc� �

�
1�

NH
3

�
z�S� � 0 (16)

and the BV interactions (4) are not allowed. Similarly, in
the BV case, where z�Uc� � 2z�Dc� � 0, Eq. (15) gives

 2z�L� � z�Ec� � �
�

1�
NH
3

�
z�S� � 0 (17)

and the LV terms (3) are not allowed. It is straightforward
to see that the LV-BV separation also holds if the corre-
sponding LV and BV terms arise at the nonrenormalizable
level—in that case, there are extra contributions to the
right-hand side of Eqs. (16) and (17) which are integer

multiples of z�S�, so that our argument still applies as long
as NH � 1.

C. Higher-dimensional operators and proton decay

As we already mentioned in the introduction, R-parity
allows for potentially dangerous higher-dimensional op-
erators like (5) which may still destabilize the proton. The
new U�1�0 gauge symmetry can now be used to eliminate
those as well [27–30]. It is interesting to note that simply
by making use of Eqs. (8)–(13), and without specifying the
further details of the model, we can readily compute the
U�1�0 charge of any such operator and test whether it is
allowed or not. For example, the linear combination YD �
2YU � YE � �

NH
3 � 2�YS �

1
3A2 leads to

 2z�Uc� � z�Dc� � z�Ec� �
�
NH
3
� 2

�
z�S� � 0; (18)

which allows us to determine the U�1�0 charge of the
UcUcDcEc operator as

 UcUcDcEc: 2z�Uc� � z�Dc� � z�Ec� �
�
2�

NH
3

�
z�S�:

(19)

Since the solution to the�-problem already implies z�S� �

0 [see Eq. (6)], this operator is forbidden, unless one allows
for exactly six pairs of Higgs doublets in the model.
Similarly, the operator QQQL is also absent, since its
charge can be obtained from the linear combination 1

3A2 �
NH
3 YS:

 QQQL: 3z�Q� � z�L� �
NH
3
z�S�: (20)

Because of Eq. (6), again it is clear that theU�1�0 symmetry
does not allow this operator, since we already have at least
one pair of Higgs doublets as in the MSSM. Finally, one
can obtain the U�1�0 charge of the operator UcDcDcNc

from the combination 2YD � YU � YN � �
NH
3 � 2�YS �

1
3A2 as
 

UcDcDcNc: z�Uc� � 2z�Dc� � z�Nc�

�

�
2� a�

NH
3

�
z�S�: (21)

Since a is an integer, we see that, in general, as long as the
number NH of Higgs doublet pairs is not divisible by three,
this operator is also forbidden. Even when NH is divisible
by three, there will be only one special value of the integer
a, namely, a � 2� NH

3 , which would allow the existence
of this operator. Since a must be positive, there are only
two special cases that one should be worried about: �NH �
3; a � 1� and �NH � 6; a � 0�. The case NH � 6 is al-
ready disfavored by (19), while in the case NH � 3 which
we study in Appendix B, we shall consider only the case
a � 0 as in Ref. [29].
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To summarize, so far we have shown that in the simplest
cases such as NH � 1; 2; 4; � � � the conditions (8)–(13) are
sufficient to rule out the dangerous dimension 5 operators
(5) which simultaneously violate baryon and lepton num-
ber. This is already an important advantage of our models
compared to the usual R-parity conserving scenario.
However, since in our approach we are allowing some of
the dimension 4 LV or BV interactions, we should also
check for potentially dangerous pairs of dimension 4 and
dimension 5 operators, which may in general arise from
either F terms or D terms. For the case of the MSSM, the
problematic combinations were identified in Ref. [37] as

 fLQDc;QQQH1g; fUcDcDc;QUcEcH1g;

fUcDcDc;UcDcyEcg; fUcDcDc;QUcLyg:
(22)

Using Eqs. (8)–(13), it is easy to derive the following
relations between the U�1�0 charges of the operators in
each pair:

 �z�L� � z�Q� � z�Dc�� � �3z�Q� � z�H1�� �
NH
3
z�S�;

(23)

 

�z�Uc� � 2z�Dc�� � �z�Q� � z�Uc� � z�Ec� � z�H1��

�

�
2�

NH
3

�
z�S�; (24)

 

�z�Uc� � 2z�Dc�� � �z�Uc� � z�Dc� � z�Ec��

�

�
2�

NH
3

�
z�S�; (25)

 �z�Uc� � 2z�Dc�� � �z�Q� � z�Uc� � z�L��

�

�
2�

NH
3

�
z�S�: (26)

We see that all of the dangerous pairs of operators are
forbidden by the U�1�0 symmetry, due to the condition (6).
[The case NH � 6 would in principle allow the last three
pairs, but NH � 6 was already disfavored by Eq. (19) and
we shall not be considering it any further.]

So far we have shown that the proton is not destabilized
by the potentially dangerous pairs of operators constructed
out of MSSM fields only. Since our models have additional
fields present (Nc, S, Ki, and Kc

i ) beyond those of the
MSSM, we still need to check that those extra fields do
not give rise to dangerous pairs of operators analogous to
(22). We systematically checked all relevant combinations
of dimension 4 and/or dimension 5 operators involving Nc

and S in addition to the usual MSSM fields, and verified
that all combinations which violate lepton number and

baryon number are forbidden by the U�1�0 symmetry
when z�S� � 0, and NH

3 is not an integer.8

It remains to discuss the effect of the colored exotics K,
Kc on proton decay. Since they are heavy, they cannot
appear among the proton decay products. However, they
may still mediate proton decay. It is more difficult to see
that the proton is safe from such processes because the
U�1�0 charges and hypercharges of the colored exotics are
not determined by Eqs. (8)–(13). One possible approach
would be to choose the exotic hypercharges so that the
lowest dimension operators coupling exotic quarks to the
MSSM fields are absent [25,29]. Here we shall consider a
more general setup, where the hypercharges of the colored
exotics in principle may allow couplings to the MSSM
fields (see Sec. III C). The proof of proton stability in
that case will be presented in a separate publication [38]
where we will discuss the discrete gauge symmetries
[37,39] encoded in our models.

