Two-loop additive mass renormalization with clover fermions and Symanzik improved gluons

A. Skouroupathis,^{*} M. Constantinou,[†] and H. Panagopoulos[‡]

Department of Physics, University of Cyprus, P.O. Box 20537, Nicosia CY-1678, Cyprus

(Received 22 October 2007; published 25 January 2008)

We calculate the critical value of the hopping parameter, κ_c , in lattice QCD, up to two loops in perturbation theory. We employ the Sheikholeslami-Wohlert (clover) improved action for fermions and the Symanzik improved gluon action with 4- and 6-link loops. The quantity which we study is a typical case of a vacuum expectation value resulting in an additive renormalization; as such, it is characterized by a power (linear) divergence in the lattice spacing, and its calculation lies at the limits of applicability of perturbation theory. Our results are polynomial in c_{SW} (clover parameter) and cover a wide range of values for the Symanzik coefficients c_i . The dependence on the number of colors N and the number of fermion flavors N_f is shown explicitly. In order to compare our results to nonperturbative evaluations of κ_c coming from Monte Carlo simulations, we employ an improved perturbation theory method for improved actions.

DOI: 10.1103/PhysRevD.77.014513

PACS numbers: 11.15.Ha, 11.10.Gh, 12.38.Bx, 12.38.Gc

I. INTRODUCTION

In the present work, we calculate the additive renormalization of the fermion mass in lattice QCD, using clover fermions and Symanzik improved gluons. The calculation is carried out up to two loops in perturbation theory and it is directly related to the determination of the critical value of the hopping parameter, κ_c .

The clover fermion action [1] (SW) successfully reduces lattice discretization effects and approaches the continuum limit faster. This justifies the extensive usage of this action in Monte Carlo simulations in recent years. The coefficient c_{SW} appearing in this action is a free parameter for the current work and our results will be given as a polynomial in c_{SW} .

Regarding gluon fields, we employ the Symanzik improved action [2], which also aims at minimizing finite lattice spacing effects. For the coefficients parametrizing the Symanzik action, we consider several choices of values which are frequently used in the literature.

The lattice discretization of fermions introduces some well-known difficulties; demanding strict locality and absence of doublers leads to the breaking of chiral symmetry. In order to recover this symmetry in the continuum limit one must set the renormalized fermion mass (m_R) equal to zero. To achieve this, the mass parameter m_o appearing in the Lagrangian must approach a critical value m_c , which is nonzero due to additive renormalization.

The mass parameter m_{\circ} is directly related to the hopping parameter κ used in simulations. Its critical value, κ_c , corresponds to chiral symmetry restoration:

$$\kappa_c = \frac{1}{2m_c a + 8r},\tag{1}$$

where *a* is the lattice spacing and *r* is the Wilson parameter.

Using Eq. (1), the nonrenormalized fermion mass is given by

$$m_B \equiv m_\circ - m_c = \frac{1}{2a} \left(\frac{1}{\kappa} - \frac{1}{\kappa_c} \right). \tag{2}$$

Thus, in order to restore chiral symmetry one must consider the limit $m_{\circ} \rightarrow m_c$. This fact points to the necessity of an evaluation of m_c .

The perturbative value of m_c is also a necessary ingredient in higher-loop calculations of the multiplicative renormalization of operators (see, e.g., Ref. [3]). In mass independent schemes, such renormalizations are typically defined and calculated at zero renormalized mass, and this entails setting the value of the Lagrangian mass equal to m_c .

Previous studies of the hopping parameter and its critical value have appeared in the literature for Wilson fermions-Wilson gluons [4] and for clover fermions-Wilson gluons [5,6]. The procedure and notation in our work is the same as in the above references.

Our results for κ_c (and consequently for the critical fermion mass) depend on the number of colors (*N*) and on the number of fermion flavors (N_f). Besides that, there is an explicit dependence on the clover parameter c_{SW} which, as mentioned at the beginning, is kept as a free parameter. On the other hand, the dependence of the results on the choice of Symanzik coefficients cannot be given in closed form; instead, we present it in a list of tables and figures.

The rest of the paper is organized as follows: In Sec. II we formulate the problem, define the discretized actions, and describe our calculation of the necessary Feynman diagrams. Section III is a presentation of our results. Finally, in Sec. IV we apply to our one- and two-loop results an improvement method, proposed by us [7-9]. This method resums a certain infinite class of subdiagrams, to all orders in perturbation theory, leading to an improved perturbative expansion. We end this section with a com-

php4as01@ucy.ac.cy

phpgmc1@ucy.ac.cy

[‡]haris@ucy.ac.cy

parison of perturbative and nonperturbative results. Our findings are summarized in Sec. V.

II. FORMULATION OF THE PROBLEM

We begin with the Wilson formulation of the QCD action on the lattice, with N_f flavors of degenerate clover (SW) [1] fermions. In standard notation, it reads:

$$S_{L} = S_{G} + \sum_{f} \sum_{x} (4r + m_{\circ}) \bar{\psi}_{f}(x) \psi_{f}(x)$$

$$- \frac{1}{2} \sum_{f} \sum_{x,\mu} [\bar{\psi}_{f}(x)(r - \gamma_{\mu}) U_{x,x+\mu} \psi_{f}(x + \mu)$$

$$+ \bar{\psi}_{f}(x + \mu)(r + \gamma_{\mu}) U_{x+\mu,x} \psi_{f}(x)]$$

$$+ \frac{i}{4} c_{SW} \sum_{f} \sum_{x,\mu,\nu} \bar{\psi}_{f}(x) \sigma_{\mu\nu} \hat{F}_{\mu\nu}(x) \psi_{f}(x), \qquad (3)$$

where:
$$\hat{F}_{\mu\nu} \equiv \frac{1}{8}(Q_{\mu\nu} - Q_{\nu\mu})$$
 (4)

and:
$$Q_{\mu\nu} = U_{x,x+\mu}U_{x+\mu,x+\mu+\nu}U_{x+\mu+\nu,x+\nu}U_{x+\nu,x}$$

