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The one-loop contribution of the two CP-violating components of the WW� vertex, ~��W��W�� ~F�� and
�~��=m

2
W�W

�
��W

��
�

~F��, on the electric dipole moment (EDM) of fermions is calculated using dimensional
regularization and its impact at low energies reexamined in the light of the decoupling theorem. The Ward
identities satisfied by these couplings are derived by adopting a SUL�2� �UY�1�-invariant approach and
their implications in radiative corrections discussed. Previous results on ~��, whose bound is updated to
j~��j< 5:2� 10�5, are reproduced, but disagreement with those existing for ~�� is found. In particular, the
upper bound j~��j< 1:9� 10�2 is found from the limit on the neutron EDM, which is more than 2 orders
of magnitude less stringent than that of previous results. It is argued that this difference between the ~��
and ~�� bounds is the one that might be expected in accordance with the decoupling theorem. This
argument is reinforced by analyzing carefully the low-energy behavior of the loop functions. The upper
bounds on the W EDM, jdW j< 6:2� 10�21 e � cm, and the magnetic quadrupole moment, j ~QW j< 3�
10�36 e � cm2, are derived. The EDM of the second and third families of quarks and charged leptons are
estimated. In particular, EDM as large as 10�20 e � cm and 10�21 e � cm are found for the t and b quarks,
respectively.
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I. INTRODUCTION

Very important information about the origin of CP
violation may be extracted from electric dipole moments
(EDMs) of elementary particles. This elusive electromag-
netic property is very interesting, as it represents a net
quantum effect in any renormalizable theory. In the stan-
dard model (SM), the only source of CP violation is the
Cabbibo-Kobayashi-Maskawa (CKM) phase, which how-
ever has a rather marginal impact on flavor-diagonal pro-
cesses such as the EDM of elementary particles [1]. In fact,
the EDM of both fermions and the W gauge boson first
arises at the three-loop level [2,3]. As far as the magnetic
quadrupole moment of the W boson is concerned, it re-
ceives a tiny contribution at the two-loop level in the SM
[4]. Although they are extremely suppressed in the SM, the
EDMs can be very sensitive to new sources of CP viola-
tion, as it was shown recently for the case of the W boson
in a model-independent manner using the effective
Lagrangian technique [5,6]. Indeed, EDMs can receive
large contributions from many SM extensions [7], so the
scrutiny of these properties may provide relevant informa-
tion to our knowledge of CP violation, which still remains
a mystery.

In this paper, we are interested in studying the impact of
a CP-violating WW� vertex on the EDM of charged
leptons and quarks. As it was shown by Marciano and
Queijeiro [8], the CP-odd electromagnetic properties of
the W boson can induce large contributions on the EDM of
fermions. Beyond the SM, the CP-violating WW� vertex
can be induced at the one-loop level by theories that

involve both left- and right-handed currents with complex
phases [6,9], as it occurs in left-right symmetric models
[10]. Two-loop effects can arise from Higgs boson cou-
plings to W pairs with undefined CP structure [5].
However, in this work, instead of focusing on a specific
model, we will parametrize this class of effects in a model-
independent manner via the effective Lagrangian approach
[11], which is suited to describe those new physics effects
that are quite suppressed or forbidden in the SM. The
phenomenological implications of both the CP-even and
the CP-odd trilinear WWV (V � �, Z) couplings have
been the subject of intense study in diverse contexts using
the effective Lagrangian approach [12,13]. The static elec-
tromagnetic properties of the W gauge boson can be pa-
rametrized by the following effective Lagrangian:
 

LWW� � �ie
�
���F��W��W�� �

��
m2
W

W���W��� F��

� ~��W
�
�W

�
�

~F�� �
~��
m2
W

W���W
��
�

~F��
�
; (1)

where W��� � @�W�� � @�W�� and ~F�� �
�1=2�����	F

�	. The sets of parameters ����; ��� and
�~��; ~��� define theCP-even andCP-odd static electromag-
netic properties of theW boson, respectively. The magnetic
dipole moment (�W) and the electric quadrupole moment
(QW) are defined by [12]

 �W �
e

2mW
�2���� � ���;

QW � �
e

m2
W

�1� ��� � ���:
(2)
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On the other hand, the electric dipole moment (dW) and the
magnetic quadrupole moment ( ~QW) are defined by [12]

 dW �
e

2mW
�~�� � ~���; ~QW � �

e

m2
W

�~�� � ~���: (3)

The dimension-four interactions of the above Lagrangian
are induced after spontaneous symmetry breaking by the
following dimension-six SUL�2� �UY�1�-invariant opera-
tors:

 OWB �
�WB
�2

�
�y


a

2
�
�
Wa��B��; (4)

 

~OWB �
~�WB
�2

�
�y


a

2
�
�
Wa�� ~B��; (5)

whereas those interactions of dimension six are generated
by the following SUL�2�-invariants:

 OW �
�W
�2

�
�abc
3!

Wa�
vW

b�
�W

c�
�

�
; (6)

 

~OW �
~�W
�2

�
�abc
3!

Wa�
vWb�

�
~Wc�

�

�
; (7)

where Wa
�� and B�� are the tensor gauge fields associated

with the SUL�2� and UY�1� groups, respectively. In addi-
tion, � is the Higgs doublet, � is the new physics scale,
and the ~�i are unknown coefficients, which can be deter-
mined if the underlying theory is known. As we will see
below, the presence of the Higgs doublet in the OWB and
~OWB operators, as well as its absence in OW and ~OW , has
important physical implications at low energies. In the
following, we will focus on the CP-violating interactions.
Introducing the dimensionless coefficients ~�i � �v=��2 ~�i,
with v the Fermi scale, it is easy to show that ~�� �
��cW=2sW�~�WB and ~�� � ��e=4sW�~�W , with sW�cW� the

sine(cosine) of the weak angle. The impact of the ~OWB
operator on the EDM of fermions, df, was studied in
Ref. [8]. The experimental limits on the EDM of the
electron and neutron were used by the authors to impose
a bound on the ~�� parameter.1 It was found that the best
bound arises from the limit on the neutron EDM dn. In this
paper, besides reproducing this calculation using dimen-
sional regularization and updating the bound on ~�� and dW ,
we will derive an upper bound on the magnetic quadrupole
moment ~QW , which, to our knowledge, has not been pre-
sented in the literature.

