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The expectation value of the complex phase factor of the fermion determinant is computed to leading
order in the p expansion of the chiral Lagrangian. The computation is valid for �<m�=2 and determines
the dependence of the sign problem on the volume and on the geometric shape of the volume. In the
thermodynamic limit with Li ! 1 at fixed temperature 1=L0, the average phase factor vanishes. In the
low temperature limit where Li=L0 is fixed as Li becomes large, the average phase factor approaches 1 for
�<m�=2. The results for a finite volume compare well with lattice results obtained by Allton et al. After
taking appropriate limits, we reproduce previously derived results for the � regime and for one-
dimensional QCD. The distribution of the phase itself is also computed.
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I. INTRODUCTION

Numerical lattice QCD at nonzero baryon chemical
potential is obstructed by the sign problem: At nonzero
chemical potential, �, the phase factor of the fermion
determinant

 e2i� �
det�D���0 �m�
det�D���0 �m�

�
(1)

invalidates a direct application of Monte Carlo methods.
However, indirect methods have been devised to circum-
vent the sign problem [1–16]. Since these approaches only
apply when the average of the phase factor is close to unity,
it is of considerable interest to understand when the fluc-
tuations of the phase are mild and when they are severe.
Since the measurement of the average phase factor on the
lattice is plagued by the sign problem as well, it is impera-
tive to understand the average phase factor analytically.

In this paper we study the average phase factor analyti-
cally within chiral perturbation theory. In particular, the
approach to the thermodynamic limit will be analyzed.

Despite the absence of baryons, chiral perturbation the-
ory has proved a vital tool in understanding lattice simu-
lations at nonzero baryon chemical potential. The
generating functional for the eigenvalue density of the
QCD Dirac operator includes quarks with the opposite
sign of the chemical potential [17], which therefore couple
to the third component of isospin. Using this fact, the exact
quenched [18] and unquenched [19,20] microscopic spec-
tral densities of the QCD Dirac operator were derived from
a chiral Lagrangian. This result revealed that, at nonzero
chemical potential, the chiral condensate is related to the
spectral density by a mechanism that is different from the
Banks Casher relation [21]: The discontinuity in the chiral
condensate is due to complex oscillations on the micro-
scopic scale [22] in a macroscopic region of the complex
eigenvalue plane.

The microscopic limit is also known as the � domain of
QCD. Microscopic results for QCD can equally well be
derived by means of chiral random matrix theory [23,24].
This has the advantage that one may employ powerful
random matrix methods such as orthogonal polynomials
[25–28], the replica trick [29], or the supersymmetric
method [30]. For example, the unquenched microscopic
spectral density at nonzero chemical potential was first
derived by means of random matrix theory [19], whereas
the quenched spectral density at nonzero chemical poten-
tial was first obtained by means of the replica trick in
combination with the Toda lattice equation [18].

The recent computation of the average phase factor in
the microscopic domain [31,32] shows that the average
phase factor is suppressed exponentially with the volume
when �>m�=2. For such values of the chemical poten-
tial, the quark mass is inside the cloud of eigenvalues of the
Dirac operator, and numerical lattice QCD simulations
become exceedingly difficult. For smaller values of the
chemical potential, the quark mass is outside the two-
dimensional domain of the eigenvalues, and the sign prob-
lem is less severe.

In this paper we examine the character of the sign
problem in the region �<m�=2 and temperatures such
that the use of chiral perturbation theory can be justified.
With �<m�=2 it was found in [31,32] that the average
phase factor remains nonzero in the microscopic limit
where �F�

����
V
p

is held fixed as the volume is taken to
infinity. For �F�

����
V
p
� 1 the large volume asymptotic

limit of the microscopic prediction is simply given by

 he2i�iNf �

�
1�

4�2

m2
�

�
Nf�1

; � < m�=2: (2)

(The quenched and the phase-quenched average of the
phase factor give identical predictions in this limit. Both
are obtained by settingNf � 0 in the equation above.) This
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result suggests that unquenched lattice simulations in this
domain are feasible.