D. Majorana neutrino masses

Recent experiments show that the active neutrinos have
masses. There are different possibilities regarding the ori-
gin of neutrino masses: e.g. Dirac neutrino masses may
arise from the SM Higgs mechanism, and their smallness
can be naturally explained through a seesaw mechanism
with heavy right-handed Majorana neutrinos [40]. Other
possibilities invoke extra dimensions [41] or higher-
dimensional operators [42]. Since we allow for a neutrino
Yukawa coupling [see Eq. (7)], our models can readily
accommodate Dirac type neutrinos. In this subsection we
investigate whether in addition to the neutrino Yukawa
coupling, one could write down a Majorana term for the
right-handed neutrinos, so that we can have some kind of a
seesaw mechanism as well.

Taking the linear combination YE � YN � YS allows us
to express the U�1�0 charge of the right-handed neutrinos
Nc as

 z�Nc� � ��2z�L� � z�Ec�� � �1� a�z�S�

�

�
�1� a�z�S� �LV case�;
�2� a� NH

3 �z�S� �BV case�: (27)

We see that in the BV case, lepton number violating terms
involving the Nc field (e.g. NcNc, NcNcNc, and SNcNc)
cannot be generated, unless NH

3 is an integer. Therefore
when NH � 3; 6; � � � , the LV-BV separation holds even

8This statement is strictly true in the LV case. In the BV case
the only potentially troublesome pair of operators is UcDcDc

and NcNcNcS. The latter has U�1�0 charge �7� 3a� NH�z�S�
[see Eq. (30)] and is in principle allowed for the following three
choices: fa; NHg � f0; 7g; f1; 4g; f2; 1g. However, neither of these
three options is a viable one: NH � 7 is incompatible with the A3
anomaly [see Eq. (42) below]; a � 1, NH � 4 is inconsistent
with the A4 anomaly (see Appendix A); while a � 2 would
imply too small neutrino masses.
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in the presence of Nc fields with lepton number�1. While
the BV case can then have only Dirac neutrino mass terms,
the LV case may in general allow a Majorana neutrino
mass term NcNc whenever a � 1. However, in the LV case
the SNcNc term has a U�1�0 charge of �3� 2a�z�S� and is
not allowed. The active neutrinos of the LV case may also
get their masses without the RH neutrinos through f-~f
loops involving the � and �0 couplings, or through �- ~H0

2
mixing due to the �0effLH2 term in Eq. (3) [16].

E. General solution to the Yukawa constraints and the
A2 anomaly

In this subsection we present the general solution to the
constraints (8)–(13) and then specify its particular form
separately for the LV case and the BV case.

Since (8)–(13) are six constraints for nine variables, we
find a three-parameter solution as
 

z�Q�

z�Uc�

z�Dc�

z�L�

z�Ec�

z�Nc�

z�H2�

z�H1�

z�S�

0
BBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCA

�
‘
3

�1

1

1

3

�3

�3

0

0

0

0
BBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCA

�h1

0

1

�1

0

�1

1

�1

1

0

0
BBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCA

�
s
9

NH
9�NH
�NH

0

0

9�1� a�

�9

0

9

0
BBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCA

; (28)

where ‘, h1, and s are arbitrary coefficients. The notation

for those is suggestive of their interpretation: ‘ � z�L�,
h1 � z�H1�, and s � z�S�.

In the LV case, we have an additional constraint, e.g.
2z�L� � z�Ec� � 0, which implies the relation h1 � ‘ and
the solution (28) becomes
 

z�Q�

z�Uc�

z�Dc�

z�L�

z�Ec�

z�Nc�

z�H2�

z�H1�

z�S�

0
BBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCA

� 2‘

� 1
6

2
3

� 1
3

1
2

�1

0

� 1
2

1
2

0

0
BBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCA

�
s
9

NH
9� NH
�NH

0

0

9�1� a�

�9

0

9

0
BBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCA

: (29)

Not surprisingly, we recognize in the first column vector on
the right-hand side the hypercharge assignments of the
UMSSM fields from Table I. Indeed, the constraints (8)–
(12) arise from gauge-invariant operators, so clearly they
will be satisfied by the hypercharges of the UMSSM fields.
What is more important at this point is the additional
remaining degree of freedom represented by the second
term in the right-hand side of Eq. (29), which will allow us
to find nontrivial solutions for the U�1�0 charges, different
from the usual hypercharge.

In the BV case, the corresponding additional constraint
2z�Uc� � z�Dc� � 0 implies h1 � ‘� �1� NH

3 �s and the
solution (28) can be written as

 

z�Q�

z�Uc�

z�Dc�

z�L�

z�Ec�

z�Nc�

z�H2�

z�H1�

z�S�

0
BBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCA

�

�
2‘�

2

3
NHs

�

� 1
6

2
3

� 1
3

1
2

�1

0

� 1
2

1
2

0

0
BBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCA

�
s
3

0

6

�3

NH
�3� NH

6� NH � 3a

�6

3

3

0
BBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCA

: (30)

Just as in the LV case (29), the usual hypercharges appear
as a particular solution to the constraints (8)–(13), but there
is an additional class of solutions with nonzero z�S�, so that
in general our solutions will be a linear combination of
these two classes.

III. ANOMALIES

Table II summarizes the anomaly cancellation condi-
tions for the U�1�0 charges of the fields in our model. In

this section, we investigate these anomaly cancellation
conditions one by one and discuss their implications for
model building.