On the other hand, the contribution of the ~OW operator
to the EDM of fermions has also been studied previously
by several authors [14,15]. Although this operator gives a
finite contribution to df,2 it has been argued by the authors
of Ref. [15] that such a contribution is indeed ambiguous,
as it is regularization-scheme dependent. The authors of
Ref. [15] carried out a comprehensive analysis by calculat-
ing the ~OW contribution to df using several regularization
schemes, such as dimensional, form-factor, Paulli-Villars-
regularization, and the cutoff method. They show that the
result differs from one scheme to another. In this paper, we
reexamine this contribution using the dimensional regu-
larization scheme. We argue that the result thus obtained is
physically acceptable because it satisfies some low-energy
requirements that are inherent to the Appelquist-Carazzone
decoupling theorem [17]. In particular, we will emphasize
the relative importance of the ~OWB and ~OW operators when
inserted into a loop to estimate their impact on a low-
energy observable as the EDM of the electron or the
neutron. As we will see below, the ~OWB operator induce
nondecoupling effects, whereas ~OW is of decoupling na-
ture. As a consequence, the constraints obtained from the
neutron EDM are more stringent for ~OWB than for ~OW , in
contradiction with the results of Ref. [15] where bounds of
the same order of magnitude are found. Below we will
argue on the consistence of our results by analyzing more
closely some peculiarities of these operators in the light of
the decoupling theorem. Although the ~OW contribution is
insignificant compared with the one of ~OWB for light
fermions, it is very important to stress that both operators
can be equally important at high energies. Indeed, we will
see that for the one-loop �tt� and �bb� vertices, the ~OW

contribution is as large as or larger than the effect of ~OWB.
We will see below that as a consequence of the decoupling
nature of ~OW , the bound obtained on ~�� from the neutron
EDM is 2 orders of magnitude less stringent than that on
~��.

Another important goal of this work is to use our bounds
on the ~�� and ~�� parameters to predict, besides theCP-odd
electromagnetic properties of theW gauge boson, the EDM
of the second and third families of charged leptons and
quarks. We believe that the heaviest particles, as the W, �,
b, and t, could eventually be more sensitive to new physics
effects associated with CP violation. In addition, we will
exploit the SUL�2� �UY�1� invariance of our framework
to derive limits on the ~�Z and ~�Z parameters associated
with the CP-odd WWZ vertex.

The paper has been organized as follows. In Sec. [11],
the Feynman rule for the CP-odd WW� vertex is pre-
sented. We will focus on the gauge structure of the part

1The authors of Ref. [8] use the symbol �W to characterize the
~F��W

��W�� term, but more frequently the notation ~�� is used,
which we will adopt here.

2The contribution of the CP-even OW operator to the magnetic
dipole moment of fermions is also finite [14–16].
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coming from the ~OW operator. In particular, we will show
how this operator leads to a gauge-independent result even
in the most general case when all particles in the WW�
vertex are off shell. Section III is devoted to deriving the
amplitudes for the on-shell one-loop �ll� and �qq� vertices,
induced by the CP-odd WW� coupling. In Sec. IV, the
bounds on the ~�� and ~�� parameters are derived and used
to predict the EDM of the SM particles. Finally, in Sec. V
the conclusions are presented.

II. THE ANOMALOUS CP-VIOLATING WW�
VERTEX

In this section, we present the Feynman rule for the
WW� vertex induced by the effective operators given in
Eqs. (5) and (7). The ~OWB term can be written in the
unitary gauge as follows:

 

~OWB � �
1

4
~�WB ~B��W

3�� � � � �

� �ie
�
cW
2sW

~�WB

�
~F��W

��W�� � � � � ; (8)

where

 

~B�� � cW ~F�� � sW ~Z��; (9)

 W3
�� � sWF�� � cWZ�� � ig�W

�
�W

�
� �W

�
�W

�
� �: (10)

On the other hand, the ~OW term is given by

 

~OW �
i~�W
�2 Ŵ

���Ŵ��� ~W3
��

� ie
�
e

4sW
~�W

��
1

m2
W

�
W���W��� ~F�� � � � � ; (11)

where

 Ŵ �
�� � D�W�� �D�W�� � igcW�W��Z� �W�� Z��;

(12)

with D� � @� � ieA� the electromagnetic covariant de-
rivative and Ŵ��� � �Ŵ

�
���
y.

Using the notation shown in Fig. 1, the vertex function
associated with the WW� coupling can be written as

 

~�
WW�
��� �k1; k2; k3� � ie~���

~OWB
����k1�

�
ie~��
m2
W

�
~OW
����k1; k2; k3�; (13)

where

 �
~OWB
����k1� � �����k

�
1 ; (14)

 �
~OW
����k1; k2; k3� � ��k2 � k3����� � k2�����
k



3

� k3�����
k


2 �k

�
1 : (15)

We now proceed to derive the Ward identities that are
satisfied by these vertex functions. In particular, we will
show that as a consequence of these identities, the

