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There is a growing appreciation that hidden sector dynamics may affect the supersymmetry breaking
parameters in the visible sector (supersymmetric standard model), especially when the dynamics is strong
and superconformal. We point out that there are effects that have not been previously discussed in the
literature. For example, the gaugino masses are suppressed relative to the gravitino mass. We discuss their
implications in the context of various mediation mechanisms. The issues discussed include anomaly
mediation with singlets, the � (B�) problem in gauge and gaugino mediation, and distinct mass spectra
for the superparticles that have not been previously considered.
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I. INTRODUCTION

Supersymmetry has been widely recognized as an ex-
cellent solution to the hierarchy problem, as long as the
superparticle masses are below the TeV scale. However,
such low scale supersymmetry is in conflict with the data
from flavor physics, unless the spectrum is (close to) that of
minimal flavor violation, i.e., violation of the U�3�5 flavor
symmetry comes only from the standard model Yukawa
couplings. There are several promising ways to mediate
supersymmetry breaking effects preserving this property,
for example, gauge mediation [1,2], anomaly mediation
[3,4], and gaugino mediation [5].

One interesting possibility for the origin of a hierarchi-
cally small scale for supersymmetry breaking is dynamical
supersymmetry breaking [6]. Supersymmetry breaking is
triggered at low energies by nontrivial infrared gauge
dynamics of the hidden sector, which is then transmitted
to the supersymmetric standard model (SSM) sector
through a mediation mechanism preserving flavor.
Traditionally, the spectrum of the superparticles has been
calculated using the SSM renormalization group equations
below the scale of mediation. There is, however, a growing
appreciation that the dynamics of the hidden sector may
affect the supersymmetry breaking parameters in the SSM
sector through renormalization group evolution between
the mediation scale and the scale where the hidden sector
fields decouple.

One of the most drastic examples of hidden sector
dynamics is conformal sequestering [7], which occurs
when the hidden sector exhibits strong superconformal
dynamics. (For a discussion on the effects of the hidden
sector outside of the conformal regime, see [8].) This
achieves the suppression of certain (dangerous) local op-
erators connecting the hidden sector and SSM sector fields,
and helps one to mediate supersymmetry breaking in a
flavor universal manner. The construction is motivated by
the AdS/CFT correspondence [9]. If the SSM sector is
located on the ‘‘ultraviolet brane’’ of a truncated AdS
space [10], while the hidden sector is on the ‘‘infrared

brane,’’ the physical separation between the two sectors
due to the AdS bulk can be interpreted in terms of confor-
mal dynamics in four dimensions. This helps us see that
purely four-dimensional theories can achieve apparent se-
questering due to the strong conformal dynamics of the
hidden sector. This class of dynamics has been further
discussed in [11–13].

In this paper, we point out that hidden sector conformal
dynamics has additional effects on the SSM sector parame-
ters that have not been discussed in the literature. Namely,
operators that are linear in a singlet field in the hidden
sector are sequestered by the wavefunction renormaliza-
tion factor relative to the gravitino mass. Note that the
authors of Ref. [11] stated that these operators are not
sequestered, which we do not agree with. There are at least
three immediate consequences of this observation.
(1) Anomaly mediation does not require the absence of
singlets in the hidden sector, as the gaugino masses are
sequestered and the anomaly mediated piece can dominate.
(2) Conformal hidden sector dynamics can make gravity
mediated contributions more harmful in gauge and gaugino
mediated models, depending on the dynamics. (3) The �
(B�) problem in gauge and gaugino mediation can in
principle be solved by strong conformal dynamics,
although it requires certain assumptions on the hidden
sector dynamics. In addition, if the sequestering effects
are sufficiently strong, we find very specific mass spectra
for the superparticles that have not been discussed in the
literature and can be tested at future experiments.

The organization of the paper is as follows. In Sec. II, we
provide a general discussion on the effects of a strong
hidden sector on local operators connecting the hidden
and SSM sector fields. Section III summarizes the conse-
quences of these effects on the SSM parameters. In Sec. IV
we discuss possible scenarios in which the dominant me-
diation mechanism is gauge mediation. It is shown that
strong conformal dynamics can provide a solution to the �
(B�) problem and/or lead to distinct spectra for the super-
particles. Gaugino and anomaly mediation are considered
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in Secs. V and VI. Finally, discussion and conclusions are
given in Sec. VII.

II. GENERAL DISCUSSIONS

In this section, we present general discussions on the
renormalization of operators that couple the hidden and
SSM sector fields due to strong conformal dynamics in the
hidden sector.

In many models of supersymmetry breaking, there are
both gauge nonsinglet and singlet fields in the hidden
sector. We generically call them q and S, respectively,
without referring to particular models. They may be ‘‘ele-
mentary’’ or ‘‘composite,’’ but this distinction is not very
clear in superconformal theories as they may allow for
several inequivalent descriptions (duality). To keep the
discussion uniform, we always take the normalization
such that these fields have mass dimension �1.1 Note,
however, that we are interested in models where the q
and S fields participate in strong conformal dynamics,
and hence their scaling properties are not dictated by their
classical dimensions but rather their conformal dimen-
sions. We will generically refer to the chiral superfields
of the SSM sector as �.

The direct couplings between the hidden and SSM sector
fields can come in various local operators. They are all
higher dimension operators and suppressed by some en-
ergy scale M. In gauge mediation models, it is related (but
not necessarily equal to) the messenger scale. In anomaly
and gaugino mediated models, it is (generically) close to
the Planck scale.

One class of direct interaction operators is quadratic in
the hidden sector fields. For example, operators that con-
tribute to the scalar squared masses are

 O �:
Z
d4�cq�

qyq

M2 �
y�;

Z
d4�cS�

SyS

M2 �
y�: (1)

Other operators of interest are

 

OB�:
Z
d4�cqB�

qyq

M2 HuHd � H:c:;

Z
d4�cSB�

SyS

M2 HuHd � H:c:; (2)

that contribute to the B� parameter (the holomorphic
supersymmetry breaking mass squared) in the Higgs sec-
tor. Here and below, the coefficients c’s are dimensionless.

Using the singlet fields, we can also consider operators
linear in the hidden sector fields. The gaugino mass opera-
tor is

 O �:
Z
d2�cS�

S
M

W a�W a
� � H:c:; (3)

where W a
� (a � 1, 2, 3) are the field-strength superfields

for the standard model gauge group. The operators

 O A:
Z
d4�cSA

S
M
�y�� H:c: (4)

contribute to the A and B parameters (the parameters
associated with holomorphic supersymmetry breaking sca-
lar trilinear and bilinear interactions), as well as the scalar
masses jAj2. Finally, the operator

 O �:
Z
d4�cS�

Sy

M
HuHd � H:c:; (5)

contributes to the � parameter (the supersymmetric Higgs
mass).2

Note that we have used the formalism of global super-
symmetry in the above expressions. This is sufficient for
the purpose of discussing operators that arise from inte-
grating out a set of messenger fields, e.g., gauge mediation.
Later, we will discuss gravity and anomaly mediated con-
tributions, which require a formulation with local super-
symmetry. The terms integrated over a half of the
superspace above will then include the conformal compen-
sator field � as

R
d2��3, while the terms over the full

superspace as
R
d4��y� [14]. The latter should be re-

garded not as a part of the Kähler potential K, but rather the
superspace density f � �3M2

Ple
�K=3M2

Pl before the Weyl
scaling that removes the field dependence in the Planck
scale. Here,MPl is the reduced Planck scale. After the Weyl
scaling, each chiral superfield needs to be further rescaled
by 1=� to obtain the usual kinetic terms, leaving a non-
trivial � dependence in the various mass parameters. In
vacua with supersymmetry breaking and no cosmological
constant, � � 1� �2m3=2, where m3=2 is the gravitino
mass. As we continue our discussion, it should be under-
stood that there is an implicit compensator dependence in
all of the mass parameters, and that any sequestering
effects are occurring in f, and not in K.