+ $U_{x,x+\nu}U_{x+\nu,x+\nu-\mu}U_{x+\nu-\mu,x-\mu}U_{x-\mu,x}$
+ $U_{x,x-\mu}U_{x-\mu,x-\mu-\nu}U_{x-\mu-\nu,x-\nu}U_{x-\nu,x}$
+ $U_{x,x-\nu}U_{x-\nu,x-\nu+\mu}U_{x-\nu+\mu,x+\mu}U_{x+\mu,x}.$
(5)

The clover coefficient c_{SW} is treated here as a free parameter. Particular choices of values for c_{SW} have been determined both perturbatively [1] and nonperturbatively [10], so as to minimize O(a) effects. The Wilson parameter r is set to r = 1 henceforth; f is a flavor index; $\sigma_{\mu\nu} =$ $(i/2)[\gamma_{\mu}, \gamma_{\nu}]$. Powers of the lattice spacing a have been omitted and may be directly reinserted by dimensional counting.

Regarding gluons, we use the Symanzik improved gauge field action, involving Wilson loops with 4 and 6 links¹:

$$S_{G} = \frac{2}{g^{2}} \bigg[c_{0} \sum_{\text{plaquette}} \operatorname{Re} \operatorname{Tr}\{1 - U_{\text{plaquette}}\} \\ + c_{1} \sum_{\text{rectangle}} \operatorname{Re} \operatorname{Tr}\{1 - U_{\text{rectangle}}\} \\ + c_{2} \sum_{\text{chair}} \operatorname{Re} \operatorname{Tr}\{1 - U_{\text{chair}}\} \\ + c_{3} \sum_{\text{parallelogram}} \operatorname{Re} \operatorname{Tr}\{1 - U_{\text{parallelogram}}\} \bigg]$$
(6)

(g is the bare coupling constant). The lowest order expansion of this action, leading to the gluon propagator, is

$$S_{\rm G}^{(0)} = \frac{1}{2} \int_{-\pi/a}^{\pi/a} \frac{d^4k}{(2\pi)^4} \sum_{\mu\nu} A^a_{\mu}(k) \left[G_{\mu\nu}(k) - \frac{\xi}{\xi - 1} \hat{k}_{\mu} \hat{k}_{\nu} \right] \times A^a_{\nu}(-k), \tag{7}$$

where ξ is the gauge-fixing parameter (see Eq. (10)) and

$$G_{\mu\nu}(k) = \hat{k}_{\mu}\hat{k}_{\nu} + \sum_{\rho}(\hat{k}_{\rho}^{2}\delta_{\mu\nu} - \hat{k}_{\mu}\hat{k}_{\rho}\delta_{\rho\nu})d_{\mu\rho},$$
$$\hat{k}_{\mu} = \frac{2}{a}\sin\frac{ak_{\mu}}{2}, \qquad \hat{k}^{2} = \sum_{\mu}\hat{k}_{\mu}^{2},$$
$$(8)$$
$$_{\mu\nu} = (1 - \delta_{\mu\nu})[C_{0} - C_{1}a^{2}\hat{k}^{2} - C_{2}a^{2}(\hat{k}_{\mu}^{2} + \hat{k}_{\nu}^{2})].$$

$$a_{\mu\nu} = (1 - o_{\mu\nu}) [C_0 - C_1 a^2 \kappa - C_2 a^2 (\kappa_{\mu} + \kappa_{\nu})] C_0 - C_1 a^2 \kappa - C_2 a^2 (\kappa_{\mu} + \kappa_{\nu})] C_0 - C_1 a^2 \kappa - C_2 a^2 (\kappa_{\mu} + \kappa_{\nu})] C_0 - C_1 a^2 \kappa - C_2 a^2 (\kappa_{\mu} + \kappa_{\nu})] C_0 - C_1 a^2 \kappa - C_2 a^2 (\kappa_{\mu} + \kappa_{\nu})] C_0 - C_1 a^2 \kappa - C_2 a^2 (\kappa_{\mu} + \kappa_{\nu})] C_0 - C_1 a^2 \kappa - C_2 a^2 (\kappa_{\mu} + \kappa_{\nu})] C_0 - C_1 a^2 \kappa - C_2 a^2 (\kappa_{\mu} + \kappa_{\nu})] C_0 - C_1 a^2 \kappa - C_2 a^2 (\kappa_{\mu} + \kappa_{\nu})] C_0 - C_1 a^2 \kappa - C_2 a^2 (\kappa_{\mu} + \kappa_{\nu})] C_0 - C_1 a^2 \kappa - C_2 a^2 (\kappa_{\mu} + \kappa_{\nu})] C_0 - C_1 a^2 \kappa - C_2 a^2 (\kappa_{\mu} + \kappa_{\nu})] C_0 - C_1 a^2 \kappa - C_2 a^2 (\kappa_{\mu} + \kappa_{\nu})] C_0 - C_1 a^2 \kappa - C_2 a^2 (\kappa_{\mu} + \kappa_{\nu})] C_0 - C_1 a^2 \kappa - C_2 a^2 (\kappa_{\mu} + \kappa_{\nu})]$$

The coefficients C_i are related to c_i by

$$C_0 = c_0 + 8c_1 + 16c_2 + 8c_3, \qquad C_1 = c_2 + c_3,$$

 $C_2 = c_1 - c_2 - c_3.$ (9)

The Symanzik coefficients must satisfy: $c_0 + 8c_1 + 16c_2 + 8c_3 = 1$, in order to reach the correct classical continuum limit. Aside from this requirement, the values of c_i can be chosen arbitrarily; they are normally tuned in a way as to ensure O(a) improvement.