�
~OW
����k1; k2; k3� vertex cannot introduce a gauge-

dependent contribution in any loop amplitude. From
Eq. (15) it is easy to show that this vertex satisfies the
following simple Ward identities:

 k�1 �
~OW
����k1; k2; k3� � 0; (16)

 k�2 �
~OW
����k1; k2; k3� � 0; (17)

 k�3 �
~OW
����k1; k2; k3� � 0; (18)

which arise as a direct consequence of the invariance of
~OW under the SUL�2� group. Since all the SUL�2� �UY�1�
invariants of dimensions higher than four cannot be af-
fected by the gauge-fixing procedure applied to the
dimension-four theory, any possible gauge dependence
necessarily must arise from the longitudinal components
of the gauge field propagators through the  gauge parame-
ter. Gauge independence means independence with respect
to this parameter. It is clear now that as a consequence of

the above Ward identities, the �
~OW
����k1; k2; k3� contribution

to a multiloop amplitude is gauge independent, as there are
no contributions from the longitudinal components of the
propagators and thus it cannot depend on the  gauge
parameter. Of course, the complete amplitude may be
gauge dependent due to the presence of other gauge cou-
plings. However, when this anomalous vertex is the only
gauge coupling involved in a given amplitude, as is the
case of the one-loop electromagnetic properties of a fer-
mion f, the corresponding form factors are manifestly
gauge independent. This means that for all practical pur-
poses, the contribution of this operator to a given amplitude
can be calculated using the Feynman-’t Hooft gauge ( �
1). We will see below that, as a consequence of these Ward
identities, the contribution of this operator to the fermion
EDM is not only manifestly gauge independent, but also
free of ultraviolet divergences. The same considerations
apply to the CP-even counterpart OW . These results areFIG. 1. The trilinear CP-odd WW� vertex.
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also valid for the WWZ coupling. As far as the �
~OWB
����k1�

vertex is concerned, it also is subject to satisfying certain
Ward identities that arise as a consequence of the
SUL�2� �UY�1� invariance of the ~OWB operator.
However, these constraints, in contrast with the ones sat-

isfied by the �
~OW
����k1� vertex, are not simple due to the

presence of pseudo-Goldstone bosons. These Ward identi-
ties are relations between the WW� and the G�W	�
vertices, which are given by

 k�1 �
~OWB
����k1� � 0; (19)

 k�2 �
~OWB
����k1� � mW�G

�W��
�� �k1; k3�; (20)

 k�3 �
~OWB
����k1� � mW�G

�W��
�� �k1; k2�; (21)

where

 �G
�W��

�� �k1; k3� � �
1

mW
����	k

�
3 k

	
1 ; (22)

 �G
�W��

�� �k1; k2� � �
1

mW
����	k

�
2 k

	
1 : (23)

These results are also valid for the WWZ vertex. They also
apply to the CP-even counterpart OWB.

III. THE ONE-LOOP INDUCED CP-VIOLATING
�ff� VERTEX

We now turn to calculating the contribution of the ~OWB

and ~OW operators to the EDM of a f fermion. The EDM of
f is induced at the one-loop level through the diagram
shown in Fig. 2. It is convenient to analyze separately the
contribution of each operator, as they possess different
features that deserve to be contrasted. To calculate the
loop amplitudes we have chosen the dimensional regulari-
zation scheme, as it is a gauge covariant method which has
proved to be appropriate in theories that are nonrenorma-
lizable in the Dyson sense [18]. This framework has been
used successfully in many loop calculations within the

context of effective field theories [19]. Although the
Feynman parametrization technique is the adequate
method to calculating on-shell electromagnetic form fac-
tors, we will use also the Passarino-Veltman [20] covariant
decomposition in the case of the ~OW contribution, in order
to clarify a disagreement encountered with respect to the
results reported in Ref. [15]. The Passarino-Veltaman co-
variant method breaks down when the photon is on the
mass shell, but it can be implemented with some minor
changes [21].

A. The ~OWB contribution

We start with the contribution of the ~OWB operator to the
on-shell �ff� vertex. In the R-gauge, there are contribu-
tions coming from the W boson and its associated pseudo-
Goldstone boson, but we prefer to use the unitary gauge in
which the contribution is given only through the diagram
shown in Fig. 2.3 The corresponding amplitude is given by

 �
~OWB
� �

�
e3cW
4s3

W

~�WB

�
����
q
�4�D

Z dDk
�2��D

�
PR�	k6 ��P��P	�

�
; (24)

where

 P�� � g�� �
�k� p1�

��k� p1�
�

m2
W

; (25)

 P	� � g	� �
�k� p2�

	�k� p2�
�

m2
W

; (26)

 � � 
k2 �m2
i �
�k� p1�

2 �m2
W�
�k� p2�

2 �m2
W�:

(27)

The notation and conventions used in these expressions are
shown in Fig. 2. It is worth noting that the above amplitude
is divergent, so the integral must be conveniently regular-
ized in order to introduce a renormalization scheme. The
authors of Ref. [8] introduced a cutoff by replacing ~�� with
a form factor depending conveniently on the new physics
scale �. Here, as already mentioned, we will regularize the
divergencies using dimensional scheme. As far as the
renormalization scheme is concerned, we will use the
MS one with the renormalization scale � � �, which
leads to a logarithmic dependence of the form
log��2=m2

W�. As we will see below, our procedure leads
essentially to the same result given in Ref. [8].

The fermionic EDM form factor df is identified with the
coefficient of the Lorentz tensor structure�i�5
��q�. The
integrals that arise from the Feynman parametrization can
be expressed in terms of elementary functions. After some

FIG. 2. Contribution of the CP-odd WW� coupling to the on-
shell �ff� vertex.