In many cases, some of the operators Eqs. (1)–(5) are
unwanted. The operators O� in Eq. (1) and OA in Eq. (4)
are potential sources of flavor changing neutral currents.
All of them are potential sources of CP violation. Both of
these are constrained tightly by the data. The purpose of
conformal sequestering, then, is to help suppress any un-
wanted operators.

The main point is that, as long as the relevant fixed point
is infrared attractive, conformal field theories can help
achieve this suppression. To see this, we can regard the

1For example, the meson field �QQ in supersymmetric QCD
naturally has mass dimension �2, while we normalize it as S �
�QQ=��, with �� being the strong scale.

2In principle, one may also consider direct superpotential
couplings between the hidden and SSM sector fields, such asR
d2�SHuHd or

R
d2�SQiUjHu=M�. We assume their absence

throughout the paper.
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SSM sector fields as background fields, and rescale the
hidden sector fields to absorb the operators O�;B� in
Eqs. (1) and (2) into coupling constants of the theory. As
long as the fixed point is stable against deformations of the
dimensionless coupling constants, the coupling constants
flow to their infrared fixed point values by power laws,
losing ‘‘memory’’ of the initial conditions. Therefore, the
unwanted operators can be suppressed by powers of energy
scales. If we can suppress all unwanted operators by power
laws, while at the same time keeping those we need, the
conformal sequestering is a success.

Most of the discussions on conformal sequestering so far
have focused on the operators quadratic in the hidden
sector fields. However, it is important to consider operators
linear in the hidden sector fields as well. To the best of the
current authors’ knowledge, the only paper that has ad-
dressed this class of operators is Ref. [11]. They stated that
this class of operators is not suppressed relative to the
gravitino mass. This observation would have allowed for
an easy solution to the B� problem in gauge mediation,
since the unwanted operator OB� of Eq. (2) would then be
power suppressed at low energies while keeping the nec-
essary operators O�;� of Eqs. (3) and (5) (see Sec. IV for
more detail). Unfortunately, we disagree with this state-
ment. We instead find that the conformal sequestering is
more complete than what they suggested; operators linear
in the hidden sector fields are also suppressed relative to
the gravitino mass.

To make the discussion more concrete, let us introduce a
couple of energy scales. We already defined M as the scale
appearing in the higher dimension operators that couple the
hidden and SSM sector fields. This may be close to the
Planck scale for anomaly or gaugino mediated supersym-
metry breaking, or it may be a combination of energy
scales in general, such as in gauge mediated supersymme-
try breaking. We also define the energy scale �� as the
scale where the hidden sector enters into the conformal
regime.

Since S is singlet under the hidden sector gauge group,
the superconformal algebra requires that it must have an R
charge greater than 2=3 to preserve unitarity [15]. The
anomalous dimension is given in terms of the R charge
by 3R=2� 1, and hence the wavefunction renormalization
factor

 L �
Z
d4�ZS��R�S

yS (6)

always satisfies

 ZS��R� �

�
��
�R

�
3R�S��2

> 1; (7)

for �R <��, where �R is the renormalization scale, R�S�
the R charge of S, and we have taken ZS���� � 1. There
are no 1PI diagrams that renormalize operators linear in S,
and hence O� in Eq. (3), OA in Eq. (4), and O� in Eq. (5)

receive only the wavefunction renormalization Z�1=2
S ��R�.

Note that this effect is always a suppression of the opera-
tors. Therefore, their respective forms at the energy scale
�R � �� are

 

Z
d2�Z�1=2

S ��R�cS�
S
M

W a�W a
� � H:c: (8)

for the gaugino masses,

 

Z
d4�Z�1=2

S ��R�c
S
A
S
M
�y�� H:c: (9)

for the A, B parameters, and the jAj2 part of the scalar
squared masses, and

 

Z
d4�Z�1=2

S ��R�cS�
Sy

M
HuHd � H:c: (10)

for the � parameter.
The S field acquires an F-component vacuum expecta-

tion value (VEV) if there is a linear term in the super-
potential, i.e., if there is an operator

 

Z
d2�f2S� H:c:; (11)

where f has mass dimension one. In the basis where the S
field is canonically normalized, this linear term is also
suppressed in the infrared as

 

Z
d2�Z�1=2

S ��R�f2S� H:c: (12)

The F-component VEV for the canonically normalized S is

 FS � �Z
�1=2
S ��R�f

�2; (13)

and the vacuum energy V0 � jZ
�1=2
S ��R�f2j2, and hence

the gravitino mass, is

 m3=2 � Z�1=2
S ��R�

jfj2

MPl
: (14)

The apparent suppression Z�1=2
S ��R� of Eq. (14), however,

does not have much physical meaning, since it suppresses
all the � and supersymmetry breaking parameters equally.
For example, the gaugino masses are given by

 jMaj � Z�1=2
S ��R�

jcS�FSj
M

� Z�1
S ��R�

jcS�f
2j

M
: (15)

In this last expression, one factor of Z�1=2
S ��R� comes from

that of Eq. (14), but the other Z�1=2
S ��R� from the suppres-

sion of the coefficient of Eq. (8). It is this latter Z�1=2
S ��R�

that provides the suppression of the gaugino masses rela-
tive to the gravitino mass: Ma=m3=2 	 Z

�1=2
S ��R�. Similar

analyses also apply to the � and A parameters. Therefore,
the gaugino masses,�, and A parameters receive a stronger
suppression than the gravitino mass, affecting phenome-
nology and model building as we will discuss later.
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In contrast to the operators linear in S, the operators
O�;B� in Eqs. (1) and (2) receive corrections from 1PI
diagrams in addition to the wavefunction renormalization
factors. Note that the R charges of gauge nonsinglet fields
can be less than 2=3 because they do not appear as asymp-
totic states, and hence the standard representation theory
does not apply. To simplify the discussion, let us ignore
operator mixing at this moment, and pretend that these
operators renormalize by themselves. We then find

 

Z
d4�

�
�R

��

�
�q
Z�1
q ��R�c

q
�

qyq

M2 �
y�;

Z
d4�

�
�R

��

�
�S
Z�1
S ��R�c

S
�

SyS

M2 �
y�;