Here we examine whether the average phase factor
remains nonzero for �<m�=2 when we relax the micro-
scopic constraints and approach the thermodynamic limit
at fixed chemical potential. In order to do so, we compute
the average phase factor using the p expansion of chiral
perturbation theory where

 p� 1=L; m� � 1=L; �� 1=L; T � 1=L;

(3)

and work to leading (one-loop) order. The previous calcu-
lation of the average phase factor was worked out [31,32]
in the microscopic domain where m2

�F2
� � 1=V and

�2F2
� � 1=V as the volume is taken to infinity. The new

one-loop computation presented here includes the effect
generated by the nonzero momentum modes of the
Goldstone bosons. We keep explicitly the dependence on
volume V � L3

i L0 and the ratios L0=Li in order to study
the approach to the thermodynamic limit. The new result
bridges the gap between the microscopic prediction [31,32]
and the parameter range typically used in lattice gauge
theories. This allows us to compare the one-loop result for
the average phase factor to lattice results by Allton et al.
Below the pseudocritical temperature for chiral symmetry

restoration, the lattice results are in remarkably good
agreement with the analytical predictions.

The distribution of the phase itself (rather than the phase
factor) also follows from the one-loop computation. We
give the explicit form of the distribution of the phase to
one-loop order in chiral perturbation theory.

The paper is organized as follows. In the next section we
present the general setup for computing the one-loop result
for the average phase factor within chiral perturbation
theory. The explicit one-loop result is derived in Sec. III.
This expression is evaluated numerically in Sec. IV, and the
comparison to lattice data is made in Sec. V. The effect of a
finite box on the average phase factor is further discussed
in Sec. VI. Section VII contains the discussion of the
distribution of the phase. We end with concluding remarks
in Sec. VIII.

II. THE AVERAGE PHASE FACTOR TO LEADING
ORDER

Gauge field configurations can only be generated by
Monte Carlo simulations if the integration measure is
non-negative. If the fermion determinant has a nontrivial
phase, the sign problem can, in principle, be solved by
reweighting [1,5,6], where the expectation value of an
operator is calculated according to

 

hOdetNf �D���0 �m�i
hdetNf �D���0 �m�i

�
hOeiNf�jdetNf �D���0 �m�ji
hjdetNf �D���0 �m�ji

�
heiNf�jdetNf �D���0 �m�ji
hjdetNf �D���0 �m�ji

�
�1
: (4)

Obviously, the success of this method is determined by the
expectation value of the phase factor, which is our main
motivation to study the average phase factor. Reweighting
is not unique and one could, for example, average with
respect to the theory at zero chemical potential. For that
reason we will study different averages of the phase factor,
the average with respect to the full QCD partition function
and the average with respect to the phase-quenched parti-
tion function, as well as an average with dynamical quarks
at zero chemical potential.

Like reweighting, the complex Langevin method [2–4]
and the density of states method [14–16] are expected to
fail for a strongly fluctuating phase factor. Methods that
rely on analytical continuation [7–13] could, in principle,
work even for a strongly fluctuating phase factor. Note,
however, that the average phase factor is nonanalytic at
zero chemical potential [32].

The average phase factor in the full theory is the ratio of
two partition functions: a partition function with an extra
fermionic quark as well as a conjugate bosonic quark
divided by the usual QCD partition function

 he2i�iNf �
hdetNf�1�D���0 �m�= det�D���0 �m�i

hdet�D���0 �m�Nf i
:

(5)

Here we used that conjugate quarks correspond to ordinary
quarks with the opposite sign of the chemical potential
[33]. With the usual setup of leading order chiral perturba-
tion theory (see for example [34,35]), the free energy is a
sum of contributions from each of the Goldstone bosons.
The contributions to the numerator of pions with no isospin
charge cancel against contributions from the denominator.
This leaves us with

 he2i�iNf � e�Nf�1��G0���0��G0����; (6)

where each G0 includes the contribution of two oppositely
charged Goldstone modes. In order to get the combinator-
ics right, notice that the inverse determinant in (5) repre-
sents a conjugate bosonic quark. The charged Goldstone
bosons contain this bosonic quark in addition to one of the
Nf � 1 fermionic quarks and are thus fermionic in nature,
resulting in an additional minus sign from the fermionic
loop.