3The contribution of ~OWB to reducible diagrams characterized
by the one-loop Z� � mixing vanishes.
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algebra, one obtains
 

d
~OWB
f � �~�WB

�
�cW

16�s3
W

��
e

2mW

� �����
xf
p

�

�
log

�
m2
W

�2

�
� fWB�xf; xi�

�
; (28)

where we have introduced the dimensionless variable xa �
m2
a=m

2
W . Here, fWB�xf; xi� is the loop function, which is

different for leptons or quarks. In the case of charged
leptons, this function is given by

 fWB�xl� � �
xl � 1

xl
�
x2
l � 1

x2
l

log�1� xl�; (29)

where we have assumed that xl < 1. As far as the EDM of
quarks is concerned, the fWB function has a more compli-
cated way, given by

 fWB�xq; xi� � �
xq � xi � 1

xq
�
x2
q � x2

i � 1

2x2
q

log�xi� �
x3
q � �xi � 1�x2

q � �xi � 1�2xq � �xi � 1�2�xi � 1�

2x2
q�

f�xq; xi; ��;

(30)

where

 f�xq; xi; �� �

8<
:

log�
xi�xq���1
xi�xq���1�; if 0< xq < �1�

����
xi
p
�2

log�
xi�xq���1
xi�xq���1� � 2i�; if xq > �1�

����
xi
p
�2

; (31)

with

 � �
������������������������������������������������������������
x2
q � 2�xi � 1�xq � �xi � 1�2

q
: (32)

From now on, mq and mi will stand for the masses of the
external and internal quarks, respectively.

B. The ~OW contribution

We now turn to calculating the contribution of ~OW to the
fermion EDM. In this case, the contribution in the general
R-gauge is given exclusively by the W gauge boson
through the diagram shown in Fig. 2. Neither pseudo-
Goldstone bosons nor ghost fields can contribute, which
is linked to the fact that, as noted previously, there are no
contributions from the longitudinal components of the W
propagators due to the simple Ward identities given in
Eq. (16). As a consequence, the result is manifestly gauge
independent, as any dependence on the  gauge parameter
disappears from the amplitude. Also, we have verified that
~OW does not contribute to reducible diagrams character-
ized by the one-loop Z� � mixing. As already noted by
the authors of Ref. [15], the ~OW operator, in contrast with

the ~OWB one, generates a finite contribution to d
~OW
f .

As mentioned in the introduction, our result for this
operator is in disagreement with that found in Ref. [15].
While the authors of this reference conclude that the loop
function characterizing this contribution is of O�1� in the
low-energy limit (small fermion masses compared with
mW), we find that this function vanishes in this limit. As
we will see below, this leads to a discrepancy of about 2
orders of magnitude for the bound on the ~�� parameter. It is
therefore important to clarify this point as much as pos-
sible. For this purpose, let us comment on the main steps
followed by the authors of Ref. [15] in obtaining their

result. The starting point are Eqs. (2.11–2.13), which rep-
resent the amplitude for the contribution of the operator in
consideration to the �ff� vertex. The next crucial step
adopted by the authors consists in taking the photon mo-
mentum equal to zero both in the numerator and denomi-
nator of the integral given by Eq. (2.11), which leads to the
simple expressions given in Eqs. (3.1,3.2). Next, they use
dimensional regularization through Eqs.(3.5–3.11) to ob-
tain the final result given by Eq. (3.12). This result com-
prises the sum of two terms, one which is independent of
the masses involved in the amplitude, and a second term
which vanishes in the low-energy limit. The first term
arises from a careful treatment of the D! 4 limit in
dimensional regularization. We have reproduced all these
results. However, we arrive at a very different result by
using only the on-shell condition, so we think that it is not
valid to delete the photon momentum before carrying out
the integration on the momenta space. We now proceed to
show that a different result is obtained if only the on-shell
condition (q2 � 0 and q � �) is adopted. Our main result is
that the loop function associated with this operator van-
ishes in the low-energy limit, in contrast with the result
obtained in Ref. [15]. To be sure of our results, we will
solve the momentum integral following two different
methods, namely, the Passarino-Veltman [20] covariant
decomposition scheme and the Feynman parametrization
technique. After using the Ward identities given in
Eq. (16), the amplitude can be written as follows:

 �
~OW
� � �

�
e4

4!s3
Wm

2
W

~�W

�Z dDk
�2��D

PR��k6 ���
~OW
���

�
; (33)

where �
~OW
��� represents the WW� vertex. Once we have

carried out a Lorentz covariant decomposition, we imple-
ment the on-shell condition to obtain
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d
~OW
f � �~�W

�
�3=2

32
����
�
p

s3
W

��
e

2mW

�
1�����xfp

� 
�xf � 1��B0�1� � B0�2�� � 2�B0�3� � B0�1��

� xi�B0�1� � B0�2� � 2B0�3��

� ��xf � xi�
2 � 1�m2

WC0�; (34)

where B0�1� � B0�m2
f; m

2
i ; m

2
W�, B0�2� � B0�0; m2

W;m
2
W�,

B0�3� � B0�0; m
2
i ; m

2
W�, and C0 � C0�m

2
f; m

2
f; 0; m

2
W;

m2
i ; m

2
W� are Passarino-Veltman scalar functions. It is im-

portant to emphasize that in obtaining this result, the on-
shell condition was implemented only after calculating the
amplitude.

On the other hand, using Feynman parametrization, one
obtains

 d
~OW
f � �~�W

�
�3=2

8
����
�
p

s3
W

��
e

2mW

� �����
xf
p
�I1 � I2 � I3�; (35)

where the Ii quantities represent parametric integrals,
which are given by

 I1 �
Z 1

0
dxx�1� x� �

1

6
; (36)

 

I2 � �
Z 1

0
dx�1� x��1� 3x� log
�1� x��1� xfx� � xix�;

(37)

 I3 � �xf
Z 1

0

dxx2�1� x�2


�1� x��1� xfx� � xix�
: (38)

To clarify our result, let us to analyze more closely these
integrals. The I1 integral, which is independent of the
masses, arises as a residual effect of the D! 4 limit.
This apparent nondecoupling effect that would arise in
the low-energy limit is also found in Ref. [15]. However,
in our case, this effect is exactly cancelled at low energies
by the I2 integral, which in this limit takes the way