(16)

for the scalar squared masses, and

 

Z
d4�

�
�R

��

�
�q
Z�1
q ��R�c

q
B�
qyq

M2 HuHd � H:c:;

Z
d4�

�
�R

��

�
�S
Z�1
S ��R�cSB�

SyS

M2 HuHd � H:c:;

(17)

for the B� term, where Zq��R� is defined analogously to
ZS��R�; see Eq. (7).3 The exponents �q and �S are com-
mon to the operators in Eqs. (16) and (17), since the
dependence of these operators on the hidden sector fields
is the same. Note that here we defined �q;S to parameterize
the 1PI corrections; for example, if one of the operators in
Eqs. (16) and (17) corresponds to a conserved current in
the hidden sector, the ��R=���

�q;S factor exactly cancels
the wavefunction renormalization factor Z�1

q;S��R�.
An interesting and often crucial question is the relative

speed of suppression (sequestering) between the operators
quadratic and linear in S. Suppose that there is no mixing
between operators quadratic in S and those quadratic in q,
and that only S has a supersymmetry breaking VEV. Then,
if there were no extra exponent �S, all the � and soft
parameters would receive similar suppressions as Ma 	

�	 A / Z�1=2
S FS and m2

I 	 B� / Z
�1
S F2

S, while m3=2 /

FS. Here, m2
I represent the supersymmetry breaking scalar

squared masses. Realistically, however, the situation is not
that simple. The operators of the form O� in Eq. (1) [and
OB� in Eq. (2)] in general mix with each other, and�q;S are
nonzero. In this case, the suppression of the operators
quadratic in S is controlled by the smallest eigenvalue of
the 2�i�ij � �ij matrix, which we define as 2�S � �̂S.
Here, i, j runs over q and S, and �q 
 3R�q�=2� 1 and
�S 
 3R�S�=2� 1 are the anomalous dimensions of the q
and S fields. (For a detailed discussion on operator mixing,
see Appendix A.)

One additional subtlety is that the operators quadratic in
S also mix in a calculable way with the operators linear in
S. In particular, for the non-Higgs fields it is really the
combination cS� � jc

S
Aj

2 that ends up being suppressed by
the exponent 2�S � �̂S (after potentially mixing with other
quadratic operators), and this is the same combination of
operators that contributes to the scalar squared masses.
Similarly, for the Higgs fields it is the combination cS� �
jcSAj

2 � jcS�j
2 that ends up being suppressed by the same

exponent, and this is the operator that contributes to
m2
Hu;d
��2. Finally, the combination of operators that

contributes to the B� parameter, cSB� � c
S
��cSA;Hu

�

cSA;Hd
�, is renormalized in the same way.

One can then obtain the qualitatively different out-
comes:
 

Case 1: M2
a 	�

2 	 A2 � m2
Qi;Ui;Di;Li;Ei

	 B�

	m2
Hu;d
��2 ��̂S > 0�;

Case 2: M2
a 	�

2 	 A2 � m2
Qi;Ui;Di;Li;Ei

	 B�

	m2
Hu;d

��̂S < 0�; (18)

depending on the sign of the exponent �̂S. (In the absence
of the operator mixing, �̂S � �S.) In addition, since all the
soft parameters are suppressed relative to the gravitino
mass (except for those that correspond to conserved cur-
rents), it is also possible that they are all subdominant
relative to the gravitino mass, in which case anomaly
mediation may be dominant (Case 3). Unfortunately, for
a given strongly coupled conformal theory, it is not pos-
sible to work out the signs or magnitudes of the exponents
�q;S with the currently available technology. We will there-
fore discuss all three cases on equal footing in the rest of
the paper.

Note that we are only considering operators linear or
quadratic in the hidden sector fields because they are the
lowest dimension operators that contribute to the soft
supersymmetry breaking parameters in the SSM sector.
However, due to the incalculable strong dynamics, we
cannot exclude the possibility that even higher dimension
operators, i.e., cubic, quartic, or beyond in the hidden
sector fields, receive anomalously large enhancements
relative to the lower dimension operators and become as
important. See Sec. VII for more on this point.

III. CONSEQUENCES ON THE SSM PARAMETERS

What effect does the strong hidden sector renormaliza-
tion, discussed in the previous section, have on the � and
supersymmetry breaking parameters in the SSM sector? As
we have seen, terms linear in the S field are power sup-
pressed in a way that is controlled exactly by the R charge
of S. On the other hand, particular combinations of terms
quadratic in the S field and terms linear in the S field are
suppressed (assuming the fixed point is infrared attractive)

3If the operators O�;B� in Eqs. (1) and (2) are generated at a
scale mf <��, the factors ��R=���

�q;S in Eqs. (16) and (17)
should be replaced by ��R=mf�

�q;S .
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by an incalculable amount, determined by the rate at which
the theory flows back towards the conformal fixed point.
Rather generically, if the effects are strong, we expect that
one of these classes of operators will completely dominate
over the other. An important point here is that the relative
strengths of the operators linear in S remain fixed, since
they are all suppressed by the same amount. Similarly, the
relative strengths of the operators quadratic in S (in combi-
nation with linear operators) also do not change.4

The operators linear in S, O�;A;� in Eqs. (3)–(5), con-
tribute to the gaugino masses Ma, � parameter, scalar
squared masses m2

I , and A and B parameters. Note, how-
ever, that because the scalar masses, A parameters, and B
parameter are all generated by the single operator OA in
Eq. (4), there are simple relations among them. On the
other hand, the operators quadratic in S, O�;B� in Eqs. (1)
and (2), also independently contribute to the scalar masses
and B� term, and the dynamics may actually drive these to
cancel the contributions from the linear operators. Thus, if
the hidden sector effects are strong, we are generically led
to one of the following situations.

A. Case 1: Linear operator dominance

In this case, any initial conditions in the quadratic op-
erators are suppressed, and they are dynamically driven to
cancel out the contributions to the soft parameters from the
linear operators. As long as these linear operators are all
generated at approximately the same size, we obtain the
following spectrum at the scale where the hidden sector
exits from the conformal fixed point:

 m2
Qi;Ui;Di;Li;Ei

� 0; m2
Hu;d
� ��2;

aIJK � yIJK�AI � AJ � AK�; B � 0;
(19)

where I, J, K runs over the SSM matter and Higgs fields,
Qi,Ui,Di, Li, Ei,Hu,Hd (i � 1, 2, 3), and AI represent the
coefficients of the operators

R
d4�S�yI �I times FS, which

are of the same order as the gaugino masses and the �
parameter

 Ma � � � AI: (20)

The soft parameters m2
I and aIJK are defined by Lsoft �

�m2
I�
y
I �I � �aIJK�I�J�K � H:c:�, and yIJK are the

Yukawa couplings: W � yIJK�I�J�K. Here, we have ne-
glected, for simplicity, possible mixings between different
generations in AI, which may be present in general.