A. Anomaly A1 (U�1�0 � �SU�3�C�2)

We begin with the mixed U�1�0 � �SU�3�C�
2 anomaly

which we denote with A1. First we rederive the well-known
result that the presence of the Yukawa couplings in the
superpotential (8)–(12) requires exotic representations be-
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yond those of the MSSM. Denoting the contribution of
such exotics to the U�1�0 � �SU�3�C�2 anomaly by
A1�exotics�, we can write A1 as

 A1: 3�2z�Q� � z�Uc� � z�Dc�� � A1�exotics� � 0: (31)

The first term is the contribution of the three generations of
quarks in the MSSM, while the second term is the potential
colored exotics contribution. Now taking the linear combi-
nation A1 � 3YU � 3YD � 3YS, we get

 A1�exotics� � �3z�S�; (32)

which, in light of Eq. (6), shows the need for colored exotic
representations [27–30].

In this paper, we shall assume that the exotics are NK
vectorlike pairs of chiral fields Ki and Kc

i so that they do
not alter the anomaly cancellation conditions among the
SM gauge groups. More specifically, we assume that they
are triplets and antitriplets of SU�3�C with equal and
opposite U�1�Y hypercharges 	y�Ki� (see Table I).
Perhaps most importantly, as already mentioned earlier in
the introduction, we are assuming that the exotics which
are needed to cancel the A1 anomaly are SU�2�L singlets,
so that A2�exotics� � 0. With those assumptions, Eq. (31)
becomes

 A01: 3�2z�Q� � z�Uc� � z�Dc�� �
XNK
i�1

�z�Ki� � z�K
c
i �� � 0:

(33)

In order to avoid conflict with experiment, the
exotic quarks Ki and Kc

i must be sufficiently heavy [43].
If their masses arise from an ordinary mass term KKc

in the superpotential, then U�1�0 invariance
implies A1�exotics� �

PNK
i�1�z�Ki� � z�K

c
i �� � 0 and the

�-problem cannot be solved because of the conflicting
requirements of Eqs. (6) and (32). We therefore choose
to generate masses for all colored exotics at the TeV scale,
through superpotential couplings to the S field:

 Wexotics � h00ijSKiK
c
j : (34)

Assuming that the couplings in Eq. (34) are diagonal, we
get the following constraint among theU�1�0 charges of the

exotics

 YKi : z�S� � z�Ki� � z�K
c
i � � 0: (35)

Since z�S� � 0, this equation reveals that K and Kc do not
carry equal and opposite U�1�0 charges, even though their
hypercharges are equal and opposite (y�Ki� � y�Kc

i � � 0).
Now taking the linear combination A01 � 3YU � 3YD �

3YS �
PNK
i�1 YKi gives

 �3� NK�z�S� � 0: (36)

Combined with Eq. (6), this determines the number of
exotic families as

 NK � 3: (37)

Notice that the A1 anomaly did not impose any constraints
on the U�1�0 charges themselves, but simply fixed the
number of allowed representations in the model. We shall
see that the same phenomenon will take place when we
consider some of the other anomaly conditions below. In
the end, this will leave us with sufficient freedom to find
sets of U�1�0 charges which will satisfy all of our model
requirements.

B. Anomaly A2 (U�1�0 � �SU�2�L�2)

This anomaly condition was already introduced as
Eq. (13) in Sec. II A. With our assumption that all exotics
in the model are SU�2�L singlets, it becomes

 A2: 9z�Q� � 3z�L� � NH�z�H1� � z�H2�� � 0: (38)

C. Anomaly A3 (U�1�0 � �U�1�Y�2)

In general, the A3 anomaly condition is given by
 

9�2z�Q�y�Q�2 � z�Uc�y�Uc�2 � z�Dc�y�Dc�2�

� 3�2z�L�y�L�2 � z�Ec�y�Ec�2� � 3
XNK
i�1

�z�Ki�y�Ki�
2

� z�Kc
i �y�K

c
i �

2� � NH�2z�H1�y�H1�
2

� 2z�H2�y�H2�
2� � 0 (39)

where y�F� is theU�1�Y hypercharge of a fieldF as given in

TABLE II. Anomaly cancellation conditions for the U�1�0 charges of the particles in our model
listed in Table I. The first column lists a shorthand identifier for each condition, which will be
used throughout the text.

Identifier Anomaly Equation

A1 U�1�0-�SU�3�C�2 tr�ztatb� � 1
4�

abP
qz � 0 (color triplet fermions only)

A2 U�1�0-�SU�2�L�2 tr�z�a�b� � 1
2�

abP
fLz � 0 (doublet fermions only)

A3 U�1�0-�U�1�Y�2 tr�zy2� �
P
fzy

2 � 0

A4 U�1�Y-�U�1�0�2 tr�yz2� �
P
fyz

2 � 0

A5 �U�1�0�3 tr�z3� �
P
fz

3 � 0

A6 U�1�0-�gravity�2 tr�z� �
P
fz � 0
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Table I, and we have omitted terms involving fields with
vanishing hypercharge (Nc and S). Substituting the known
hypercharges from Table I and using (35), we can rewrite it
as
 

A3: z�Q� � 8z�Uc� � 2z�Dc� � 3z�L� � 6z�Ec�

� NH�z�H1� � z�H2�� � 6z�S�
XNK
i�1

y�Ki�2 � 0: (40)

Now taking the linear combination A3 � A2 � 8YU �
2YD � 6YE � �8� 2NH�YS leads to the following simple
constraint

 

�
4� NH � 3

XNK
i�1

y�Ki�
2

�
z�S� � 0: (41)

Because of condition (6), this uniquely reduces to

 

XNK
i�1

y�Ki�
2 �

1

3
�4� NH�; (42)

where the hypercharges are normalized as in Table I. We
see that, just as was the case for A1, the anomaly cancella-
tion condition A3 did not provide an additional constraint
on the U�1�0 charges, but instead only limits the number of
Higgs doublet pairs NH and the choice for exotic hyper-
charges y�Ki�. Since the left-hand side of Eq. (42) must be
positive-definite and NH is an integer, there are only four
possible choices for the number of Higgs doublet pairs:
NH � 1, 2, 3 or 4, that we need to consider. The case of
NH � 3 was already considered in Ref. [29] and we shall
revisit it again in Appendix B. We shall also consider the
case of NH � 4 in Appendix A. Our main interest, how-
ever, will be in the minimal case of NH � 1, which will be
discussed below in Sec. IV.