 I2 � �
1
6�O�xf; xi�: (39)

As for the I3 integral, it vanishes in this limit. After solving
the parametric integrals, one obtains

 d
~OW
f � �~�W

�
�3=2

16
����
�
p

s3
W

��
e

2mW

� �����
xf
p

fW�xf; xi�; (40)

where fW�xf; xi� is the loop function. In the case of a
charged lepton, this function is given by

 fW�xl� �
xl � 2

xl
� 2

�
xl � 1

x2
l

�
log�1� xl�: (41)

On the other hand, the corresponding function for quarks is
given by

 fW�xq; xi� �
xq � 2

xq
�
xq � xi � 1

x2
q

log�xi�

�
x2
q � 2xq � �xi � 1�2

x2
q�

f�xq; xi; ��: (42)

The same result is obtained when the Passarino-Veltman
scalar functions appearing in Eq. (34) are expressed in
terms of elementary functions.

In the light of the above results, we can conclude that it
is not valid to delete the photon momentum before carrying
out the integration on the momentum. In the next section,
we will argue that a vanishing loop function in the low-
energy limit is the result that one could expect in accor-
dance with the decoupling theorem.

IV. RESULTS AND DISCUSSION

We now turn to deriving bounds for the ~�WB and ~�W
parameters (or equivalently, for the ~�� and ~�� parameters)
using current experimental limits on the electron and the
neutron electric dipole moments. We will use then these
bounds to predict the CP-violating electromagnetic prop-
erties of the W boson and some charged leptons and
quarks.

One important advantage of our approach is that the
effective Lagrangian respects the SUL�2� �UY�1� symme-
try. As a consequence, the coefficients of the WW� and
WWZ vertices are related at this dimension. The
CP-violating part of this vertex is given by

 LWWZ � �igcW

�
~�ZW��W�� ~Z�� �

~�Z
m2
W

W���W��� ~Z��
�
;

(43)

where Z�� � @�Z� � @�Z�. The two sets of parameters
characterizing the WW� and WWZ couplings are related
by

 ~� Z � �
s2
W

c2
W

~��; (44)

 

~� Z � ~��: (45)

Below, we will constrain both sets of parameters.
The current experimental limits on the electric dipole

moments of the electron and the neutron reported by the
particle data book are [22,23]

 jdej< 6:9� 10�28 e � cm; (46)

 jdnj< 2:9� 10�26 e � cm: (47)

A. Decoupling and nondecoupling effects

Before deriving bounds on the ~�WB and ~�W parameters,
let us discuss how radiative corrections can impact the four
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Lorentz tensor structures of the WW� vertex given by
Eq. (1). Our objective is to clarify as much as possible
why the bounds that will be derived below for the ~�WB and
~�W coefficients are so different. First of all, notice that both
F��W��W�� and ~F��W��W�� terms have a renormaliz-
able structure, as they are induced by the dimension-four
invariants Wa

��W
a�� and ~Wa

��W
a��. However, in a pertur-

bative context, only the former of these gauge invariants
remains at the level of the classical action, as the latter can
be written as a surface term. It turns out that, though
renormalizable, the ~F��W

��W�� interaction arises as a
quantum fluctuation and thus it is naturally suppressed
[9,10]. The nondecoupling character of the ��� and ~��
form factors is well known from various specific models
[9,24]. These Lorentz structures can in turn induce non-
decoupling effects when inserted into a loop. In particular,
they can impact significantly low-energy observables, as
the EDM of light fermions. We will show below that this is
indeed the case. In this context, one should note the pres-
ence of the Higgs doublet in the SUL�2� �UY�1�-invariant
operators of Eqs. (4) and (5), which points to a nontrivial
link between the electroweak symmetry breaking scale and
these couplings [25]. This connection is also evident in the
nonlinear realization of the effective theory, in which the
analogous of the operators (4) and (5) are

 L 1 � a1gg0 Tr
�
U

3

2
Uy


a

2

�
Wa��B��; (48)

 

~L 1 � a1gg
0 Tr

�
U

3

2
Uy


a

2

�
Wa�� ~B��: (49)

Here, U � exp�i

a�a

v �, with �a the would-be Goldstone
bosons [26]. Since in this model-independent parametriza-
tion the new physics is responsible for the electroweak
symmetry breaking, it is clear that such a link is beyond
the Higgs mechanism. The situation is quite different for
the W��� W���F�� and W��� W��� ~F�� interactions, as
they are nonrenormalizable and thus necessarily arise at
one-loop or higher orders. The decoupling nature of these
operators is also well known [9,24]. It is important to
notice that the Lorentz tensor structure of these terms is
completely determined by the SUL�2� group and that there
is no link with the electroweak symmetry breaking scale, in
contrast with the F��W��W�� and ~F��W��W�� inter-
actions. In this case, it is expected that loop effects of these
operators decouples from low-energy observables. This
fact has already been stressed by some authors [27]. The
reason why these interactions decouple from low-energy
observables stems from the fact that the operators in
Eqs. (6) and (7) respect a global SUL�2� custodial symme-
try [15]. We will show below that the loop contributions of
these operators to EDM is of decoupling nature.