Because of the sign problem, one often studies averages
in the phase-quenched theory where the phase of the
fermion is ignored,

 Z1�1� � hj det�D���0 �m�j2i: (7)

The average phase factor in the phase-quenched theory is
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defined by

 he2i�i1�1� �
hdet2�D���0 �m�i

hj det�D���0 �m�j
2i
�
ZNf�2

Z1�1�
: (8)

To leading order in chiral perturbation theory this ratio is
given by

 he2i�i1�1� � eG0���0��G0���: (9)

Notice that this result coincides with the one-loop result for
the quenched theory (with no dynamical quarks) obtained
from (6) by setting Nf � 0, as well as with the result for
partially quenched computations with dynamical quarks at
zero chemical potential.

In summary, to determine the average phase factor to
one-loop order, all that is required is the difference be-
tween G0��� and G0�� � 0�. We will derive this differ-
ence in Sec. III.

III. EVALUATION OF G0��� �G0�� � 0�

As we are particularly interested in the approach to the
thermodynamic limit, we will consider a finite system with
volume V � L3

i L0. Hasenfratz and Leutwyler [34] worked
out G0 for � � 0. This calculation was generalized to
nonzero chemical potential in [32]. For completeness, we
repeat the main steps of the computation below.

Consider a single charged Goldstone boson with charge
2 in a box V � L3

i L0. The one-loop contribution to the
partition function is given by

 eG0���=2 	 exp
�
�

1

2

X
pk�

log� ~p2
k �m

2
� � �pk0 � 2i��2�

�
;

(10)

where

 pk� �
2�k�
L�

; k� integer: (11)

While G0��� is divergent, the difference between G0���
and G0��� for V � 1 is finite, that is,

 G0��� � G0���jV�1 � g0��� (12)

with g0��� finite. The p0-integration contour in the second
term of the difference

 

G0���jV!1 �G0�� � 0�jV!1

�
Z
pd�1dpdp0
log� ~p2 �m2

� � p
2
0�

� log� ~p2 �m2
� � �p0 � 2i��2��

can be shifted by 2i� if there are no obstructions from
singularities. This is the case if 2�<m�, so that the �
dependence resides entirely in g0���. The difference of the
free energies in (6) and (9) is thus given by the difference of
the finite parts,

 G0��� �G0�� � 0� � g0��� � g0�� � 0�: (13)

This also shows that the average phase factor does not
depend on the ultraviolet cutoff. The infrared nature of
the average phase factor has been verified on the lattice
[36].

After several manipulations, including Poisson resum-
mation and Jacobi’s imaginary transformation (the steps
are given in detail in [32]), we find two equivalent repre-
sentations of g0���, both valid for �<m�=2,

 

g0��� �
Z 1

0

d�

�3 e
�m2

�L2�=4�

�

�Y3

��0

X
l�

e�2�l0L0��0e���l
2
�L2

�=�L2� � 1
�

(14)

and

 g0��� �
Z 1

0

d�

�3 e
�m2

�L2�=4�
�Y3

��0

X
l�

e�2�l0L0��0e���l
2
�L2

�=�L2� � 1
�

�
Z 1

0

d�
�
e�

2L2=��e�m
2
�L2=�4���

�Y3

��0

X
l�

e�2i�l0�L2=L0����0e��l
2
��L2=L2

��� � 1
�
�
Z 1

1

d�
�
e�

2L2�=�e�m
2
�L2�=4�

�
Z 1

1

d�

�3 e
�m2

�L2�=4�; (15)

where l� runs over all integers and we have introduced the
length

 L 	 �L0L
3
i �

1=4: (16)