As always in perturbation theory, we must introduce an appropriate gauge-fixing term to the action; in terms of the gauge field $Q_{\mu}(x) [U_{x,x+\mu} = \exp(igQ_{\mu}(x))]$, it reads:

$$S_{\rm gf} = \frac{1}{1 - \xi} \sum_{x,\mu,\nu} {\rm Tr} \{ \Delta^{-}_{\mu} Q_{\mu}(x) \Delta^{-}_{\nu} Q_{\nu}(x) \},$$

$$\Delta^{-}_{\mu} Q_{\nu}(x) \equiv Q_{\nu}(x - \hat{\mu}) - Q_{\nu}(x).$$
 (10)

Having to compute a gauge invariant quantity, we can, for convenience, choose to work either in the Feynman gauge ($\xi = 0$) or in the Landau gauge ($\xi = 1$). Covariant gauge-fixing produces the following action for the ghost fields ω and $\bar{\omega}$

$$S_{\rm gh} = 2\sum_{x} \sum_{\mu} \operatorname{Tr} \left\{ (\Delta^{+}_{\mu} \omega(x))^{\dagger} \\ \times \left(\Delta^{+}_{\mu} \omega(x) + ig[Q_{\mu}(x), \omega(x)] \right. \\ \left. + \frac{1}{2} ig[Q_{\mu}(x), \Delta^{+}_{\mu} \omega(x)] \right. \\ \left. - \frac{1}{12} g^{2}[Q_{\mu}(x), [Q_{\mu}(x), \Delta^{+}_{\mu} \omega(x)]] + \cdots \right) \right\}, \\ \Delta^{+}_{\mu} \omega(x) \equiv \omega(x + \hat{\mu}) - \omega(x).$$
(11)

Finally, the change of integration variables from links to vector fields yields a Jacobian that can be rewritten as the usual measure term S_m in the action:

$$S_m = \frac{1}{12} N g^2 \sum_{x} \sum_{\mu} \operatorname{Tr} \{ Q_{\mu}(x) Q_{\mu}(x) \} + \cdots$$
 (12)

In $S_{\rm gh}$ and S_m we have written out only terms relevant to

 $^{^{1}1 \}times 1$ plaquette, 1×2 rectangle, 1×2 chair (bent rectangle), and $1 \times 1 \times 1$ parallelogram wrapped around an elementary 3d cube.

our computation. The full action is: $S = S_L + S_{gf} + S_{gh} + S_m$.

The bare fermion mass m_B must be set to zero for chiral invariance in the classical continuum limit. Terms proportional to r in the action, as well as the clover terms, break chiral invariance. They vanish in the classical continuum limit; at the quantum level, they induce nonvanishing, flavor-independent fermion mass corrections. Numerical simulation algorithms usually employ the hopping parameter

$$\kappa \equiv \frac{1}{2m_{\circ}a + 8r} \tag{13}$$

as an adjustable input. Its critical value, at which chiral symmetry is restored, is thus 1/8r classically, but gets shifted by quantum effects.

The renormalized mass can be calculated in textbook fashion from the fermion self-energy. Denoting by $\Sigma^{L}(p, m_{\circ}, g)$ the truncated, one particle irreducible fermion two-point function, we have for the fermion propagator:

$$S(p) = [i\not p + m(p) - \Sigma^{L}(p, m_{\circ}, g)]^{-1},$$

where: $\dot{p} = \frac{1}{a} \sum_{\mu} \gamma_{\mu} \sin(ap^{\mu}),$ (14)
 $m(p) = m_{\circ} + \frac{2r}{a} \sum_{\mu} \sin^{2}(ap^{\mu}/2).$

To restore the explicit breaking of chiral invariance, we require that the renormalized mass vanish:

$$S^{-1}(0)|_{m_o \to m_c} = 0 \Rightarrow m_c = \Sigma^L(0, m_c, g).$$
(15)

The above is a recursive equation for m_c , which can be solved order by order in perturbation theory.

We denote by dm the additive mass renormalization of m_{\circ} : $m_B = m_{\circ} - dm$. In order to obtain a zero renormalized mass, we must require $m_B \rightarrow 0$, and thus $m_{\circ} \rightarrow dm$. Consequently,

$$m_c = dm = dm_{(1-\text{loop})} + dm_{(2-\text{loop})}.$$
 (16)

At tree level, $m_c = 0$.

Two diagrams contribute to $dm_{(1-\text{loop})}$, shown in Fig. 1. In these diagrams, the fermion mass must be set to its treelevel value, $m_{\circ} \rightarrow 0$.

The quantity $dm_{(2-\text{loop})}$ receives contributions from a total of 26 diagrams, shown in Fig. 2. Genuine two-loop

FIG. 1. One-loop diagrams contributing to $dm_{(1-\text{loop})}$. Wavy (solid) lines represent gluons (fermions).

diagrams must again be evaluated at $m_{\circ} \rightarrow 0$; in addition, one must include to this order the one-loop diagram containing an $\mathcal{O}(g^2)$ mass counterterm (diagram 23).

Certain sets of diagrams, corresponding to one-loop renormalization of propagators, must be evaluated together in order to obtain an infrared convergent result: These are diagrams 7 + 8 + 9 + 10 + 11, 12 + 13, 14 + 15 + 16 + 17 + 18, 19 + 20, 21 + 22 + 23.

III. COMPUTATION AND RESULTS

Given that the dependence of m_c on the Symanzik coefficients c_i cannot be expressed in closed form, we chose certain sets of values for c_i , presented in Table I, which are in common use [11–16]: Plaquette, Symanzik (tree-level improved), Tadpole Improved Lüscher-Weisz (TILW), Iwasaki and DBW2. Actually, since the gluon propagator contains only the combinations C_1 and C_2 (Eq. (9)), all results for m_c can be recast in terms of C_1 , C_2 and one additional parameter, say, c_2 ; in this case the dependence on c_2 (at fixed C_1 , C_2) is a polynomial of second degree.

The contribution dm_l of the l^{th} one-loop diagram to dm, can be expressed as

$$dm_{l} = \frac{(N^{2} - 1)}{N}g^{2} \cdot \sum_{i=0}^{2} c_{SW}^{i} \varepsilon_{l}^{(i)}, \qquad (17)$$

where $\varepsilon_l^{(i)}$ are numerical one-loop integrals whose values depend on C_1 , C_2 . The dependence on c_{SW} is seen to be a polynomial of degree 2 (i = 0, 1, 2).