Having fixed the number of Higgs doublet pairs NH,
Eq. (42) provides a guideline for choosing the hyper-
charges of the colored exotics. Since the A1 anomaly al-
ready required NK � 3 (see Sec. III A), it is clear that a
family-universal choice with rational numbers is only pos-
sible for NH � 3, with y�Ki� � 	

1
3 , or for NH � 4, with

y�Ki� � 0. In the case of NH � 1 or NH � 2, one would
have to choose exotic hypercharges in a family nonuniver-
sal way. In general, there are many possible choices, but
here we shall limit ourselves to those where the exotic
hypercharges are the same (up to a sign) as the hyper-
charges of the corresponding SU�2�L singlet, color triplet
representations in the MSSM (Uc and Dc):

 NH � 1) y�Ki� � f	
1
3;


2
3;


2
3g; (43)

 NH � 2) y�Ki� � f	
1
3;	

1
3;


2
3g; (44)

 NH � 3) y�Ki� � f	
1
3;	

1
3;	

1
3g: (45)

All three choices (43)–(45) satisfy the A3 anomaly condi-

tion (42). The signs of the exotic hypercharges could be in
general chosen arbitrarily. We have limited ourselves to
two cases—with the upper signs in Eqs. (43)–(45) the
exotics have the wrong quantum numbers to couple to
the MSSM quarks and mediate proton decay. In that
case, however, the lightest exotic would be stable and
may pose problems for cosmology. This could be avoided,
e.g. if the reheating temperature is very low, TRH &

100 GeV, which may still be compatible with baryogenesis
[44]. On the other hand, choosing the lower signs in
Eqs. (43)–(45) allows the exotics to couple to the MSSM
quarks, thus avoiding problems with cosmology.
Nevertheless, as we already discussed in Sec. II C, in that
case the U�1�0 symmetry is sufficient to stabilize the pro-
ton. We shall therefore allow for both sets of signs for the
exotic hypercharges in Eqs. (43)–(45).

D. Anomaly A6 (U�1�0 � �gravity�2)

The gravitational anomaly U�1�0 � �gravity�2 is given as
 

A6: 9�2z�Q� � z�Uc� � z�Dc�� � 3�2z�L� � z�Ec�

� z�Nc�� � 2NH�z�H1� � z�H2�� � NSz�S�

� 3
XNK
i�1

�z�Ki� � z�Kc
i �� � 0; (46)

where NS is the number of Higgs singlets S in the model.
Taking the linear combination A6 � 9YU � 9YD � 3YE �
3YN � �12� 2NH�YS � 3

PNK
i�1 YKi , we get

 �NS � 2NH � 3a� 3�z�S� � 0: (47)

Because of Eq. (6), this implies

 NS � 2NH � 3a� 3: (48)

Once again, the anomaly condition did not constrain the
U�1�0 charges, but just the number of representations. The
simplest possibility appears to be NH � 1, a � 1, NS � 2,
and this is the case we shall investigate in Sec. IV. Another
example discussed in Appendix A is NH � 4, a � 1, and
NS � 8. Finally, NH � 3, a � 0, and NS � 3 is the case
considered in Ref. [29] and below in Appendix B. We see
that Eq. (48) excludes the minimal (in the sense of total
number NH � NS of Higgs representations) possibility of
NH � NS � 1 in our current setup.9 However, this conclu-
sion can be avoided with the addition of extra SM singlet
exotic fields. Appendix C provides a specific example of
such a model with NH � NS � 1.

E. The Anomalies A4 (U�1�Y � �U�1�0�2) and
A5 (�U�1�0�3)

The remaining anomaly conditions A4 and A5 are in
general nonlinear equations for the U�1�0 charges:

9The gravitational anomaly A6 was not taken into account in
Ref. [30], which allowed building a model with NH � NS � 1.
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A4: 9�2y�Q�z�Q�2 � y�Uc�z�Uc�2 � y�Dc�z�Dc�2� � 3�2y�L�z�L�2 � y�Ec�z�Ec�2� � 2NH�y�H1�z�H1�
2 � y�H2�z�H2�

2�

� 3
XNK
i�1

�y�Ki�z�Ki�
2 � y�Kc

i �z�K
c
i �

2� � 0; (49)

 

A5: 9�2z�Q�3 � z�Uc�3 � z�Dc�3� � 3�2z�L�3 � z�Ec�3 � z�Nc�3� � 2NH�z�H1�
3 � z�H2�

3� � NSz�S�3

� 3
XNK
i�1

�z�Ki�3 � z�Kc
i �

3� � 0: (50)

Because of their nonlinearity, in the past A4 and A5 have typically been the stumbling blocks for finding anomaly-free
solutions for the U�1�0 charges. Here we shall show, however, that under our previous assumptions (8)–(13), both of these
equations factorize—each one is in fact proportional to z�S� [which according to Eq. (6) is nonzero] so effectively we are
able to reduce the power of Eq. (49) and (50) by one.10 For example, the A4 anomaly reduces to a linear constraint among
the U�1�0 charges. The easiest way to see this is to substitute the general solution (28) into Eq. (49), which gives

 

1

3
s
�
�12NH � 36�h1 � �7NH � 18�s� 12‘� 9

XNK
i�1

y�Ki��s� 2z�Ki��
�
� 0: (51)

Since s � 0, the expression within the curly brackets must vanish, which allows us to solve e.g. for one of the exotic
charges z�Ki� in terms of the other two as well as s, h1, and ‘.