The first representation has the advantage that the chemical
potential explicitly appears in the combination �L0. (Note
that L0 also appears in other places.) The second represen-

tation can be used to expand the result in a power series in
m2
� and �2. It also may be preferable for numerical

evaluations.
The one-loop result is valid for L�QCD � 1, mV�� 1

and both m�  �QCD and � �QCD. Finally, the condi-
tion �<m�=2 has to be satisfied. The reason is that, for
�>m�=2, the Goldstone fields have to be expanded about
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a rotated ground state. For m2
�L

2  1 and �2L2  1 the
dominant contribution is given by the zero-momentum
term and the one-loop result reduces to (2). A small m�L
and small�L expansion about this result was given in [32].
The general one-loop result is also valid when m2

�L2 and
�2L2 are of order or larger than 1. In the next section we
study the one-loop result numerically.

IV. NUMERICAL EVALUATION OF THE
ONE-LOOP RESULT

In this section we study the one-loop expression for the
average phase factor as a function of dimensionless com-
binations of the parameters. The average phase factor
depends only on three dimensionless combinations:

 m�L; �L; and
L0

Li
: (17)

As the one-loop expression is only valid for�<m�=2, we
will express our results as a function of the ratio
�=�m�=2�. We will consider 3 different cases: (1) the
thermodynamic limit at fixed temperature where Lim�
becomes large while L0m� remains fixed, (2) the thermo-
dynamic limit at low temperatures where Lim� grows for

fixed asymmetry Li=L0, and (3) the low temperature limit
in a finite box where L0m� increases for fixed Lim�.

Thermodynamic limit at fixed temperature.—The ther-
modynamic limit at fixed temperature is obtained by letting
the spatial extent of the box in units of the inverse pion
mass go to infinity while keeping the temporal extent also
in units of 1=m� fixed. In this limit the sign problem is
acute for any nonzero value of the baryon chemical poten-
tial, as indicated by a vanishing average phase factor. In
Fig. 1 we show the approach of the average phase factor to
zero as Li increases. The two left plots show the phase-
quenched prediction (which, as discussed above, is equiva-
lent to the quenched prediction), while the two right plots
show the case with two dynamical flavors. Note that for
Li < L0 the average phase factor is dominated by the static
pion modes, cf. (2) [55].

Thermodynamic limit with temperature going to zero.—
As is common practice in lattice QCD, we now fix the
asymmetry of the box, Li=L0, and vary the size of the box.
A large box now automatically implies a low temperature.
In this thermodynamic limit the average phase factor ap-
proaches unity as long as the chemical potential is less than
half of the pion mass. For larger values of the chemical
potential the average phase factor is zero. In Fig. 2 we show
the approach to this step function as a function of Li. The

L   mi

0

π

πL   m    = 2

2    /mµ π

θ< exp(2i  )>
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FIG. 1. The average phase factor goes to zero as the spatial extent of the box (in units of 1=m�) becomes large as compared to the
temporal extent. The approach to the thermodynamic limit is illustrated by varying m�Li at fixed temperature 1=L0. Left panels: The
(phase) quenched average phase factor. Right panels: The average phase factor with two dynamical flavors with the same mass. Top
panels: m�L0 � 2. Bottom panels: m�L0 � 4. Note that the average phase factor starts dropping to zero when Li exceeds L0; the
spatial length Li needs to be larger than L0 for the effect of the pion loop to be present in the average phase factor.
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two top panels are for a cubic box (quenched and un-
quenched), and the two lower plots are for Li � 2L0.
The approach to the step function is slower when the
asymmetry is larger than unity.