We now turn to show the nondecoupling (decoupling)
nature of the ~F��W��W�� (W��� W��� ~F��) contribution

to the EDM of light fermions. We will show that the fWB
and fW loop functions have a very different behavior for
small values of the fermion masses. We analyze separately
the lepton and quark cases. For fermion masses small
compared with the W mass, we can expand the loop
functions given by Eqs. (29) and (30) as follows:

 fWB�xl� � �
1
2�

2
3xl � � � � ; (50)

 fWB�xq; xi� � �
1
2� 2xi �

2
3xq � � � � : (51)

These results show clearly that the ~F��W
��W�� term

induces nondecoupling effects. In practice, this means
that a good bound for the ~�� parameter could be derived
still from experimental limits on the EDM of very light
fermions, such as the electron. In contrast with this behav-
ior, as already commented in the previous section, we can
show that fW is of decoupling nature:

 fW�xl� � �
1
3xl � � � � ; (52)

 fW�xq; xi� � xi �
1
3xq � � � � : (53)

This means that the ~OW operator only could lead to sig-
nificant contributions for heavier fermions. We will show
below that the bound obtained for ~�� from the experimen-
tal limit on the EDM of the electron differs in 9 orders of
magnitude with respect to that obtained from the corre-
sponding limit of the neutron, whereas in the case of the ~��
parameter the analogous bounds differ in less than 2 orders
of magnitude. The high sensitivity of the fW function to the
mass ratios mf=mW and mi=mW is shown in Table I. It is
interesting to see that fW and fWB differ in 4 orders of
magnitude for a fermion mass of about a third of the
neutron mass, though they differ in 10 orders of magnitude
for the case of the electron mass. Moreover, notice that fWB
and fW are of the same order of magnitude for the third
quark family. This means that the ~OW operator might play
an important role in top quark physics. The very different
behavior of the loop functions in the lepton and quark
sectors can be appreciated in Table I. Also, it should be
mentioned that the loop functions develop an imaginary
part in the case of an external quark top. The appearance of
an imaginary (absorptive) part is a consequence of the fact
that the external mass is larger than the sum of the two
internal masses: mt > mW �mb.

B. Bounding the ~OWB operator

We now turn to deriving a bound for the ~�� coefficient
using the current experimental limit on the EDM of the
electron and the neutron. In the case of the electron EDM,
we can approximate the fWB�xe� loop function as follows:

 fWB�xe� � �
1
2�

1
2xe: (54)

Using this approximation, Eqs. (28) and (46) lead to
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��������~�WB

�
log

�
�2

m2
W

�
�

1

2
�

1

2
xe

���������<1:3� 10�4: (55)

Since in the effective Lagrangian approach one assumes
that � mW , it is clear that

 log
�

�2

m2
W

�
�

1

2
�

1

2
xe > 1; (56)

which allows us to impose the following bound on the OWB
operator

 j~�WBj< 1:6� 10�3; (57)

which in turn leads to

 j~��j< 1:5� 10�3; j~�Zj< 4:2� 10�4: (58)

In the case of the neutron, as usual, we take mu � md �
mn=3, with mn the neutron mass. Also, we assume the
following relation:

 dn �
4
3dd �

1
3du: (59)

Using this connection between the neutron and its constit-
uents, one obtains for the ~OWB contribution to the neutron
EDM

 d
~OWB
n � ~�WB

�
�cW

48�s3
W

��
e

2mW

� �����
xn
p

�
log

�
�2

m2
W

�
� fWB�xn�

�
;

(60)

where

 fWB�xn� � 2�
9

xn
�

81� 2x2
n

x2
n

log
�
xn
9

�

�
4x2

n � 18xn � 81

2x2
n�n

log
�
1� �n
1� �n

�
; (61)

with �n �
�����������������
9� 4xn
p

=3. Comparing the above theoretical
result with its experimental counterpart given by Eq. (47),
one obtains

 

��������~�WB

�
log

�
�2

m2
W

�
� fWB�xn�

���������<5:5� 10�5: (62)

As in the electron case, it is easy to see that

 

��������log
�

�2

m2
W

�
� fWB�xn�

��������>1; (63)

which allows us to impose the following bound on the ~OWB
operator

 j~�WBj< 5:5� 10�5; (64)

which implies

 j~��j< 5:2� 10�5; j~�Zj< 1:5� 10�5: (65)

This bound is almost 2 orders of magnitude more stringent
than that obtained from the electron EDM. The above
results are in perfect agreement with the ones given in
Ref. [8].

C. Bounding the ~OW operator

We first explore the possibility of constraining ~OW using
the experimental limit on the electron EDM. In this case, a
good approximation for the loop function is fW�xe� �
�xe ��3 � 9� 10�11, which in fact is very small. It leads
to a very poor constraint of order of 107. This bound should
be compared with the one obtained in Ref. [15], which can
be updated to j~��j< 7� 10�4. This enormous difference
arises because the authors in Ref. [15] assume that fW �
O�1�, instead of fW�xe� � �xe ��3:9� 10�11.

We now try to get a more restrictive bound from the
experimental limit on the neutron EDM. Following the
same steps given above, the connection between the
EDM of the neutron with its constituents given in
Eq. (59) leads to

 d
~OW
n � �~�W

�
�3=2

48
����
�
p

s2
W

��
e

2mW

� �����
xn
p

fW�xn�; (66)

where

 fW�xn� � 2
�
1�

9

xn

�
�

9�2xn � 9�

x2
n

log
�
xn
9

�

�
2x2

n � 36xn � 81

x2
n�n

log
�
1� �n
1� �n

�
: (67)

TABLE I. Behavior of the fWB and fW loop functions for some specific values of the internal
(mi) and external (mf) fermion masses.

mf mi xf xi fWB�xf; xi� fW�xf; xi�

e �e 3:9� 10�11 0 �0:50 �1:3� 10�11

� �� 1:6� 10�6 0 �0:50 �5:2� 10�7

� �� 5:0� 10�4 0 �0:50 �1:6� 10�4

mn=3 mn=3 1:5� 10�5 1:5� 10�5 �0:49 �1:0� 10�5

s c 2:3� 10�6 2:6� 10�4 �0:49 �2:4� 10�4

c s 2:6� 10�4 2:3� 10�6 �0:50 �7:9� 10�5

b t 2:8� 10�3 4.7 �1:30 �0:6
t b 4.7 2:8� 10�3 4:7� 10�2 � 3i 1:02� 1:05i
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In this case a more restrictive bound is obtained:

 j~�W j< 0:12; (68)

which in turn leads to

 j ~��j � j~�Zj< 1:9� 10�2: (69)

In this case the result obtained in Ref. [15] can be updated
to j ~��j< 6� 10�5, which shows that our constraint is less
stringent by more than 2 orders of magnitude.