The contribution to dm from two-loop diagrams that do not contain closed fermion loops, can be written in the form

$$dm_{l} = \frac{(N^{2} - 1)}{N^{2}}g^{4} \cdot \sum_{i,j,k} c_{SW}^{i} N^{j} c_{2}^{k} e_{l}^{(i,j,k)}, \qquad (18)$$

where the index *l* runs over all contributing diagrams, j = 0, 2 and k = 0, 1, 2 (since up to two vertices from the gluon action may be present in a Feynman diagram). The dependence on c_{SW} is now a polynomial of degree 4 ($i = 0, \dots, 4$). The coefficients $e_l^{(i,j,k)}$ (as well as $\tilde{e}_l^{(i)}$ of Eq. (19) below) are two-loop numerical integrals; once again, they depend on C_1, C_2 . Finally, the contribution to dm from two-loop diagrams containing a closed fermion loop, can be expressed as

$$dm_l = \frac{(N^2 - 1)}{N} N_f g^4 \cdot \sum_{i=0}^4 c_{\rm SW}^i \tilde{e}_l^{(i)}, \qquad (19)$$

where the index l runs over diagrams 12–13, 19–20. Summing up the contributions of all diagrams, dm assumes the form

FIG. 2. Two-loop diagrams contributing to $dm_{(2-\text{loop})}$. Wavy (solid, dotted) lines represent gluons (fermions, ghosts). Crosses denote vertices stemming from the measure part of the action; a solid circle is a fermion mass counterterm.

$$dm = \sum_{l} dm_{l}$$

= $\frac{(N^{2} - 1)}{N} g^{2} \cdot \sum_{i} c_{SW}^{i} \varepsilon^{(i)} + \frac{(N^{2} - 1)}{N^{2}} g^{4}$
 $\cdot \sum_{i,j,k} c_{SW}^{i} N^{j} c_{2}^{k} e^{(i,j,k)} + \frac{(N^{2} - 1)}{N} N_{f} g^{4} \cdot \sum_{i} c_{SW}^{i} \tilde{e}^{(i)}.$
(20)

In the above, $\varepsilon^{(i)}$, $e^{(i,j,k)}$, $\tilde{e}^{(i)}$ are the sums over all contributing diagrams of the quantities: $\varepsilon_l^{(i)}$, $e_l^{(i,j,k)}$, $\tilde{e}_l^{(i)}$, respectively, (cf. Eqs. (17)–(19)).

TABLE I. Input parameters c_0 , c_1 , c_3 ($c_2 = 0$).

Action	c_0	c_1	c_3
Plaquette	1.0	0	0
Symanzik	1.666 666 7	-0.083333	0
TILW, $\beta c_0 = 8.60$	2.316 806 4	-0.151791	-0.0128098
TILW, $\beta c_0 = 8.45$	2.346 024 0	-0.154846	-0.0134070
TILW, $\beta c_0 = 8.30$	2.386 977 6	-0.159128	-0.0142442
TILW, $\beta c_0 = 8.20$	2.4127840	-0.161827	-0.0147710
TILW, $\beta c_0 = 8.10$	2.4465400	-0.165353	-0.0154645
TILW, $\beta c_0 = 8.00$	2.489 171 2	-0.169805	-0.0163414
Iwasaki	3.648	-0.331	0
DBW2	12.2688	-1.4086	0

TWO-LOOP ADDITIVE MASS RENORMALIZATION WITH

The coefficients $\varepsilon^{(i)}$ lead to the total contribution of oneloop diagrams. Their values are listed in Table II, for the ten sets of c_i values shown in Table I. Similarly, results for the coefficients $e^{(i,j,k)}$ and $\tilde{e}^{(i)}$ corresponding to the total contribution of two-loop diagrams, are presented in Tables III, IV, V, VI, and VII.

In order to enable cross-checks and comparisons, numerical per-diagram values of the constants $\varepsilon_l^{(i)}$, $e_l^{(i,j,k)}$, and $\tilde{e}_l^{(i)}$ are presented in Tables VIII, IX, X, XI, and XII,

for the case of the Iwasaki action. For economy of space, several vanishing contributions to these constants have simply been omitted. A similar breakdown for other actions can be obtained from the authors upon request.

The total contribution of one-loop diagrams, for N = 3, can be written as a function of the clover parameter c_{SW} . In the case of the Plaquette, Iwasaki, and DBW2 actions, we find, respectively:

TABLE II. T	otal contr	ribution o	of one-loop	diagrams.
-------------	------------	------------	-------------	-----------

Action	$oldsymbol{arepsilon}^{(0)}$	$oldsymbol{arepsilon}^{(1)}$	$\mathbf{\epsilon}^{(2)}$
Plaquette	-0.1628570582(5)	0.043 483 033 9(1)	0.018 095 768 75(4)
Symanzik	-0.12805490528(8)	0.037 831 493 1(2)	0.01476335801(5)
TILW (8.60)	-0.10821568768(4)	0.034 085 602 32(6)	0.01265991972(4)
TILW (8.45)	-0.10749185625(3)	0.033 940 937 5(1)	0.012 581 088 95(1)
TILW (8.30)	-0.1064962872(3)	0.0337409869(2)	0.012 472 434 543(4)
TILW (8.20)	-0.1058799831(2)	0.033 616 637 2(1)	0.012 405 041 6(1)
TILW (8.10)	-0.1050866191(1)	0.033 455 916 21(5)	0.012 318 127 134(5)
TILW (8.00)	-0.10410447893(3)	0.033 255 936 31(8)	0.012 210 297 749(7)
Iwasaki	-0.08255435613(4)	0.028 545 138 7(1)	0.009 834 908 67(5)
DBW2	-0.0364526623(2)	0.015 816 574 12(5)	0.004 280 099 253(2)

TABLE III. Total contribution of two-loop diagrams of order $\mathcal{O}(N^2, c_2^0)$.