In order to avoid excessive flavor changing processes,
the parameters AI must take a special form in flavor space.
One simple possibility is that the AI operators are gener-
ated only for the Higgs and third generation matter fields.
In this case, we obtain

 m2
I � 0; (21)

 aIJHu
� yIJHu

AHu
; aIJHd

� yIJHd
AHd

; (22)

for the first two generation matter fields, and

 m2
Q3;U3;D3;L3;E3

� 0; m2
Hu;d
� ��2; (23)

 at � yt�AQ3
� AU3

� AHu
�;

ab � yb�AQ3
� AD3

� AHd
�;

a� � y��AL3
� AE3

� AHd
�;

(24)

 B � 0; (25)

for the third generation matter and Higgs fields. Here, yt,
yb, y� are the top, bottom, and tau Yukawa couplings, at,
ab, a� the corresponding scalar trilinear interactions, and

 Ma � � � AI; (26)

where I � Q3, U3, D3, L3, E3, Hu, Hd. A special case of
this spectrum is obtained if only the Higgs fields have the
AI operators: AQ3

� AU3
� AD3

� AL3
� AE3

� 0.
The spectra given above represent the running parame-

ters evaluated at the scale where the hidden sector exits
from the conformal regime, which is generically much
larger than the weak scale. The low-energy superparticle
masses are then obtained by evolving these parameters
down to the weak scale using the renormalization group
equations. Since the hidden sector already leaves the strong
conformal regime, these evolutions are dominated by loops
of the SSM states, i.e., the running is well approximated by
the standard SSM renormalization group equations.

B. Case 2: Quadratic operator dominance

In this case, the quadratic operators (or at least one of
them in the case that there are operator mixings) are sup-
pressed more slowly than the linear operators. This can
easily be the case, for example, if the quadratic operators
contain a global symmetry current(s) of the hidden sector,
which does not receive any suppression factor. This leads
to the split spectrum

 m2
I ; B�� M2

a; �2; a2
IJK; (27)

at the scale where the hidden sector exits the conformal
regime. This splitting is preserved by renormalization
group evolution at lower energies, so if the splitting is
very large, the spectrum requires a severe fine-tuning in
electroweak symmetry breaking.

4In the case that there is operator mixing and/or multiple
singlets with F-component VEVs, the relative strengths among
linear operators and/or quadratic operators can in principle
change depending on how they project onto the ‘‘eigenvectors’’
of the renormalization group evolution. These effects, however,
are typically of O�1� if present, and do not affect the arguments
below.
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The spectrum, however, does not require fine-tuning if
the splitting is not very large. The exact spectrum is
determined by the mediation mechanism, and may show
a distinct pattern which is not common to the scenarios in
which the hidden sector dynamics are not taken into ac-
count. If we take gauge mediation, for example, we obtain
a somewhat interesting spectrum in which the number of
messenger fields appears to be fractional, as we will see in
Sec. IV.

C. Case 3: Anomaly mediation dominance

In both of the previous situations, it is worth emphasiz-
ing that all the parameters are being suppressed relative to
the gravitino mass m3=2 � FS=MPl, except for operators
corresponding to conserved currents of the hidden sector,
which we assume to be absent here. If the suppressions of
both types of operators are strong enough, then, we will be
led to the situation where the anomaly mediated contribu-
tion dominates. It is also possible, depending on the
amount of suppressions, that the dominant contributions
to the SSM sector parameters come both from anomaly
mediation and some of the local operators involving the S
field. These points will be discussed further in Sec. VI.

IV. GAUGE MEDIATION

In this section, we take gauge mediation as the dominant
mediation mechanism generating the local operators in
Eqs. (1)–(5), and consider the possible implications of
the hidden sector dynamics discussed in the previous sec-
tions. The situation is different depending on which of
Case 1 or Case 2 is realized as a result of the hidden sector
dynamics. We first discuss the implications of Case 1 in
Sec. IVA, and then discuss those of Case 2 in Sec. IV B.
Finally, we discuss the competition with gravity and anom-
aly mediation in Sec. IV C.

A. Solution to the � (B�) problem with conformal
dynamics

A major difficulty of the gauge mediation scenario is the
so-called � problem—it is difficult to obtain phenomeno-
logically acceptable values for the � and B� parameters.
In fact, a careful look at the problem shows that it is really a
B� problem, rather than a � problem (see, e.g., [16]). In
gauge mediation, the gaugino masses, Ma, and the scalar
squared masses, m2

I , arise at one and two loops, respec-
tively, so that these masses have the comparable sizeMa �
mI � �g2=16	2��Fmess=Mmess�, where Fmess=Mmess �
�10–100� TeV is the scale characterizing the strength of
the mediation. Now, it is not so difficult to come up with a
model in which the � term is generated at one loop, � �
�1=16	2��Fmess=Mmess�, so that it is comparable to the
gaugino and scalar masses. However, such a model also
tends to generate the B� term at one loop, B� �
�1=16	2��Fmess=Mmess�

2, leading to the parameter B being

one-loop enhanced relative to the other supersymmetry
breaking masses, B 
 B�=� � Fmess=Mmess. Since the
size of B should be smaller than or of the order of the
weak scale to obtain successful phenomenology, this is not
acceptable.

We point out here that this problem can be solved if the
hidden sector has strong conformal dynamics exhibiting
the property described as Case 1 in Sec. III. Suppose that
gauge mediation arises due to vectorlike messenger super-
fields f, �f having a mass mf and a coupling to the hidden
sector superfield S in the superpotential [17]:

 W � �mf
�ff� �S �ff: (28)

Here, S is a superfield responsible for supersymmetry
breaking, hSi � �2FS, and the coupling � encodes the
information on the classical dimension of the (composite)
operator S:

 � � O
��

��
M�

�
dS�1

�
: (29)

Here, M� is the cutoff scale of the theory, which can be
taken to be around the Planck scale M� � MPl, and dS the
classical mass dimension of S. The parameter mf can be
taken real and positive without loss of generality.

At the scale mf, the messenger fields are integrated out.
This generates the operators

 L �
1

2
Df

Z
d2�

X
a

��mf�

16	2mf
SW a�W a

� � H:c:; (30)

where a � 1, 2, 3 represents the standard model gauge
groups, W a

� the corresponding field-strength superfields,
andDf the Dynkin index of the messengers (1 for 5� 5�, 3
for 10� 10� etc.), and

 L � �Df

Z
d4�

X
I

X
a

2g4
aCaI j��mf�j

2

�16	2�2m2
f

SyS�yI �I; (31)

where ga are the standard model gauge couplings eval-
uated at mf, and CaI the quadratic Casimir coefficients.
Here, ��mf� is the physical coupling � evaluated at �R �

mf:

 ��mf� �

�mf

��

�
�S
�: (32)

After S acquires a supersymmetry breaking VEV, the
operators of Eqs. (30) and (31) become the gaugino masses
and scalar squared masses, respectively.