Zero temperature in a finite box.—Here we consider the
limit where the spatial size of the box is fixed in units of
1=m� as the temperature (in units of m�) is lowered. In the
zero temperature limit where the asymmetry Li=L0  1,
the average phase factor again approaches the step function
��m� � 2��. This is not surprising given that this behavior

was also found in the exact solution of one-dimensional
QCD [37].

In Fig. 3 we show how the average phase factor,
quenched (left panel) and unquenched (right panel), be-
haves as a function of � and T in a finite box.

V. COMPARISON TO LATTICE DATA BY ALLTON
ET AL.

The main limitations of lattice studies of QCD at non-
zero chemical potential are the phase fluctuations of the

L m

L   /L   =1
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π
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FIG. 2. The average phase factor when approaching the thermodynamic limit for fixed Li=L0. Left panels: The (phase) quenched
case. Right panels: Two dynamical flavors. Top panels: The temporal extent of the box is taken equal to its spatial extent; hence, the y
axis is also the inverse temperature in units of 1=m�. Bottom panels: The asymmetry is now set to Li=L0 � 2. Hence, the Lm� is also���

8
p
L0m�. In all cases, in the thermodynamic limit the average phase factor approaches a step function which becomes zero beyond

2� � m�.
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FIG. 3. The average phase factor for m�Li � 3. It approaches zero with increasing temperature. Left panel: The (phase) quenched
case. Right panel: The Nf � 2 case. Notice that the zero temperature limit is the step function ��m� � 2��. In this limit the time
direction is much longer than the spatial ones, and as expected, the step function found is consistent with the result from one-
dimensional QCD [37].
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fermion determinant, and it is natural to analyze them
quantitatively [11,16,38– 47]. In this section we compare
the one-loop results obtained above to the lattice data of
Allton et al. [13].

In [13] the response of the QCD partition function to a
baryon and isospin chemical potential was measured at
zero value of the chemical potential. The response to
second order in the baryon and isospin chemical potential
was given in terms of two numbers, c2 and cI2, respectively
(see Table 3.2 of [13]). They are related to the quark and
isospin susceptibility at � � 0 according to

 c2 �
	q
2T2 ; cI2 �

	I
2T2 : (18)

To second order in the chemical potential, the measured
average phase factor (in the phase-quenched theory) is
given by

 he2i�ilat � eL
3
i T�

2�c2�cI2�

� e�c2�cI2��Li=L0�
3�2�=m��

2�m�=Tc�2=�T=Tc�2=4; (19)

where, in the second line, we have expressed the result in
terms of accessible dimensionless ratios. Note that the
strength of the sign problem to lowest order in the Taylor

expansion only depends on the coefficient of the off-
diagonal susceptibility cud2 	 �c2 � c

I
2�=4.

The one-loop chiral perturbation theory result is ob-
tained by matching the dimensions of the box and the
chemical potential in units of the inverse pion mass to
those of [13]. To fix the scale we use the value m�=Tc �
3:58 from [48]. For temperatures below the critical tem-
perature, Tc, the agreement is very good; see Fig. 4. Since
chiral perturbation theory is not applicable in the chirally
restored phase, the disagreement for T > Tc is as expected.
Unfortunately, the isospin susceptibility was not calculated
beyond second order in�I in [13], so we cannot extract the
average phase factor to higher order. The fourth order term
is of particular interest because the analytical one-loop
result, displayed in Fig. 4, is well approximated by
exp��a�2 � b�4� where a and b are positive constants.

Beyond the critical temperature the severity of the sign
problem decreases significantly. In the high temperature
limit the difference from one of the average phase factor
comes from terms of order g4 and higher as can be inferred
from [49,50]. Indeed, the terms up to order g3 are functions
of
P
f�

2
f so that the phase-quenched and the unquenched

partition functions are identical up to this order. In lattice
simulations by Allton et al. the quark and isospin suscep-
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FIG. 4 (color online). The phase-quenched average phase factor obtained using the data of [13] (solid curves) compared with the
result from chiral perturbation theory (dashed curves). The temperatures are T=Tc � 0:76, 0.90, 1.00, 1.11, where Tc is the critical
temperature at � � 0. The agreement is good even close to Tc. Above the critical temperature the response to the baryon and isospin
chemical potential becomes alike as bound states of quarks have melted. The prediction of chiral perturbation theory of course fails in
this region.
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tibilities are very close for T > Tc. The physical implica-
tion is that bound states of light quarks are absent beyond
Tc.