Action	$e^{(0,2,0)}$	$e^{(1,2,0)}$	$e^{(2,2,0)}$	$e^{(3,2,0)}$	$e^{(4,2,0)}$
Plaquette	-0.01753602(2)	0.002 599 63(2)	-0.000155894(8)	-0.000163242(2)	-0.00001721759(2)
Symanzik	-0.00810366(1)	0.000 950 46(2)	-0.000404510(9)	-0.000107348(2)	-0.00001275904(1)
TILW (8.60)	-0.00437013(7)	0.000 194 03(5)	-0.00045894(1)	-0.000078117(3)	-0.00001020820(1)
TILW (8.45)	-0.004 255 75(7)	0.000 169 78(6)	-0.00045962(1)	-0.000077102(3)	-0.00001011451(1)
TILW (8.30)	-0.00410086(7)	0.000 136 82(7)	-0.00046040(1)	-0.000075713(3)	-0.00000998564(1)
TILW (8.20)	-0.00400636(6)	0.000 116 66(8)	-0.00046080(1)	-0.000074857(3)	-0.00000990584(1)
TILW (8.10)	-0.00388630(6)	0.000 090 97(9)	-0.00046123(1)	-0.000073760(3)	-0.00000980314(1)
TILW (8.00)	-0.00374009(6)	0.000 059 58(9)	-0.000461601(9)	-0.000072410(3)	-0.00000967600(1)
Iwasaki	-0.00112957(2)	-0.00052964(6)	-0.000436966(5)	-0.000045009(3)	-0.00000682353(1)
DBW2	0.000 848 1(2)	-0.000 853 01(8)	-0.00018540(1)	-0.000006164(3)	-0.000 001 735 02(3)

TABLE IV. Total contribution of two-loop diagrams of order $\mathcal{O}(N^0, c_2^0)$.

Action	$e^{(0,0,0)}$	$e^{(1,0,0)}$	$e^{(2,0,0)}$	$e^{(3,0,0)}$	$e^{(4,0,0)}$
Plaquette	0.016 566 33(2)	-0.00055904(1)	0.002 622 771(7)	0.000 158 125(2)	0.000 042 826 74(2)
Symanzik	0.006 056 56(1)	0.000 935 801(6)	0.002 120 980(9)	0.000 104 973(2)	0.000 029 715 53(1)
TILW (8.60)	0.002 026 37(3)	0.001 578 90(3)	0.001 790 242(9)	0.000 076 167(2)	0.000 022 606 69(1)
TILW (8.45)	0.001 907 29(3)	0.001 598 00(3)	0.001 777 415(9)	0.000 075 164(3)	0.000 022 356 03(1)
TILW (8.30)	0.001 746 66(3)	0.001 623 75(2)	0.001 759 689(9)	0.000 073 791(3)	0.000 022 012 43(1)
TILW (8.20)	0.001 649 01(3)	0.001 639 39(2)	0.001 748 661(9)	0.000 072 944(3)	0.000 021 800 41(1)
TILW (8.10)	0.001 525 32(3)	0.001 659 17(2)	0.001 734 421(9)	0.000 071 859(3)	0.000 021 528 26(1)
TILW (8.00)	0.001 375 35(4)	0.001 683 10(3)	0.00171671(1)	0.000 070 522(3)	0.000 021 192 59(1)
Iwasaki	-0.00103022(1)	0.002 032 54(1)	0.001 313 076(3)	0.000 043 949(3)	0.000 014 233 24(1)
DBW2	-0.001 896 1(2)	0.001 613 0(3)	0.000 413 397(9)	0.000 005 057(3)	0.000 003 074 80(3)

TABLE V. Total contribution of two-loop diagrams containing closed fermion loops.

Action	$ ilde{e}^{(0)}$	$ ilde{e}^{(1)}$	$ ilde{e}^{(2)}$	$ ilde{e}^{(3)}$	$ ilde{e}^{(4)}$
Plaquette	0.001 186 21(2)	-0.000546197(8)	0.001 365 146(9)	-0.000692228(3)	-0.00019809791(7)
Symanzik	0.000 814 96(1)	-0.000448276(6)	0.001 041 379(8)	-0.000574521(3)	-0.0001453370(2)
TILW (8.60)	0.000 636 43(1)	-0.000389464(5)	0.000 857 737(3)	-0.000500011(5)	-0.0001148491(1)
TILW (8.45)	0.000 630 33(1)	-0.000387269(5)	0.000 851 127(3)	-0.000497194(5)	-0.0001137544(1)
TILW (8.30)	0.000 621 98(1)	-0.000384243(5)	0.000 842 047(3)	-0.000493307(5)	-0.0001122515(1)
TILW (8.20)	0.00061684(1)	-0.000382366(5)	0.000 836 433(3)	-0.000490894(5)	-0.0001113227(1)
TILW (8.10)	0.00061025(1)	-0.000379946(5)	0.000 829 214(4)	-0.000487781(4)	-0.0001101288(1)
TILW (8.00)	0.000 602 14(1)	-0.000376945(5)	0.000 820 289(4)	-0.000483915(4)	-0.0001086536(1)
Iwasaki	0.000 435 46(1)	-0.00030800(1)	0.000 629 274(8)	-0.000395294(3)	-0.0000779538(3)
DBW2	0.000 158 33(3)	-0.000 148 83(4)	0.000 247 56(2)	-0.00018242(5)	-0.000 021 359 5(6)

TABLE VI. Total contribution of two-loop diagrams containing the parameter c_2 (part 1).