In order to solve the � problem, the � parameter must
be generated with a size comparable to the gaugino masses.
It is, in fact, not very difficult to generate the� term also at
one loop as

 L �
Z
d4�

��mf�
�

16	2mf
SyHuHd � H:c:; (33)
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(for an example of such models, see Appendix B). This
leads to a� parameter of the same order as the gaugino and
scalar masses generated by Eqs. (30) and (31):

 Ma � mI � � �
��������
��mf�FS
16	2mf

��������: (34)

The problem is that in any simple models producing the
operator Eq. (33) at one loop, the same one-loop diagram
also generates another operator

 L �
Z
d4�
j��mf�j

2

16	2m2
f

SySHuHd � H:c:; (35)

which leads to a large B parameter

 B 

B�
�
�

��������
��mf�FS
mf

��������� Ma;mI; �: (36)

This is nothing but the B� problem in gauge mediation
discussed earlier. Models that generate the operator
Eq. (33) at one loop also typically generate the operators
 

L �
Z
d4�

� ��mf�

16	2mf
SHyuHu �

��mf�

16	2mf
SHydHd � H:c:

�
;

(37)

which contribute to AHu
, AHd

, B, m2
Hu

, and m2
Hd

. These
operators, however, are harmless, since the generated soft
masses are of the same order as the gaugino masses, and
the A terms induced preserve flavor, i.e., aIJK are propor-
tional to the Yukawa matrices, yIJK, in flavor space.

The operators of Eqs. (30), (31), (33), (35), and (37) are
the ones generated at mf and relevant for the � and
supersymmetry breaking parameters in the SSM sector.
They lead to an unacceptably large B parameter. Note,
however, that these correspond to the � and supersymme-
try breaking masses evaluated at the scalemf. If the hidden
sector interactions are strong below the scale mf down to
some scale mX where conformality is broken, as we are
assuming here, then the operators of Eqs. (30), (31), (33),
(35), and (37) receive strong renormalization effects in the
energy interval betweenmf andmX. The pattern of the soft
masses at mX (� mf) depends on which of Case 1 and
Case 2 is realized, and here we assume that Case 1 is
realized. In this case, the operators Eqs. (31) and (35) (in
particular combinations with the linear operators) are
damped compared with the operators Eqs. (30), (33), and
(37), with the relative strengths of the operators Eqs. (30),
(33), and (37) preserved.

The � and supersymmetry breaking parameters at mX
then satisfy the pattern of Eqs. (21)–(26) with
AQ3;U3;D3;L3;E3

� 0:

 m2
Qi;Ui;Di;Li;Ei

� 0; (38)

 �au�ij � �yu�ijAHu
; �ad�ij � �yd�ijAHd

;

�ae�ij � �ye�ijAHd
;

(39)

 m2
Hu
� ��2; m2

Hd
� ��2; B � 0; (40)

 Ma � � � AHu
� AHd

; (41)

where �yu�ij, �yd�ij, and �ye�ij are the up-type quark, down-
type quark, and charged lepton Yukawa matrices, and
�au�ij, �ad�ij, and �ae�ij the corresponding scalar trilinear
interactions. The low-energy superparticle masses are ob-
tained by evolving these parameters from mX down to the
weak scale. This evolution is well approximated by the
standard SSM renormalization group equations. Since both
� and B at the weak scale are the same order as the other
soft masses, the � (B�) problem is solved.

The pattern in Eqs. (38)–(41) resembles that of gaugino
mediation with a low compactification scale, or standard
gauge mediation with a very large number of messenger
fields. These theories, however, lead to a Landau pole for
the standard model gauge couplings below the unification
scale, and thus are not compatible with perturbative gauge
coupling unification. Our theory is fully compatible with
perturbative gauge coupling unification. Moreover, the
present scenario leads to particular relations for m2

Hu
,

m2
Hd

, �, and B, which can be tested at future collider
experiments.

B. Spectrum with a fractional number of messenger
fields

We now consider the case that the hidden sector exhibits
the dynamics of Case 2, rather than Case 1. This happens,
for example, if one or more of the SyS operators corre-
sponds to a conserved global current(s) of the hidden sector
dynamics. In this case, renormalization of the operators
Eqs. (30), (31), (33), (35), and (37) below mf is different
from that discussed in the previous subsection. Speci-
fically, at the scale mX where the hidden sector leaves the
conformal fixed point, the operators Eqs. (30), (33), and
(37) are suppressed compared with Eqs. (31) and (35). This
leads to a split spectrum

 m2
I � B�� M2

a � �2 � A2
Hu
� A2

Hd
; (42)

at �R � mX. The amount of the splitting depends on the
explicit model as well as the distance of the conformal
running, mf=mX.

If the splitting is very large, it leads to an extremely
severe fine-tuning for electroweak symmetry breaking.
This will then be interesting (only) in the sense of
Ref. [18]. One interesting point about obtaining the split
spectrum in this way is that the gaugino and Higgsino
masses are naturally expected to be the same order,
Ma � �.
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On the other hand, if the splitting is not so large, the
spectrum does not require an extreme fine-tuning, so the
scenario may be interesting in the context of weak scale
supersymmetry. It shows an interesting feature—the gau-
gino masses are suppressed compared to the scalar masses,
and yet relative values of the gaugino masses, as well as
those of the scalar masses, exactly stay as in the standard
gauge mediation models. This implies that we effectively
obtain a fractional number of messengers

 Nmess < 1; (43)

in the standard gauge mediation formula for the gaugino
and scalar masses

 Ma � Nmess
g2
a

16	2

Fmess

Mmess
; (44)

 m2
I � 2Nmess

X
a

CaI

�
g2
a

16	2

�
2
��������Fmess

Mmess

��������
2
; (45)

where Fmess=Mmess � ��mf�FS=mf in our context. This
feature of the spectrum can be tested at future collider
experiments.

C. Competition with gravity and anomaly mediation

In this subsection we discuss the competition of the
gauge mediated contribution with both gravity and anom-
aly mediation. In order for the predictions in the previous
subsections to persist, the former must dominate over both
of the latter.

Let us begin by estimating the size of the contributions
to the supersymmetry breaking parameters from gravity
mediation. There are two classes of contributions for this:
those coming from local operators directly connecting the
hidden and SSM sector fields and those arising from su-
pergravity terms (the contributions arising from the F-term
VEV of the compensator field).5 The largest contribution
for the first class typically comes from local operators of
the form

 

Z
d4�

1

M2
�

SyS�y�; (46)

with an O�1� coefficient, where M� 	MPl is the cutoff
scale.6 If S is an elementary singlet, we also have a con-
tribution from

 

Z
d4�

1

M�
S�y�: (47)

Which of Eqs. (46) and (47) gives the dominant contribu-
tion is then determined by the renormalization group scal-
ing of these operators.

When we run Eq. (46) down to the scale mX where
conformality is broken, we obtain

 

Z
d4�

1

M2
�

�
mX

��

�
�S
Z�1
S �mX�SyS�y�; (48)

where �S is the same exponent that appears in the evolu-
tion of the gauge mediated quadratic operators. (If there are
multiple exponents due to operator mixing, �S is the ex-
ponent leading to the least amount of damping, �̂S). This
gives a contribution to the supersymmetry breaking mass
squared of � of size

 m2
grav �

Z�1
S �mX�

M2
�

�
mX

��

�
�S
jFSj2: (49)

In the case that S is an elementary singlet, Eq. (47) leads to
a contributionm2

gravjsing, which is given by Eq. (49) with�S
set to zero.