From the above results, the high sensitivity of the
�~��=m2

W�W
�
��W��� ~F�� interaction to the mass ratio

mf=mW can be appreciated now.

D. CP-odd electromagnetic properties of fermions and
the W gauge boson

The constraints derived above for the CP-odd WW�
vertex can be used to predict the CP-odd electromagnetic
properties of known particles. In particular, the EDM
associated with the heavier particles are the most interest-
ing, as they could be more sensitive to new physics effects.
Besides the W gauge boson and the third family of leptons
and quarks, we will also include by completeness the
predictions on the members of the second family. In the
case of the W gauge boson, an upper bound for the mag-
netic quadrupole moment will also be presented. That fact
should be emphasized that it is the first time that an upper
bound on ~QW is derived. We will use the constraints
derived from the neutron EDM, as they are most stringent.
Since the ~OWB and ~OW operators were bounded one at a
time, we will make predictions assuming that the
CP-violating effects cannot arise simultaneously from
both operators. We resume our results in Table II. It should
be noted that while the values for dW and ~QW constitute
true upper bounds, the ones given by the EDM of fermions
are estimations only.

It is worth comparing the limits given in Table II with
some predictions obtained in other contexts. We begin with
the results existing in the literature for the W gauge boson.
We start with the SM predictions for dW and ~QW . As
already mentioned, the lowest order nonzero contribution

to dW arises at the three-loop level, whereas ~QW appears up
to the two-loop order. At the lowest order, dW has been
estimated to be smaller than about 10�29 e � cm [3,28]. As
far as ~QW is concerned, it has been estimated to be about
�10�51 e � cm2 [4]. Beyond the SM, almost all studies
have focused on dW . Results several orders of magnitude
larger than the SM prediction have been found. For in-
stance, a value of 10�22 e � cm was estimated for dW in
left-right symmetric models [3,10] and also in supersym-
metric models [3,29]. Also, a nonzero dW can arise through
two-loop graphs in multi-Higgs models [30]. Explicit cal-
culations carried out within the context of the two-Higgs
doublet model (THDM) show that dW � 10�21 e � cm [31].
A similar value was found within the context of the so-
called 331 models [32]. Recently, the one-loop contribu-
tion of a CP-violating HWW vertex to both dW and ~QW
was studied in the context of the effective Lagrangian
approach [5]. By assuming reasonable values for the un-
known parameters, it was found that dW � 3� 6�
10�21 e � cm and ~QW ��10�36 e � cm2, which are 8 and
15 orders of magnitude above the SM contribution. More
recently, the one-loop contribution of the anomalous tbW
vertex, which includes both left- and right-handed complex
components, to dW and ~QW , was calculated [6]. By using
the most recent bounds on the tbW coupling from Bmeson
physics, it was estimated that dW � 4� 10�23 � 4�
10�22 e � cm and ~QW � 10�38 � 10�37 e � cm2. All these
predictions for dW and ~QW are consistent with the upper
bounds given in Table II.

We now proceed to compare the predictions for the
EDM of leptons and quarks given in Table II with results
obtained in some specific models. As already noted, the
values reported for the EDM of fermions are not upper
bounds, as in the case of the W boson, but only estimates
for these quantities, since they are derived by assuming that
CP-violation is induced via a CP-odd WW� vertex.
However, it is clear that others sources of CP-violation
could eventually lead to values larger than those presented
here. They are, however, illustrative of the sensitivity of
fermions to CP-odd effects, so we believe that these results

TABLE II. Electromagnetic properties of the known particles induced by a CP-violating
WW� vertex. The value � � 1000 GeV is assumed for the contribution of the ~OWB operator.

Particle Electric dipole moment ~OWB
~OW

� jd�j 5:7� 10�26 e � cm 2:0� 10�30 e � cm
� jd�j 1:0� 10�24 e � cm 1:1� 10�26 e � cm
c jdcj 7:1� 10�25 e � cm 3:8� 10�27 e � cm
s jdsj 6:5� 10�26 e � cm 1:0� 10�27 e � cm
b jdbj 2:1� 10�21 e � cm 9:9� 10�23 e � cm
t jRe�dt�j 1:6� 10�22 e � cm 6:8� 10�21 e � cm
t jIm�dt�j 6:0� 10�23 e � cm 7:0� 10�21 e � cm
W jdW j 6:2� 10�21 e � cm 2:3� 10�18 e � cm
W j ~QW j 3:0� 10�36 e � cm2 1:1� 10�33 e � cm2
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deserve a wider discussion still in this somewhat restricted
scenario. First, we would like to discuss the prediction
existing in the literature for the � and � leptons. In the
case of the muon, the Particle Data Group [22] reports an
experimental limit of about d� < 10�19 e � cm. As far as
theoretical predictions are concerned, the SM prediction is
about 10�35 e � cm, which is 16 orders of magnitude below
the experimental limit. This means that precise measure-
ments of the muon EDM might reveal new sources of CP
violation. Although very suppressed in the SM, some of its
extensions predicts values for d� that are several orders of
magnitude larger. For instance, an estimate of 10�24 e � cm
for d� was obtained in the THDM [33]. Similar results
have been found within the context of supersymmetric
models [34] and in the presence of large neutrino mixing
[35]. The supersymmetry model also predicts large lepton
EDMs if there are many right-handed neutrinos along with
large values of tan	 [36]. A wider variety of theoretical
perspectives are studied in [37], where it is found that d�
can be as large as 10�22 e � cm. This value is approxi-
mately 4 and 8 orders of magnitude above those induced
by the ~OWB and ~OW operators, respectively. As far as the
tau lepton is concerned, the experimental limit is�0:22�
10�16 e � cm<Re�d��< 0:45� 10�16 e � cm [22]. Since
this lepton has a relatively high mass and a very short
lifetime, it is expected that its dynamics is more sensitive
to physics beyond the Fermi scale. Indirect bounds of order
of jd�j<O�10�17� e � cm have been obtained from preci-
sion LEP data [38] and naturalness arguments [39]. Some
model-independent analysis predict possible values of or-
der jd�j � 10�19 e � cm due to new physics effects. The
possible measurement of d� at low-energy experiments is
analyzed in [40]. All these predictions are consistent with
the experimental limit, but are above by at least 7 orders of
magnitude with respect to our estimation that arises from a
CP-odd WW� vertex. As far as the EDM of quarks is
concerned, most studies have been focused on the third
family. In the literature, the EDM of the b and t quarks has
been calculated in many variants of multi-Higgs models
[41], as it is expected that more complicated Higgs sectors
tend to favor this class of new physics effects. The dipole
moments were estimated to be of order of db � 10�23 �
10�22 e � cm and dt � 10�21 � 10�20 e � cm. Very re-
cently, an estimate for dt of about 10�22 e � cm was ob-
tained from the one-loop contribution of an anomalous
tbW vertex that includes both left- and right-handed com-
plex components [6]. It is interesting to see that in this case
the predictions are quite similar to our estimations derived
from the CP-odd WW� vertex. Also, notice that ~OW
induces the most important contribution.