Similarly, substituting the general solution (28) into Eq. (50), and using Eq. (48), we get

 

s
�
�3��3a� 4NH � 12�h2

1 � 6ah1‘� �3a� 4�‘2� � �3�3a2 � 6a� 4NH � 12�h1 � �9a2 � 18a� 2NH�‘�s

�
1

3
�9a3 � 27a2 � 18a� N2

H � 9NH�s
2 � 9

XNK
i�1

z�Ki��s� z�Ki��
�
� 0: (52)

Once again, since s � 0, the expression within the curly
brackets must vanish, which translates into only a qua-
dratic constraint on the U�1�0 charges.

As we shall see later in Appendix B, a further drastic
simplification of the above formulas (51) and (52) occurs
for the case of NH � 3, a � 0, and y�Ki� � 	

1
3 , when the

cubic anomaly completely factorizes, and effectively re-
duces to a linear constraint. Furthermore, this linear con-
straint turns out to be equivalent to the constraint implied
by Eq. (51), so that in effect the cubic anomaly condition is
automatically satisfied and in that case does not constrain
the U�1�0 charges at all.

This completes our discussion of the anomaly cancella-
tion conditions involving the newU�1�0. To recapitulate, in
Sec. II we first considered the effect of the six constraints
(8)–(13) on the U�1�0 charges of the nine nonexotic fields
in our model (see Table I). This resulted in the general
three-parameter solution given by Eq. (28). Then in
Sec. III, we studied the remaining11 five anomaly cancel-
lation conditions A1, A3, A4, A5, and A6, which involved
three additional variables—the U�1�0 charges z�Ki� of the
exotic fields Ki. We found that only two out of these five

new conditions actually restrict the values of the U�1�0

charges, so that there is still a lot of freedom remaining
in the actual U�1�0 charge assignments. In the following we
shall demonstrate this explicitly by presenting specific
examples of anomaly-free charge assignments which sat-
isfy all of the model-building constraints considered so far.
In Sec. IV we shall find, as anticipated, that there exist
solutions which allow for either LV or BV, but not both.
Nevertheless, the proton will be stable in such models, as
already discussed in Sec. II C, and the �-problem will be
solved by Eq. (6).

IV. MODELS WITH LEPTON OR BARYON
NUMBER VIOLATION

In this section we shall concentrate on the simplest case
of NH � 1. In addition to the usual MSSM fields, the
model also contains NS � 2 Higgs singlets Si and NK �
3 vectorlike pairs �Ki; Kc

i � of exotic quarks introduced to
cancel the A1 anomaly (see Sec. III A). The R-parity con-
serving part of the superpotential is given by the combina-
tion of Eqs. (2), (7), and (34):

 WRPC � yDjkH1QjD
c
k � y

U
jkH2QjU

c
k � y

E
jkH1LjE

c
k

� yNijk
Si
�
H2LjN

c
k � hiSiH2H1 � h

00
ijkSiKjK

c
k:

(53)

10The factorization of the A4 and A5 anomalies has been
previously noticed in Ref. [30] for the specific case of NH �
1, a � 0 and a particular set of exotics.

11Recall that A2 was already accounted for in Sec. II.
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Recall that with NH � 1 and NS � 2, the A6 anomaly
condition (48) demands a � 1, so that the neutrino
Yukawa couplings arise from a nonrenormalizable opera-
tor as shown. We assume diagonal couplings of the exotics
to S (i.e. z�Kc

i � � �z�Ki� � z�S�) but off-diagonal terms
may also exist if two or more exotic quarks have identical
U�1�0 charges. As discussed in the introduction, the
�-problem is solved through an effective � term �eff �
h1hS1i � h2hS2i by requiring z�S� � 0. This forbids not
only the original � term (1), but also mass terms for the
exotics (KKc) and Higgs singlet self-couplings S, S2, and
S3.

The R-parity violating part of the renormalizable super-
potential of the UMSSM is

 WRPV � WLV �WBV; (54)

where

 WLV � �ijkLiLjEck � �
0
ijkLiQjDc

k � h
0
ijSiH2Lj; (55)

 WBV � �00ijkU
c
i D

c
jD

c
k: (56)

It is easy to see that the U�1�0 symmetry either simulta-
neously allows all three terms fLLEc; LQDc; SH2Lg, in
which case z�L� � z�H1�, or simultaneously forbids all
three. In the LV case, therefore, we shall expect to have
all three terms appearing in Eq. (55) present.

A comment is in order regarding the possibility of a bare
LV �0H2Li term in the superpotential. Such a term is
dangerous because it will reintroduce a hierarchy problem
(�0-problem) of the type we originally intended to avoid.
Indeed, the general solution (28) in principle allows for this
term. However, it is easy to see that in both the LV case and
the BV case we are interested in, this term is absent and the
�0-problem is solved in exactly the same way as the
�-problem. For example, in the LV case the U�1�0 charge
of H2Li from Eq. (29) is z�H2Li� � z�S� which is not
vanishing because of condition (6). In the BV case, from
Eq. (30) we get z�H2Li� � �NH � 6�z�S�=3. Since the case
of NH � 6 was already discarded (see Sec. II C), the H2Li
is again forbidden by the U�1�0 symmetry. An effective �0

term will be nevertheless generated from the SiH2Lj term
in WLV, once the U�1�0 symmetry is broken by the VEV of
S at the TeV scale.