The second class of contributions for gravity mediation
arises from supergravity terms, i.e., the F-term VEVof the
compensator field �. This gives a contribution to the B
parameter of the order of the gravitino mass

 Bgrav � m3=2 �
jFSj
MPl

: (50)

The other soft masses do not arise from this source (the
classical contribution from F�). However, we still need
Bgrav & mI at low energies for successful electroweak
symmetry breaking.

Now we can compare Eqs. (49) and (50) to the contri-
bution from gauge mediation. In the case that �S > 0
(Case 1), we should compare these to the mass scale
generated from the operators linear in S. Comparing with
Eq. (49) gives

 

m2
grav

m2
gauge

�
�16	2�2

�2

m2
f

M2
�

�
mX

��

�
�S
; (51)

which can easily be small if �S is O�1� and � is not too
small (i.e., dS is not too large). Note that the contribution
m2

grav is suppressed, making it more harmless due to the
conformal dynamics. In the case that S is an elementary
singlet (dS � 1), we must also consider m2

gravjsing=m2
gauge.

This, however, can also easily be small, since � is then
expected to be of order unity.

The comparison with Eq. (50), on the other hand, gives

 

B2
grav

m2
gauge

�
�16	2�2

�2

m2
f

M2
Pl

�
��
mX

�
2�S
: (52)

This can be smaller than or ofO�1�, i.e., the B parameter is

5The term ‘‘gravity mediation’’ is a misnomer for the first
class, as it is not due to gravity. It simply refers to contributions
from local operators at a scale M� of the order of the Planck
scale. We, however, stick to this common terminology.

6If the field S is an n-body composite operator, the cutoff scale
operator is suppressed by ���=M��2n�2. However, there are
lower dimension operators

R
d4�QyQ�y�=M2

�, where Q repre-
sents the elementary fields contained in the composite field S.
We expect they are matched at the strong scale as QyQ � SyS.
Therefore, we still obtain the operator of the size given in
Eq. (46).
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not too large, if � is not too small and ���=mX�
2�S not too

large. As long as Eq. (52) is smaller than or of O�1�, the
contribution from anomaly mediation m2

anom is always
subdominant to m2

gauge, since manom � Bgrav=16	2.
In the case that �S < 0 (Case 2), we should compare the

gravity and anomaly mediated pieces to that coming from
the operators quadratic in S. For the contribution of
Eq. (49), we find

 

m2
grav

m2
gauge

�
�16	2�2

�2

m2
f

M2
�

�
��
mf

�
j�Sj
: (53)

In this case the sequestering effect coming from �S ac-
tually enhances the gravity mediated contribution relative
to the gauge mediated contribution, and so the gravity
mediated contribution dominates in a much larger portion
of parameter space. If � � O���=M�� (i.e., dS � 2), for
example, and we require m2

grav=m2
gauge & 10�3, then

j�Sj � 1 implies that mf & 10�7��. The contribution
from m2

gravjsing is always subdominant.
For the contribution of Eq. (50), we obtain

 

B2
grav

m2
gauge

�
�16	2�2

�2

m2
f

M2
Pl

�
��
mX

�
2�S
�
mX

mf

�
j�Sj
: (54)

This also allows B2
grav=m

2
gauge & O�1�. Note that, in con-

trast to m2
grav, B2

grav does not have to be much smaller than
the gauge mediated contribution, m2

gauge, since it does not
contribute to flavor violation. Again, as long as
B2

grav=m2
gauge & O�1�, the contribution from anomaly me-

diation m2
anom is subdominant because manom �

Bgrav=16	2.

V. GAUGINO MEDIATION

An important ingredient for the solution to the � (B�)
problem discussed in Sec. IVA is to have control over the
operators of the form Eq. (4), which lead to A terms (as
well as B and m2

I terms). Since these operators are not
suppressed relative to the gaugino masses, their existence
with random O�1� coefficients would lead to large flavor
violation at low energies. Gauge mediation allows us to
have these operators under control—in minimal gauge
mediation (without the dynamics generating �)—these
operators are not generated at the leading order in loop
or Fmess=M

2
mess expansions. We then only have to require

that the dynamics generating � does not induce these
operators in such a way that they excessively violate flavor.

The argument above implies that, as long as the opera-
tors OA in Eq. (4) are under control, the mechanism of
Sec. IVA can apply (not necessarily in the context of gauge
mediation). Interestingly, many theories in which the OA
operators are under control have a B� problem similar to
that in gauge mediation. Consider, for example, the gau-
gino mediation scenario [5], in which the gauge and Higgs
fields propagate in the bulk of an extra dimension. The
extra dimension is compactified on an S1=Z2 with length L,

and the matter fields and hidden sector are localized on
different branes. This allows us to control the OA opera-
tors. Since the supersymmetry breaking field S and matter
fields are localized on different branes, there can be no
direct interaction between them, including the operators of
the form Eq. (4) (taking � to be the matter fields).

The � and supersymmetry breaking parameters are
generated only by the operators of the form Eqs. (1)–(5),
localized on the hidden sector brane, with � � Hu, Hd.7

Scaling the coefficients of these operators by naive dimen-
sional analysis in higher dimensions [19], the generated �
and B� parameters are

 � �
16	2

CM�L
Ma; B� �

�16	2�2

C2M�L
M2
a; (55)

where M� is the cutoff scale of the theory, C the group
theory factor related to the size of the gauge group, andMa
the gaugino masses. Now, by choosing M�L � 16	2=C,
we can easily have � � Ma. This is what we would expect
if the 5D gauge couplings also follow naive dimensional
analysis, since the 4D gauge couplings g4 are then given by
g2

4 � 16	2=CM�L � O�1�. However, this gives

 B �
B�
�
�

16	2

C
Ma; (56)

which is too large. The origin of this is that since the � and
B� operators both contain HuHd, they are suppressed by
the same volume factor M�L. This, however, implies that
the suppression is canceled out in B � B�=�, so that B is
enhanced relative to the other soft masses. This is analo-
gous to the situation in gauge mediation where both � and
B� are suppressed by the same one-loop factor. Note that
M�L must be larger than unity in order for the effective
theory to make sense, so this will always enhance B
relative to �.

A possible solution to this problem can now be given in
the same way as before. Let us consider that the hidden
sector becomes strongly interacting at the scale ��, which
we take to be close to M�. Now, if we assume that the
strong conformal dynamics realizes Case 1 in Sec. III, then
B is suppressed relative to � at the scale mX, where the
hidden sector leaves the conformal regime. This solves the
B� problem. The spectrum at mX is given by Eqs. (38)–
(41). The low-energy superparticle masses are then ob-
tained by evolving these parameters down to the weak
scale by the SSM renormalization group equations.