Action	$e^{(0,0,1)}$	$e^{(1,0,1)}$	$e^{(2,0,1)}$	$e^{(0,2,1)}$	$e^{(1,2,1)}$
Plaquette	0.077 167(3)	-0.019808(3)	-0.008 541 5(2)	-0.047 102(4)	0.010439(3)
Symanzik	0.034 929(2)	-0.010895(2)	-0.0041454(2)	-0.017940(2)	0.004 491(2)
TILW (8.60)	0.020247(1)	-0.007117(2)	-0.0024559(1)	-0.008702(1)	0.002 251(1)
TILW (8.45)	0.019816(1)	-0.006998(2)	-0.0024050(1)	-0.008448(1)	0.002 185(1)
TILW (8.30)	0.019 235(1)	-0.006835(2)	-0.0023362(1)	-0.0081078(6)	0.002 097 3(9)
TILW (8.20)	0.018 881(1)	-0.006736(2)	-0.0022942(1)	-0.0079023(7))	0.002 044(1)
TILW (8.10)	0.018433(1)	-0.006609(2)	-0.0022410(1)	-0.0076431(9)	0.001 976 1(8)
TILW (8.00)	0.017 888(1)	-0.006454(2)	-0.0021762(1)	-0.0073300(6)	0.001 894 0(6)
Iwasaki	0.0087615(7)	-0.003656(1)	-0.001 078 56(8)	-0.0027484(4)	0.0006646(5)
DBW2	0.0007907(2)	-0.000 488 9(3)	-0.00008343(2)	0.000 130 8(2)	-0.000 158 7(3)

TABLE VII. Total contribution of two-loop diagrams containing the parameter c_2 (part 2).

Action	$e^{(2,2,1)}$	$e^{(3,2,1)}$	$e^{(0,2,2)}$	$e^{(1,2,2)}$	$e^{(2,2,2)}$
Plaquette	0.003 924 5(3)	-0.0000842143(1)	-0.09448252(9)	0.027 559 93(3)	0.010 521 016(1)
Symanzik	0.001 462 2(1)	-0.0000454986(1)	-0.03417549(2)	0.012 489 53(1)	0.004 104 789 1(2)
TILW (8.60)	0.000 647 2(1)	-0.00002872341(6)	-0.017374635(6)	0.007 205 477(3)	0.002 121 844 3(2)
TILW (8.45)	0.000 625 1(1)	-0.00002818123(6)	-0.016917713(6)	0.007 049 188(2)	0.002 066 619 2(2)
TILW (8.30)	0.000 595 4(1)	-0.00002744385(5)	-0.016304614(5)	0.006 838 088(3)	0.001 992 404 7(3)
TILW (8.20)	0.000 577 5(1)	-0.00002699223(5)	-0.015933835(5)	0.006709626(4)	0.001 947 460 4(2)
TILW (8.10)	0.000 555 0(1)	-0.00002641646(5)	-0.015466270(5)	0.006 546 741(4)	0.001 890 712 1(3)
TILW (8.00)	0.000 527 9(1)	-0.00002571231(5)	-0.014902324(4)	0.006 348 924(5)	0.001 822 164 3(3)
Iwasaki	0.000 157 19(6)	-0.00001249281(2)	-0.00596123(2)	0.002 955 02(1)	0.0007286816(4)
DBW2	-0.00002436(1)	-0.00000050404(9)	-0.00028731(2)	0.000 203 17(4)	0.000 027 881 0(8)

TABLE VIII. Contribution of one-loop diagrams, for the Iwasaki action.

i	$arepsilon_1^{(i)}$	$oldsymbol{arepsilon}_2^{(i)}$
0	-0.05602636832(2)	-0.02652798781(3)
1	0	0.028 545 138 7(1)
2	0	0.009 834 908 67(5)

$$dm_{(1-\text{loop})}^{\text{Plaquette}} = g^2(-0.434\,285\,489(1) + 0.115\,954\,757\,0(3)c_{\text{SW}} + 0.048\,255\,383\,3(1)c_{\text{SW}}^2),\tag{21}$$

 $dm_{(1-\text{loop})}^{\text{Iwasaki}} = g^2(-0.220\,144\,949\,7(1) + 0.076\,120\,369\,8(3)c_{\text{SW}} + 0.026\,226\,423\,1(1)c_{\text{SW}}^2),\tag{22}$

$$dm_{(1-\text{loop})}^{\text{DBW2}} = g^2(-0.097\,207\,099\,5(5) + 0.042\,177\,531\,0(1)c_{\text{SW}} + 0.011\,413\,598\,01(1)c_{\text{SW}}^2).$$
(23)

The second of the second of the second determines of the second determi	TABLE IX.	Contribution	of diagrams	3, 4, 0	6, for	the	Iwasaki	action.
--	-----------	--------------	-------------	---------	--------	-----	---------	---------

i	j	k	$e_3^{(i,j,k)}$	$e_4^{(i,j,k)}$	$e_6^{(i,j,k)}$
0	0	0	-0.000 392 368 6(9)	-0.000743134(3)	-0.0000714882(8)
0	2	0	0.000 261 579 1(6)	0.000 495 422(2)	0.000 035 744 1(4)
1	0	0	0	0.001 900 337(2)	0
1	2	0	0	0.001 777 441 0(9)	0
2	0	0	0	-0.0010339720(2)	0
2	2	0	0	-0.001 041 123(1)	0.000 279 923 8(4)

TABLE X. Contribution of diagrams 7-11, 14-18, 24, 26, for the Iwasaki action.

i	j	k	$e_{7-11}^{(i,j,k)}$	$e_{14-18}^{(i,j,k)}$	$e_{24}^{(i,j,k)}$	$e_{26}^{(i,j,k)}$
0	0	0	0.000 428 02(1)	-0.000195263(2)	0	0
0	0	1	0.0057103(7)	0.003 051 2(2)	0	0
0	2	0	-0.00111995(2)	-0.00029748(1)	0	-0.000298742(2)
0	2	1	-0.0022472(3)	-0.0008718(2)	0	0.000 370 589 3(7)
0	2	2	-0.00371263(2)	-0.00224859(1)	0	0
1	0	0	0	0.000 645 34(1)	0	0
1	0	1	0	-0.003656(1)	0	0
1	2	0	0	0.000 110 79(6)	-0.000144897(2)	0.000 429 899(1)
1	2	1	0	0.000 645 0(5)	0.000 248 682(4)	-0.00022905(1)
1	2	2	0	0.002 955 02(1)	0	0
2	0	0	0	-0.000000974(1)	0	0
2	0	1	0	-0.00107856(8)	0	0
2	2	0	0	0.000 141 960(3)	0.000 042 314(2)	0.000 330 308 5(7)
2	2	1	0	0.000 395 46(6)	0.000 029 093 98(7)	-0.000267364(2)
2	2	2	0	0.0007286816(4)	0	0
3	2	0	0	0	0	-0.000019835(1)
3	2	1	0	0	0	-0.00001249281(2)