VI. FINITE VERSUS INFINITE BOX

In this section we compare the result (15) for a finite box
with its thermodynamic limit which has been used in the
resonance gas model.

In the resonance gas model it is usually assumed that
Lim� � 1 such that the spatial momenta in the expression
for g0 can be integrated over instead of a discrete summa-
tion. This leads to the standard expression

 g0��� �
Vm2

�T2

�2

X1
n�1

K2�
m�n
T �

n2 cosh
�
2�n
T

�
: (20)

In addition, the resonance gas model includes heavier
resonances. Among others, it was applied [51] to the quark
and isospin susceptibilities for temperatures beyond Tc.

In Fig. 5 we compare the average phase factor in a box
with finite spatial length to the result obtained using (20).
We observe that the validity of the standard expression (20)
depends on the chemical potential. This is not surprising.
After all, the mass of the charged Goldstone modes is
m� � 2� (recall that these Goldstone modes are made
out of a quark and a conjugate quark). As � approaches
m�=2 the lightest mode becomes massless, which invalid-
ates the replacement the sum over momenta by an integral.

VII. THE DISTRIBUTION OF THE PHASE

In addition to studying the average phase factor, it is
natural to also analyze the distribution function of the
phase [39,52] itself. It is defined by

 
Nf ��� 	 h�����
0�iNf

�

R
dAjdet�D���0�m�jNfeiNf�

0
�����0�e�SYMR

dAjdet�D���0�m�jNfeiNf�
0
e�SYM

:

(21)

The unquenched � distribution can be written

 
Nf ��� � eiNf�
Nf=2�Nf=2� ���
ZNf=2�Nf=2�

ZNf
; (22)

where the phase-quenched � distribution is defined as the
average

 
Nf=2�Nf=2� ��� 	 h���� �
0�iNf=2�Nf=2� (23)

with respect to the phase-quenched partition function

 ZNf=2�Nf=2� � hj det�D���0 �m�jNf i: (24)

This rewriting shows that the unquenched � distribution is
complex for any nonzero value of the chemical potential.
The complex nature of the unquenched � distribution re-
sides entirely in exp�iNf��—the other factors in (22) are
real, positive, and even. Despite its simple form, the effect
of the phase is drastic. Integrating over � we find that

 

Z
d�eiNf�
Nf=2�Nf=2� ��� �

ZNf
ZNf=2�Nf=2�

; (25)

which becomes exponentially small [� exp��V�] in the
thermodynamic limit at fixed temperature.

In principle, one can extract the unquenched partition
function from the phase-quenched one and the phase-
quenched � distribution using (25). Numerically, it is,
however, very difficult to handle the detailed cancellations.
It only works if the width of the � distribution is compa-
rable to 2�=Nf so that the complex oscillations have little
effect. Below we will compute the � distribution in a finite
box using chiral perturbation theory and show that the
width of the � distribution is rather of order

����
V
p

.

� distribution to one loop in chiral perturbation theory

The distribution function of the phase, 
Nf ���, can be
extracted from the moments of the phase factor. Just like
the average phase factor the higher moments follow from
the one-loop computation

 he2ni�iNf � en�Nf�n��G0���0��G0����: (26)

This holds for both positive and negative integers n. Using
the replica trick [29,53], one can analytically continue n to
noninteger values. For instance,

 hei�iNf � e1=2�Nf�1=2��G0���0��G0����: (27)

We expect that the analytic continuation of hexp�2in��i in
n is valid when the quark mass is outside the support of the
eigenvalues—as is always the case in this paper.