In order to solve the B� problem in this way, the
contribution of Eqs. (38)–(41) must be larger than or at
least of the same order as the B parameter arising from
gravity mediation Bgrav � m3=2. This gives the condition

7We assume that the superpotential operators W 	HuHd and
SHuHd are absent as before.
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B2
grav

m2
gaugino

�
16	2

C
M2
�

M2
Pl

�
��
mX

�
2�S

& O�1�; (57)

where we have taken Ma �
����
C
p

FS=4	M� at �R � ��,
following naive dimensional analysis. (We have taken the
group theory factor C appearing in loops to be common for
all the fields.) This implies that the conformal running
distance ��=mX cannot be large. One application of this
mechanism arises when the gauge groups of the standard
model are unified into a grand unified group in the higher
dimensional bulk, in which case successful gauge coupling
unification can be preserved even if the compactification
scale L�1 is (slightly) below the conventional unification
scale [20]. In this case we can take, for example, C ’ 5 and
M� � 1017 GeV, which allows ��=mX � O�10–100� for
�S 	 0:5, a sufficient energy interval to suppress the B
parameter (assuming that the relevant exponent �̂S is of
order unity).

VI. ANOMALY MEDIATION

Anomaly mediation of supersymmetry breaking [3,4] is
a subtle quantum effect in which the soft supersymmetry
breaking parameters are induced due to the superconformal
anomaly. The mediation is due to the presence of the
F-component VEV of the Weyl compensator, which is
required to cancel the cosmological constant once super-
symmetry is broken. The remarkable feature of anomaly
mediation is its ultraviolet insensitivity. Namely, no matter
how complicated and flavor violating the theory is at high
energies, once all supersymmetric thresholds are integrated
out, the supersymmetry breaking effects at a given energy
scale are determined only by physics at that energy scale,
as was shown explicitly in [4,21]. As a result, the flavor
changing effects are virtually absent in the soft parameters.

For the anomaly mediated supersymmetry breaking ef-
fects to dominate, direct operators that couple the hidden
and SSM sector fields in Eqs. (1)–(5) must be suppressed
relative to the gravitino mass. (In this context, we assume
that the scale M in these operators is close to MPl.) The
original proposal in [3] was to physically separate the two
sectors in an extra dimension, while that in [4] was to
require the absence of elementary singlet fields so that
the operators Eqs. (3)–(5) would be suppressed by simple
dimensional reasons. The motivation for conformal se-
questering was for the purpose of suppressing the direct
coupling operators using a four-dimensional conformal
field theory [7].

Our new observation that the operators in Eqs. (3)–(5)
are suppressed by the wavefunction renormalization makes
anomaly mediation possible in an even wider class of
hidden sector models than was previously considered.
For example, the models of Ref. [22] have gauge singlet
fields that acquire F-component VEVs, and can be made
superconformal once a sufficient number of extra flavors is
added. If the operators linear in the gauge singlet fields are
not sequestered, as originally claimed in Ref. [11], they

would be dominant over the anomaly mediated contribu-
tion. Especially the A parameters from operators in Eq. (4)
do not respect flavor in general, and the resulting model
would be generically excluded by the flavor physics data.
However, these operators actually are suppressed, and
hence the anomaly mediated contribution dominates de-
spite the presence of singlet fields in the hidden sector.

Depending on the amount of suppression, it is possible
that either of the operators Eqs. (1) and (2) or Eqs. (3)–(5)
give comparable contributions to the anomaly mediated
contribution. Suppose, for example, that the operators of
Eq. (1) are generated by gauge mediation and that the
hidden sector shows the behavior of Case 2. In this case,
if the contribution from these operators are comparable to
the anomaly mediated one, then the well-known problem
of tachyonic sleptons in anomaly mediation can be solved.
In addition, in the minimal supersymmetric standard model
(MSSM), gravity mediation gives a too large B parameter:
Bgrav � m3=2 � 100 TeV. This may be solved if the �
term of the MSSM is generated by a VEVof a singlet field,
or if gauge mediation generates the operator of Eq. (2) at
one loop, leading to a large B parameter ( � 16	2mI �
100 TeV) that cancels Bgrav at a percent level.

VII. DISCUSSION AND CONCLUSIONS

In this paper, we have discussed the impact of strong
hidden sector dynamics on the soft supersymmetry break-
ing parameters on general grounds. While the importance
of the renormalization effects on the operators quadratic in
the hidden sector fields had been known, we have shown
they are also important on the operators linear in the hidden
sector fields, despite what has been stated in the literature.
This observation has implications both on theories of
supersymmetry breaking and its mediation, as well as on
phenomenology which may be probed in the near future at
collider experiments.

In particular, conformal dynamics can sequester both
scalar and gaugino masses. However, the relative speed
of sequestering is not calculable in general, and it is not
clear which one is more important at the end of the con-
formal dynamics in a given model. In the context of gauge
mediation models, our result can be summarized as fol-
lows. If the scalar masses are suppressed faster than the
gaugino masses, we obtain a spectrum that resembles
gaugino mediation at a low compactification scale.
Unlike genuine gaugino mediation, however, there is no
issue with Landau poles before reaching the unification
scale. In addition, A terms exist, as well as Higgs soft
masses that cancel the �2 mass contribution. The gravity
mediated contribution that is potentially flavor violating is
less harmful than in the case without the conformal dy-
namics. This case also offer a solution to the outstanding�
(B�) problem in the supersymmetric standard model. On
the other hand, if the gaugino masses are suppressed faster
than the scalar masses, the spectrum looks as if the ‘‘num-
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ber of messengers’’ is less than unity. In this case, the
gravity mediated contribution is more harmful than in the
case without the conformal dynamics.

In the context of gaugino mediation, the volume sup-
pression factor tends to give B � 16	2Ma, which is un-
acceptable. The same mechanism as in the case of gauge
mediation can lead to a solution to the problem. Finally,
anomaly mediation may be dominant with conformal se-
questering even if the hidden sector has a singlet field with
gaugino mass and A term operators, because they are
sequestered as well.

We point out, however, that our analysis is limited by the
lack of understanding of Kähler potential renormalizations
in strongly coupled theories. Not only can we not work out
whether the scalar masses or gaugino masses are seques-
tered more, but we could also worry about operators at
even higher dimensions. In this paper, we considered only
the lowest dimension operators that can contribute to the
soft supersymmetry breaking parameters. However, higher
dimension operators, such as those at cubic or quartic
orders in the hidden sector fields, may be as important if
the strong renormalization effects overcome the naive
suppression in power counting when fields acquire
VEVs. Without detailed knowledge of the dynamics, we
cannot exclude this possibility. In addition, we assumed
that the wavefunction renormalization factors are given
solely by those in the superconformal limit determined
by the R charges. However, realistic theories are neces-
sarily perturbed by relevant operators to break supersym-
metry, and it is possible that their impact on the
wavefunction factors is anomalously enhanced by strong
dynamics. Note that these two issues are related, because
one can always redefine the fields such that they do not
acquire VEVs, but this will induce new relevant operators
into the theory. These effects are not possible near the
Banks-Zaks fixed point [23], and hence are impossible to
study using perturbation theory.