TABLE XI. Contribution of diagrams 12, 13, 19, 20, for the Iwasaki action.

i	$\tilde{e}_{12-13}^{(i)}$	${ ilde e}_{19-20}^{(i)}$
0	0.000 261 920(6)	0.000 173 538(9)
1	-0.0000308339(1)	-0.00027717(1)
2	0.000 370 942(2)	0.000 258 332(8)
3	0	-0.000395294(3)
4	0	-0.0000779538(3)

TABLE XII. Contribution of diagrams 21-23, 25, 27, 28, for the Iwasaki action.

i	j	k	$e_{21-23}^{(i,j,k)}$	$e_{25}^{(i,j,k)}$	$e_{27}^{(i,j,k)}$	$e_{28}^{(i,j,k)}$
0	0	0	0.000 373 419(3)	-0.000158621(4)	-0.000 094 848(3)	-0.0001759336(5)
0	2	0	-0.000373419(3)	0.000 079 311(2)	0	0.000 087 966 8(3)
1	0	0	-0.000887295(1)	0.000 139 681 9(4)	0.000 045 158(4)	0.000 189 311 3(5)
1	2	0	0.000 887 295(1)	0.000 085 189(2)	0	-0.000120480(1)
2	0	0	0.000 194 437(1)	-0.0000319392(3)	0.000 168 506(2)	-0.0000509266(2)
2	2	0	-0.000194437(1)	-0.000005787(2)	0	0.000 009 875 8(1)
3	0	0	0.000 059 183(3)	0	-0.000015234(1)	0
3	2	0	-0.000059183(3)	0.000 017 202 2(5)	0	0.000 016 807 2(6)
4	0	0	0.000 006 823 53(1)	0	0.000 007 409 712(6)	0
4	2	0	-0.00000682353(1)	0	0	0

A similar process can be followed for two-loop diagrams. In this case, we set N = 3, $c_2 = 0$ and we use three different values for the flavor number: $N_f = 0, 2, 3$. Thus, for the Plaquette, Iwasaki, and DBW2 actions, the total contribution is, respectively:

$$N_f = 0: \ dm_{(2-\text{loop})}^{\text{Plaquette}} = g^4 (-0.125\,562\,6(2) + 0.020\,300\,1(2)c_{\text{SW}} + 0.001\,084\,20(7)c_{\text{SW}}^2 - 0.001\,165\,38(2)c_{\text{SW}}^3 - 0.000\,099\,672\,5(1)c_{\text{SW}}^4)$$
(24)

$$N_f = 2: dm_{(2-\text{loop})}^{\text{Plaquette}} = g^4 (-0.119\,236\,1(2) + 0.017\,387\,0(2)c_{\text{SW}} + 0.008\,364\,98(8)c_{\text{SW}}^2 - 0.004\,857\,27(3)c_{\text{SW}}^3 - 0.001\,156\,194\,7(4)c_{\text{SW}}^4),$$
(25)

$$N_f = 3: dm_{(2-\text{loop})}^{\text{Plaquette}} = g^4 (-0.116\,072\,9(2) + 0.015\,930\,5(2)c_{\text{SW}} + 0.012\,005\,4(1)c_{\text{SW}}^2 - 0.006\,703\,21(3)c_{\text{SW}}^3 - 0.001\,684\,455\,8(6)c_{\text{SW}}^4),$$
(26)

$$N_f = 0: dm_{(2-\text{loop})}^{\text{Iwasaki}} = g^4 (-0.009\,952\,3(2) - 0.002\,430\,4(5)c_{\text{SW}} - 0.002\,328\,55(4)c_{\text{SW}}^2 - 0.000\,321\,00(2)c_{\text{SW}}^3 - 0.000\,041\,936\,5(1)c_{\text{SW}}^4),$$
(27)

$$N_f = 2: \ dm_{(2-\text{loop})}^{\text{Iwasaki}} = g^4 (-0.007\ 629\ 9(2) - 0.004\ 073\ 1(5)c_{\text{SW}} + 0.001\ 027\ 58(6)c_{\text{SW}}^2 - 0.002\ 429\ 24(3)c_{\text{SW}}^3 - 0.000\ 457\ 690(2)c_{\text{SW}}^4),$$

$$(28)$$

$$N_f = 3: dm_{(2-\text{loop})}^{\text{Iwasaki}} = g^4 (-0.006\,468\,7(2) - 0.004\,894\,4(5)c_{\text{SW}} + 0.002\,705\,65(7)c_{\text{SW}}^2 - 0.003\,483\,35(3)c_{\text{SW}}^3 - 0.000\,665\,567(2)c_{\text{SW}}^4),$$
(29)

$$N_f = 0: dm_{(2-\text{loop})}^{\text{DBW2}} = g^4 (+0.005\,099(2) - 0.005\,390\,3(7)c_{\text{SW}} - 0.001\,115\,7(1)c_{\text{SW}}^2 - 0.000\,044\,82(2)c_{\text{SW}}^3 - 0.000\,011\,147\,0(2)c_{\text{SW}}^4),$$
(30)

$$N_f = 2: dm_{(2-\text{loop})}^{\text{DBW2}} = g^4 (+0.005\,944(2) - 0.006\,184\,0(7)c_{\text{SW}} + 0.000\,204\,6(2)c_{\text{SW}}^2 - 0.001\,017\,7(3)c_{\text{SW}}^3 - 0.000\,125\,065(3)c_{\text{SW}}^4),$$
(31)

$$N_f = 3: dm_{(2-\text{loop})}^{\text{DBW2}} = g^4 (+0.006\,366(2) - 0.006\,580\,9(7)c_{\text{SW}} + 0.000\,864\,8(2)c_{\text{SW}}^2 - 0.001\,504\,2(4)c_{\text{SW}}^3 - 0.000\,182\,023(5)c_{\text{SW}}^4).$$
(32)

FIG. 3 (color online). Total contribution of two-loop diagrams, for N = 3, $N_f = 0$, and $c_2 = 0$. Legends appear in the same top-to-bottom order as the corresponding lines.