L m

L  /L  =2

µ π

i 0

π2   /m

θ<exp(2i )>
N =0f
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FIG. 5 (color online). The average phase factor for a finite box
(lower surface) compared to the result in the thermodynamic
limit at fixed Li=L0 (upper surface). Notice that finite size
corrections become more important as � increases.
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In (26) we evaluated the even Fourier components. If we
assume that the odd Fourier coefficients are given by the
same expression, we can simply express the delta function
in the definition of 
Nf ��� into a sum over the moments.
Introducing the shorthand

 �G0 	 G0��� �G0�� � 0� (28)

we find

 
Nf ��� �
1

�

X1
n��1

e�in���n=2���n=2��Nf��G0

�
1

�
eiNf���1=4�N2

f�G0
X1

n��1

e�in��n
2�G0=4

�
1

�
eiNf���1=4�N2

f�G0#3��=�2��; e
��G0=4�: (29)

By a Poisson resummation this can be rewritten as

 
Nf ��� �
1��������������

��G0

p eiNf���1=4�N2
f�G0

X
n

e����2n��2=�G0 ;

(30)

valid for a compact phase angle � 2 
��;��. For a con-
tinuous phase angle, � 2 
�1;1�, the distribution func-
tion becomes a simple Gaussian:

 
Nf ��� �
1��������������

�G0�
p e�Nf=2�2�G0eiNf���

2=�G0 : (31)

The quenched as well as the phase-quenched averages are
given by 
Nf�0���. Notice that result (31) is consistent with
the general form given in (22). Since �G0 is extensive, the
width of the � distribution is of order

����
V
p

, while its ampli-
tude increases exponentially with the volume. Along with
the fact that the distribution is normalized to 1, this illus-
trates just how intricate the cancellations will be, and
therefore how tough the sign problem will be to handle
numerically.

With 
Nf ��� at hand it is straightforward to also compute
the variance of the phase

 h�2iNf � h�i
2
Nf
� 1

2�G0: (32)

Note that the result is independent of Nf even though
h�2iNf and h�iNf both depend on the number of flavors.
This suggests that the variance of the phase can be obtained
from the quenched theory.

The Gaussian form of the phase-quenched � distribution
is in agreement with the numerical result of Ejiri [52].
Notice, however, that an error of order 1=

����
V
p

in the nu-
merical determination of the width of the Gaussian will
lead to an error of order 1 in the unquenched partition
function; cf. (25). Small non-Gaussian corrections can
have a similar dramatic effect. We expect that higher order
terms in chiral perturbation theory as well as effects from
baryons will result in a non-Gaussian form.

VIII. CONCLUSIONS

The average phase factor of the fermion determinant has
been computed and examined to one-loop order in chiral
perturbation theory for a quark chemical potential less than
half of the pion mass. In the ordinary thermodynamic limit
at fixed temperature, the average phase factor is zero for
any nonzero value of the chemical potential. If the tem-
perature is taken to zero at fixed aspect ratio of the box, the
phase factor remains unity when the chemical potential is
less than m�=2. This indicates that QCD at zero tempera-
ture has a mild sign problem for �<m�=2 in the thermo-
dynamic limit. It would be of interest to study this region
on the lattice—in particular, to examine if there is a
spinodal line in this region.

The one-loop prediction for the average phase factor is
in agreement with lattice data below the critical tempera-
ture. Below Tc the one-loop prediction thus gives a direct
way to estimate the strength of the sign problem for a given
lattice volume V � L3

i L0 and quark mass.
The distribution of the phase itself was also derived from

chiral perturbation theory. Its simple Gaussian form is
consistent with recent lattice simulations [52].

The critical isospin chemical potential beyond which
pions Bose-Einstein condense is expected to depend on
the temperature. The effect of this shift on the strength of
the sign problem is not included in the present paper. In
lattice simulations such an effect has been observed [54],
and it would of great interest to extend the present work in
this direction.
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