Once the LHC discovers supersymmetry, and the ILC
determines the spectrum of superparticles precisely, it
would be exciting to see if it shows any impact of strong
hidden sector dynamics. For this program, it will be im-
portant to better understand the consequence of strong
dynamics on the renormalization of various operators,
including higher dimension ones. We hope that our work
provides a step towards achieving this goal.
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APPENDIX A: OPERATOR MIXING

In this appendix we will give some explicit examples of
how different Kähler potential operators can mix with one
another. In general, there will be certain linear combina-
tions of operators that evolve by power laws with definite
exponents �. Some of these linear combinations may con-
tain global symmetry currents of the conformal field the-
ory, and will not be renormalized at all. In the notation of
Sec. II, this means that the exponents � precisely cancel
the known wavefunction renormalizations that are deter-
mined by the R charges of the fields.

Supersymmetric SU�Nc� QCD with 3
2Nc < Nf < 3Nc

gives an unusually simple example, where Nf is the num-
ber of vectorlike flavors. In this theory, there are four linear
combinations of quadratic operators one can write down
 

QyQ� �Qy �Q; QyQ� �Qy �Q;

QyTaQ; �QyTa �Q:
(A1)

The latter three correspond to the conserved U�1�B,
SU�Nf�Q, and SU�Nf� �Q currents, and hence if these com-
binations appear in Eq. (1), the operators are not seques-
tered. On the other hand, the first one corresponds to the
U�1�A current that is anomalous under the strong SU�Nc�
dynamics, and therefore runs with an exponent �A.
Unfortunately, we have no means to calculate �A. In
particular, we do not know whether it is positive or
negative.

The corresponding situation in the magnetic dual theory
[24] is somewhat more complicated. In addition to the dual
quarks q, �q, there are mesons M with two indices, and
hence there are many more combinations of operators that
one can write down. Mixing between operators containing
the dual quarks and mesons can happen because this theory
has the superpotential coupling Tr�M �qq�.

We can classify the quadratic operators according to
their representation under the SU�Nf�Q � SU�Nf� �Q sym-
metry of the theory. For example, the operator proportional
to

 Tr �TaMTbMy�; (A2)

transforms as (adjoint, adjoint) under the flavor group.
There are no other quadratic operators of the same sym-
metry properties, and hence it does not mix with any
others. It is not a conserved current and hence is renormal-
ized. Because it does not mix, it renormalizes on its own

MORE VISIBLE EFFECTS OF THE HIDDEN SECTOR PHYSICAL REVIEW D 77, 015005 (2008)

015005-11



with a single exponent. One cannot prove on general
grounds that it is suppressed at low energies, but one can
do explicit calculations close to the Banks-Zaks fixed point
Nf �

3
2Nc.

8 Note that weakly gauging the vectorlike
SU�Nf� flavor symmetry [7] would still allow this operator.

The operators

 NcTr�TaMMy� � Nf�q
yTa�q�;

Tr�TaMMy� � �qyTa�q�;
(A3)

transform as (adjoint, singlet) under the flavor group. The
latter contains a conserved current, and hence is not re-
normalized (not sequestered). The former, however, does
not correspond to a symmetry because of the superpoten-
tial coupling, and is hence renormalized. Again, we do not
have a general proof, but explicit calculations suggest that
it is sequestered, with �> 0 at the one-loop level. Note
that the former linear combination is the ‘‘eigenvector’’ of
the mixing only at the one-loop level, while the precise
linear combination is unknown at all orders. The situation
with the operators in which q’s are replaced by �q’s is
identical.

Finally, there are three (singlet, singlet) operators

 Tr �MMy�; qyq� �qy �q; qyq� �qy �q: (A4)

The last one corresponds to the conserved U�1�B current
and hence is not renormalized. The first two operators mix
with unknown relative coefficients. Neither of them are
conserved currents and hence should be renormalized. At
the one-loop level, the eigenvectors of this mixing are

 2 Tr�MMy� � �qyq� �qy �q�;

Nc Tr�MMy� � Nf�q
yq� �qy �q�:

(A5)

The latter is sequestered already at the one-loop level with
�> 0. The former is accidentally conserved at the one-
loop level, while it should receive renormalization at
higher orders. Therefore, �< 0 at the lowest order for
this operator. It is not clear at all what the signs of the �
exponents are in the strongly coupled situation.

The situation becomes even more complicated in theo-
ries with additional matter content, such as the model with
an additional adjoint used in Ref. [13].

In general, operators of the same symmetry properties
mix and the degree of sequestering (if any) is determined

by the eigenvalues of the mixing matrix. Once the theory is
strongly coupled, we do not have the techniques to work
them out. Even when the sequestering is plausible in
theories believed to be infrared attractive, the signs of the
exponents � beyond the wavefunction renormalization are
incalculable.

APPENDIX B: GENERATING THE � TERM IN
GAUGE MEDIATION

In this appendix we present one simple way to generate a
� parameter of the same order as the gaugino masses in
gauge mediation. We take the messenger superfields f and
�f to transform under the 10� 10� representation of the
SU�5�SM symmetry containing the standard model gauge
group as a subgroup, and introduce the superpotential
interactions

 W � yffHu � �y �f �fHd: (B1)

Here, we have imposed a Z2 parity under which f and �f are
odd while the other fields are even. This has the advantage
that mixings between the messenger and matter superfields
are forbidden, so that the problem of flavor is not reintro-
duced.9 The absence of a tree level � term is assumed.

The interactions of Eq. (B1) generate operators respon-
sible for the � and B� parameters at one loop. Integrating
out f, �f with the interactions Eq. (B1) generates

 L � 3
Z
d4�

y �y��mf�
�

16	2mf
SyHuHd � H:c:; (B2)

and

 L � 3
Z
d4�

y �yj��mf�j
2

16	2m2
f

SySHuHd � H:c:; (B3)

at the scale mf, where ��mf� is defined in Eq. (32).
Integrating out f, �f also generates

 L � 3
Z
d4�

��mf�

16	2mf
S�jyj2HyuHu � j �yj

2HydHd� � H:c:

(B4)

These operators contribute to AHu
, AHd

, B, m2
Hu

, and m2
Hd

.
Assuming y	 �y	O�1�, these provide the operators dis-
cussed in Sec. IV: Eqs. (33), (35), and (37).

8Up to three loops, there are no 1PI diagrams that renormalize
this operator, and hence the renormalization is given solely in
terms of the wavefunction renormalization. There is a 1PI four-
loop diagram, which should generate a nonzero exponent �, yet
we do not know its sign.

9The Z2 parity makes the lightest messenger particle stable,
which may overclose the universe. We can, however, simply
assume that the reheating temperature is low enough so that
these particles are not produced thermally. Alternatively, we can
(slightly) modify the model. For example, we can eliminate Z2
and introduce messenger matter mixings, whose sizes, however,
are controlled by a U�1� flavor symmetry. This modifies the third
generation and Higgs mass spectra (c.f. Sec. III). Another
possibility is to use a messenger field that is adjoint under
SU�5�SM and even under matter parity. This allows us to avoid
the introduction of the flavor problem as well as the cosmologi-
cal problem, without an additional discrete symmetry.
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