V. CONCLUSIONS

The origin of CP violation has remained an unsolved
problem since its discovery several decades ago. Even if

the CKM matrix is the correct mechanism to describe CP
violation in K and B meson systems, this is not necessarily
the only source of CP violation in nature. Nonzero electric
dipole moments of elementary particles would be a clear
evidence of the presence of new sources ofCP violation. In
this paper, a source of CP violation mediated by the
WW� vertex has been analyzed using the effective
Lagrangian technique and its implications on the CP-odd
electromagnetic properties of the SM particles studied.
Two dimension-six SUL�2� �UY�1�-invariant opera-
tors ~OWB and ~OW , which reproduce the two inde-
pendent Lorentz tensor structures ~��W

�
�W

�
�

~F�� and
�~��=m2

W�W
�
��W��� ~F��, that determine the electric dipole

dW�~��; ~��� and magnetic quadrupole ~QW�~��; ~��� mo-
ments of the W gauge boson, were introduced. The con-
tribution of this vertex to the EDM of charged leptons and
quarks was calculated. The main features of these opera-
tors were studied in detail. One interesting peculiarity of
the ~OW operator consists in the fact that it generates a
WW� vertex that satisfies simple Ward identities. As a
direct consequence, the contribution of this vertex in any
multiloop amplitude is manifestly gauge independent. As
pointed out by other authors, it was found that while ~OWB
leads to a divergent amplitude for the fermion EDM, the
~OW contribution is free of ultraviolet divergences. The
low-energy behavior of these operators was analyzed in
the light of the decoupling theorem. We emphasized the
important fact that while the ~OWB operator is strongly
linked with the electroweak symmetry breaking (whatever
origin it may be), the ~OW one has no connection with the
electroweak scale. As a consequence, the former does not
decouple at low energies, whereas the latter has a decou-
pling nature. Owing to this fact, there is a difference of
more than 2 orders of magnitude in the respective bounds
obtained from low-energy data, in contradiction with pre-
vious results given in the literature where constraints of the
same order of magnitude were derived. The origin of such a
disagreement was discussed. At high energies, the contri-
butions of these operators are equally important. However,
since ~OW is weakly constrained by low-energy experi-
ments, it might have an important impact on CP violating
observables at high-energy collisions. Because of this fact,
~OW might be more promising than ~OWB in searching CP
violating effects at high-energy experiments. In order to
appreciate these peculiarities, the behavior of the corre-
sponding loop amplitudes was studied in detail. The ex-
perimental limits on the neutron and electron EDM were
used to get bounds on the ~�� and ~�� parameters. It was
found that the best constraints arise from the experimental
limit on the neutron EDM, which leads to j~��j< 5:2�
10�5 and j ~��j< 1:9� 10�2. The former limit implies the
upper bounds jdW�5:2� 10�5; 0�j< 6:2� 10�21 e � cm,
j ~QW�5:2� 10�5; 0�j< 3:0� 10�36 e � cm2, whereas the
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latter leads to jdW�0; 1:9� 10�2�j< 2:3� 10�18 e � cm,
and j ~QW�0; 1:9� 10�2�j< 1:1� 10�33 e � cm2. As far as
the limit on ~�� and the upper bound on dW are concerned,
we found agreement with the results obtained by Marciano
and Queijeiro [8]. The SUL�2� �UY�1� invariance of our
approach was exploited to impose constraints on the ~�Z
and ~�Z parameters associated with the weak coupling
WWZ. It was found that j~�Zj< 1:5� 10�5 and j ~�Zj<
1:9� 10�2. The limits on the ~�� and ~�� parameters were
used to estimate the EDM of the muon and tau leptons, as
well as the bottom and top quarks. In the lepton case, we
estimated d� � 10�26 � 10�30 e � cm and d� � 10�22 �

10�26 e � cm, which are 4 and 5 orders of magnitude below

the estimates obtained in other models, respectively. In the
case of the b and t quarks, our estimate is db � 10�21 �
10�24 e � cm and dt � 10�20 � 10�22 e � cm, which are of
the same order of magnitude as some results found in other
contexts. In general terms, our results indicate that the
heavier fermions, as the b and t quarks, tend to be more
sensitive to new sources of CP violation.
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