The U�1�0 symmetry is broken when S gets a VEV hSiat
the TeV scale. This generates the corresponding effective
bilinear terms in the superpotential with coefficients

 �eff � hihSii; �0i;eff � h0jihSji; mK;ij � h00kijhSki:

(57)

With the natural size of the couplings fh; h0; h00g � 1, the
effective � and �0 parameters as well as the masses of the
exotic quarks mK are all of order a TeV. With the effective
bilinear terms, the superpotential of the UMSSM becomes
similar to that of the MSSM. First, the model predicts a
new gauge boson, Z0, near the U�1�0 symmetry breaking

scale:

 M2
Z0 � g2

Z0 �z�H1�
2v2

1 � z�H2�
2v2

2 � z�S�
2v2

s1 � z�S�
2v2

s2�:

(58)

Here, gZ0 is the U�1�0 gauge coupling constant, vi ����
2
p
hHii (with v2

1 � v
2
2 ’ 2462 GeV2), and vsi �

���
2
p
hSii.

The direct constraint on the mass of the Z0 comes from
searches at the Tevatron in the dilepton channel (Z0 !
‘�‘�). The typical bound is MZ0 > 600� 900 GeV, de-
pending on the U�1�0 charges of the quarks and leptons
[45]. The VEV’s of the Higgs doublets will also induce
mixing between the Z and Z0 gauge bosons. If the Z0 is
sufficiently heavy, this mixing is quite small, in accordance
with the experimental constraints from LEP (per mil level)
[46]. The supersymmetric partners of the Z0 and S (Z0-ino
and singlino) become extra components of the neutralinos.
The S field gives one physical CP-even Higgs state, while
the corresponding CP-odd Goldstone boson gets absorbed
as the longitudinal component of the Z0 gauge boson. For
recent studies on phenomenology of the UMSSM, see
Ref. [47].

We shall now present explicit examples where the U�1�0

symmetry allows for eitherWLV orWBV, but not both at the
same time. For simplicity, we assume the MSSM chiral
fields �Q;Uc;Dc; L; Ec; Nc� to have family-universal U�1�0

charges,12 but we allow family nonuniversal U�1�0 charges
for the exotic quarks �Ki; Kc

i �. The hypercharges of the
exotic quarks may be family nonuniversal as well. In
general, it is possible that there may be additional SM
singlet fields which belong to the hidden sector, yet are
charged under U�1�0 and thus contribute to the A5 and A6

anomalies. However, our primary intention was simply to
demonstrate that an anomaly-free U�1�0 can be used and is
sufficient to achieve all of our goals outlined in the intro-
duction. Therefore, for concreteness and for simplicity, we
shall assume only the field content listed in Table I.

In Table III, we show several examples of anomaly-free
charge assignments (up to an arbitrary normalization fac-
tor) forNH � 1,NS � 2, a � 1, and y�Ki� � f

1
3 ;�

2
3 ;�

2
3g.

We have classified our examples in two groups: the first
five columns are LV models which allow for LV, but not
BV terms in the superpotential, while the remaining six
columns are BV models which allow for BV, but not LV
terms in the superpotential. In LV models I–IV the LV
terms appear already at the renormalizable level as in
Eq. (55). In model V the terms of Eq. (55) appear at the
nonrenormalizable level (SLLEc, SLQDc, and S2H2L)
and in addition there are renormalizable LV terms involv-
ing exotics, e.g. NK1Kc

1 and EK2Kc
1. Similarly, BV

models I–III already allow renormalizable BV couplings

12Family nonuniversal U�1�0 charges in the SM quark sector
may induce dangerous flavor changing neutral currents [48]. (On
the other hand, such a flavor changing Z0 may provide an
explanation of the discrepancies in rare B decays [49]).
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as in Eq. (56), while BV models IV–VI allow only non-
renormalizable BV operators such as QQDcy, QQQH1,
and H1H2UcDcDc.

A few comments are in order. First, each example in
Table III in fact corresponds to a whole family of solutions.
This is because hypercharge itself also satisfies all of our
requirements, including the absence of mixed anomalies
with U�1�0. Therefore, each one of our solutions can be
‘‘rotated’’ by hypercharge in an arbitrary normalization.
More specifically, if z0�Fi� is any particular solution from
Table III, then a family of anomaly-free U�1�0 charges is
generated by the linear combination

 z�Fi� � �z0�Fi� � �y�Fi�; (59)

where y�Fi� are the hypercharge assignments of our fields
Fi from Table I and � and � are arbitrary coefficients.
Therefore, the numerical values for the U�1�0 charges in
our models are subject to fixing the convention for
Eq. (59). In Table III we only listed examples which are
not equivalent in the sense of Eq. (59).

In spite of the freedom provided by Eq. (59), the nu-
merical values of the U�1�0 charges are important for
phenomenology, as they determine the couplings of the
particles in our model to the Z0. For instance, our LV
examples I–IV in Table III are completely leptophobic,
as they have z�L� � z�Ec� � z�Nc� � 0. Under those cir-
cumstances, the standard collider bounds on the Z0 mass
are degraded, and a very light Z0 can be allowed. However,
this is not a general property of our LV models, since the
hypercharge ‘‘rotation’’ (59) could generate nonzero U�1�0

charges for L, Ec, and H1. On the other hand, z�Nc� � 0 is
a general property of LV models I–IV in this particular

case (a � 1), as already anticipated by Eq. (27). Similarly,
the vanishing entries for theU�1�0 charges ofQ,Dc, andH1

in our BV models, can also be rotated away from zero
using Eq. (59).

As we mentioned in Sec. III C, we also consider the case
where the exotic hypercharges have the opposite sign:
y�Ki� � f�

1
3 ;

2
3 ;

2
3g. The actual solutions for the U�1�0

charges that we find in that case are given simply by those
of Table III, with the replacement z�Ki� $ z�Kc

i �. In gen-
eral, this choice of y�Ki� appears dangerous, since hyper-
charge alone would then allow for LV and BV couplings
involving exotic fields. However, we find that due to the
general phenomenon of LV-BV separation discussed in
Sec. II B, the U�1�0 symmetry is still sufficient to prevent
the simultaneous appearance of LV and BV couplings in
the superpotential, and in all but one case (namely, BV-IV
with opposite exotic hypercharge) the proton turns out to
be stable [38].

V. CONCLUSIONS

In this paper, we constructed a U�1�0-extended MSSM
without R-parity, where the extra nonanomalous U�1�
gauge symmetry plays the dual role of solving the
�-problem and controlling the R-parity violating terms
(3) and (4). The U�1�0 gauge symmetry provides a solid
theoretical framework for discussing the phenomenology
of R-parity violation. The most important implication of
our models is the LV-BV separation: when the lepton
number violating terms (3) are allowed by the U�1�0 sym-
metry, the baryon number violating terms (4) in the super-
potential are automatically forbidden, and vice versa.
Within our approach, the dangerous dimension 5 operators
such as QQQL or UcUcDcEc, which are allowed by
R-parity and could still destabilize the proton, are also
eliminated. This presents a very minimal solution to the
proton decay problem which is alternative to R-parity. We
showed that the LV-BV separation holds under very gen-
eral circumstances. Perhaps the most stringent and least
motivated was our assumption that there are no exotic
SU�2�L representations. While one cannot judge the valid-
ity of this assumption without knowledge of the fundamen-
tal theory at high energies, it is certainly consistent with the
principle of ‘‘Occam’s razor.’’

While in our LV and BV examples the corresponding
RPV couplings are allowed by the symmetries, the size of
those couplings is still undetermined. The experimental
upper bounds on the individual RPV couplings range
from 10�3 for � to 10�7 for �00. We do not consider such
small values particularly fine-tuned, especially when com-
pared to the Yukawa couplings of the first generation
fermions in the SM. In fact such small RPV couplings
may naturally originate from higher-dimensional opera-
tors, without modifying the analysis and the conclusions
of our paper [38].

TABLE III. Examples of anomaly-free U�1�0 charge assign-
ments for NH � 1, NS � 2, a � 1, and y�Ki� � f

1
3 ;�

2
3 ;�

2
3g.

These U�1�0 charges can be scaled by an arbitrary normalization
factor, as well as rotated by hypercharge (see text for details).

LV BV
I II III IV V I II III IV V VI

z�Q� 1 3 3 3 4 1 3 15 0 0 0
z�Uc� 8 24 24 24 5 2 6 30 3 9 9
z�Dc� �1 �3 �3 �3 �4 �1 �3 �15 0 0 0
z�L� 0 0 0 0 �9 �2 �6 �30 1 3 3
z�Ec� 0 0 0 0 9 2 6 30 �1 �3 �3
z�Nc� 0 0 0 0 9 2 6 30 �1 �3 �3
z�H2� �9 �27 �27 �27 �9 �3 �9 �45 �3 �9 �9
z�H1� 0 0 0 0 0 0 0 0 0 0 0
z�S� 9 27 27 27 9 3 9 45 3 9 9

z�K1� �5 �13 �23 �25 �5 �1 �7 �17 �3 �7 �5
z�K2� �2 �4 �8 �7 �5 �1 �4 �20 0 �1 1
z�K3� 1 2 1 �1 �5 �1 �4 �11 0 2 1
z�Kc

1� �4 �14 �4 �2 �4 �2 �2 �28 0 �2 �4
z�Kc

2� �7 �23 �19 �20 �4 �2 �5 �25 �3 �8 �10
z�Kc

3� �10 �29 �28 �26 �4 �2 �5 �34 �3 �11 �10
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An interesting feature of our setup is that all LV terms
��LLEc; �0LQDc;�0effH2L� must coexist, as long as one
of them is allowed. This is phenomenologically interesting
since, for instance, the observation of a sneutrino reso-
nance in an s-channel at hadron colliders such as the
Tevatron and the LHC requires both � and �0 couplings.
Besides the relation among the R-parity violating terms,
our models also provide a connection between the phe-
nomenology of R-parity violation and U�1�0 extensions of
the MSSM. In this sense, a potential discovery of a Z0

resonance at the Tevatron or LHC would motivate searches
for R-parity violating SUSY signatures, and vice versa.
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APPENDIX A: MODELS WITH NH � 4

In this appendix we briefly consider the case of NH � 4.
Again we shall choose a � 1, which fixes NS � 8 in
accordance with Eq. (48). The exotic hypercharges are
uniquely determined from Eq. (42) to be y�Ki� � 0. For
simplicity, in this appendix we shall assume that the exotic
quarks also have the same U�1�0 charges as well: z�K1� �
z�K2� � z�K3� � k. With those choices, the quadratic and
cubic anomaly conditions (51) and (52) can be rewritten as

 

2
3 s�6h1 � 5s� 6‘� � 0; (A1)

 

� 1
12sf�6h1 � 5s� 6‘��42h1 � 7s� 6‘�

� 9�s� 6k��5s� 6k�g � 0: (A2)

Notice that taking into account Eq. (A1) eliminates the first
term in the curly brackets in Eq. (A2) and the A5 anomaly
condition completely factorizes:

 � 3
4s�s� 6k��5s� 6k� � 0: (A3)

This allows us to obtain explicitly a family of anomaly-free
solutions for the U�1�0 charges of the fields in Table I. It
turns out that all of these solutions forbid both the LV and
BV terms, something which could not have been expected
on the basis of Eq. (15) alone. Indeed, the A4 anomaly
constraint (A1) is inconsistent with the individual con-
straints for the LV case (h1 � ‘) and the BV case (h1 �

‘� �1� NH
3 �s) which were derived earlier in Sec. II E. In

either case, compatibility with Eq. (A1) demands s � 0,
which is not allowed by the condition (6).

The factorized constraints (A1) and (A2) can now be
solved rather easily and the general solution (28) can be
written as

 

z�Q�

z�Uc�

z�Dc�

z�L�

z�Ec�

z�Nc�

z�H2�

z�H1�
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0
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1
CCCCCCCCCCCCCCCCCCCCCCCCCCCA

; (A4)

where � � � 1
6 (� � � 5

6 ) in the case of s� 6k � 0 (5s�
6k � 0). As expected, we obtain a two-parameter family of
solutions—one parameter (‘) corresponds to the usual
hypercharge assignments while the second parameter (s)
gives the nontrivial part of the U�1�0 solution.

APPENDIX B: MODELS WITH NH � 3

In this appendix we shall consider U�1�0 models with
NH � 3,NS � 3, and a � 0, as in Ref. [29]. As we already
saw in Sec. II B, in that case one should either simulta-
neously allow or simultaneously forbid the LV and BV
terms [see Eq. (15)]. Furthermore, NH � 3 allows for
family-universal hypercharges of the exotic quarks [see
Eqs. (42) and (45)]. We shall consider two possible values
for the exotic hypercharges: y�Ki� � �

1
3 and y�Ki� � �

1
3 .

For simplicity, in this appendix we shall again assume
universal U�1�0 charges for the exotic quarks: z�K1� �
z�K2� � z�K3� � k. The A4 anomaly (51) can then be
written as

 A4:
�
�2s�3k� 2‘� s� � 0; for y�Ki� �

1
3 ;

2s�3k� 2‘� 2s� � 0; for y�Ki� � �
1
3 ;

(B1)

while the A5 anomaly condition is independent of y�Ki�
and reads

 A5: � 3s�3k� 2‘� s��3k� 2‘� 2s� � 0: (B2)

We can see that A5 completely factorizes into linear poly-
nomials which already appear in the expression for A4.
Therefore, A5 does not provide an additional restriction on
the U�1�0 charges, i.e. A5 will be automatically satisfied for
any choice of U�1�0 charges which is consistent with A4.
Since A4 is already a linear relation, this allows us to derive
a three-parameter class of solutions which generalize the
single model found in Ref. [29]. For y�Ki� � �

1
3 , from

Eqs. (28) and (B1) we find the general solution
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; (B3)

in terms of the U�1�0 charges ‘ � z�L�, h1 � z�H1�, and
k � z�Ki�. This solution is anomaly-free and satisfies all of
the constraints discussed in Secs. II and III. As a special
case, it also contains the solution found in Ref. [29], which
we recover by imposing 8‘ � �7h1 � �7k. For example,
‘ � 7

12 , h1 � k � � 2
3 gives

 z�Q;Uc;Dc; L; Ec; Nc;H2; H1; S; K; Kc�

� f 1
12;

1
12;

7
12;

7
12;

1
12;�

5
12;�

1
6;�

2
3;

5
6;�

2
3;�

1
6g; (B4)

which is exactly the charge assignment in the model of
Ref. [29]. In addition to our requirements listed in Secs. II
and III, Ref. [29] demanded the presence of a Majorana
mass term SNcNc in the superpotential. This would imply
the constraint 8‘� 2h1 � 9k � 0, which still leaves us
with a two-parameter class of solutions
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as a generalization of Eq. (B4).
For completeness, we shall also consider the other pos-

sible sign of the exotic hypercharges: y�Ki� � �
1
3 , since in

that case A5 is also automatically satisfied due to its
factorization (B2), which makes it easy to obtain another
class of solutions satisfying all Yukawa constraints and
all anomaly cancellation conditions. Putting together
Eqs. (28) and (B1), we find
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: (B6)

Unfortunately, this class of models does not solve the
proton decay problem: as can be seen from Eq. (B6), the
U�1�0 symmetry still allows R-parity violating couplings
involving exotic fields, e.g. UcDcKc and LQKc.

APPENDIX C: MODELS WITH NH � NS � 1

We have already seen that the A6 anomaly condition (48)
restricts the number of Higgs representations NH and NS.
As we mentioned in Sec. III D, the minimal case of NH �
1, NS � 1 is not allowed within the model we have dis-
cussed so far. However, the constraint (48) varies with the
particle spectrum, and here we provide an example with a
slightly altered spectrum which can allow NH � 1, NS �
1. We simply add another SM singlet field X with super-
potential

 WX �
	
2
SXX; (C1)

so that the U�1�0 charge of X is given by z�X� � � 1
2 z�S�.

The general solution (28) is then rewritten as
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with no additional free parameters.
The new X particles will modify the anomaly conditions

A6 (U�1�0 � �gravity�2) and A5 (�U�1�0�3) which get addi-
tional contributions of NXz�X� and NXz�X�3, respectively.
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Then Eq. (48) is modified as

 NS � 2NH � 3a� 3� 1
2NX; (C3)

where NX is the number of families of the X fields. NH �
1, NS � 1 is now allowed with a � 0, NX � 4. As an
existence proof, we provide an example of an anomaly-
free LV model of this category with y�Ki� � f

1
3 ;�

2
3 ;�

2
3g:

 

z�Q;Uc;Dc; L; Ec; Nc;H2; H1; S; K1; K2; K3; K
c
1; K

c
2; K

c
3; X�

� f4; 8; 2;�6; 12; 18;�12;�6; 18;�6;�3;�15;

� 12;�15;�3;�9g: (C4)
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