FIG. 4 (color online). Total contribution of two-loop diagrams, for N = 3, $N_f = 2$, and $c_2 = 0$. Legends appear in the same top-to-bottom order as the corresponding lines.

FIG. 5 (color online). Total contribution of two-loop diagrams, for N = 3, $N_f = 3$, and $c_2 = 0$. Legends appear in the same top-to-bottom order as the corresponding lines.

In Figs. 3–5 we present the values of $dm_{(2-\text{loop})}$ for $N_f = 0, 2, 3$, respectively; the results are shown for all choices of Symanzik actions which we have considered, as a function of c_{SW} ($N = 3, c_2 = 0$). In all cases, the dependence on c_{SW} is rather mild. One observes that $dm_{(2-\text{loop})}$ is significantly smaller for all improved actions, as compared to the plaquette action; in particular, in the case of DBW2, $dm_{(2-\text{loop})}$ is closest to zero and it vanishes exactly around $c_{\text{SW}} = 1$.

Another feature of these results is that they change only slightly with N_f , especially in the range $c_{SW} < 1.5$. This is due to the small contributions of diagrams with closed fermion loops (diagrams 12, 13, 19, 20). By the same token, in the case of nondegenerate flavors, $dm_{(2-\text{loop})}$ is expected to depend only weakly on the mass of the virtual fermion.

IV. IMPROVED PERTURBATION THEORY

We now apply our method of improving perturbation theory [7–9], based on resummation of an infinite subset of tadpole diagrams, termed "cactus" diagrams. In Ref. [9] we show how this procedure can be applied to any action of the type we are considering here, and it provides a simple, gauge invariant way of dressing, to all orders, perturbative results at any given order (such as the one- and two-loop results of the present calculation). Some alternative ways of improving perturbation theory have been proposed in Refs. [17,18]. In a nutshell, our procedure involves replacing the original values of the Symanzik and clover coefficients by improved values, which are explicitly computed in [9]. Applying at first this method to one-loop diagrams, the improved ("dressed") value dm^{dr} of the critical mass $(N = 3, c_2 = 0)$ can be written as

$$dm_{(1-\text{loop})}^{\text{dr}} = \sum_{i=0}^{2} \varepsilon_{\text{dr}}^{(i)} c_{\text{SW}}^{i}.$$
(33)

In comparing with $\varepsilon^{(i)}$ of Eq. (20), the quantity $\varepsilon^{(i)}_{dr}$ is the result of one-loop Feynman diagrams with dressed values for the Symanzik parameters, and it has already been multiplied by $g^2(N^2 - 1)/N$. The dependence of $\varepsilon^{(i)}_{dr}$ on *g* is quite complicated now, and cannot be given in closed form; instead $\varepsilon^{(i)}_{dr}$ must be computed numerically for particular choices of *g*. Listed in Table XIII are the results for $\varepsilon^{(i)}_{dr}$ along with the value of $\beta = 2N/g^2$ corresponding to each one of the 16 actions used in this calculation.

An attractive feature of this improvement procedure is that it can be applied also to higher-loop perturbative results, with due care to avoid double counting of the cactus diagrams which were already included at one loop. Ideally, of course, one-loop improvement should al-

Action	β	$oldsymbol{arepsilon}_{ m dr}^{(0)}$	$oldsymbol{arepsilon}_{ m dr}^{(1)}$	$m{arepsilon}_{ m dr}^{(2)}$
Plaquette	6.00	-0.579 221 119(2)	0.115 954 757 0(3)	0.036 180 677 88(9)
Symanzik	5.00	-0.4869797578(8)	0.112 136 999 9(4)	0.035 386 053 57(4)
Symanzik	5.07	-0.478756110(2)	0.11072412996(5)	0.035 072 383 06(5)
Symanzik	6.00	-0.3915226522(2)	0.094 796 200 1(5)	0.031 241 384 29(9)
TILW (8.60)	3.7120	-0.5358770348(7)	0.126 591 763 8(3)	0.038 139 638 51(4)
TILW (8.45)	3.6018	-0.5497415338(3)	0.129 110 464 4(3)	0.038 633 711 3(1)
TILW (8.30)	3.4772	-0.5651407386(9)	0.131 926 376 9(1)	0.039 169 506 9(1)
TILW (8.20)	3.3985	-0.5756111531(9)	0.133 793 755 8(7)	0.039 517 130 46(7)
TILW (8.10)	3.3107	-0.5870122772(4)	0.135 843 782 5(6)	0.039 889 914 3(3)
TILW (8.00)	3.2139	-0.599415804(1)	0.138 085 996(2)	0.040 287 713 3(4)
Iwasaki	1.95	-0.757856451(1)	0.167 100 781 9(8)	0.044746728234(1)
Iwasaki	2.20	-0.6555102085(5)	0.153 774 819 3(6)	0.042 931 836 56(3)
Iwasaki	2.60	-0.541348980(1)	0.135 988 244 0(3)	0.039 676 264 95(6)
DBW2	0.6508	-0.7749943512(7)	0.184 724 488 9(1)	0.047 317 178 66(3)
DBW2	0.8700	-0.574781578(1)	0.157 568 840 9(9)	0.04281261980(1)
DBW2	1.0400	-0.4822863343(9)	0.141 249 923 0(5)	0.039 186 543 574(5)

TABLE XIII. Results for $dm_{(1-\text{loop})}^{\text{dr}}$ (Eq. (33)), with N = 3.

PHYSICAL REVIEW D 77, 014513 (2008)

FIG. 6 (color online). Improved and unimproved values of dm up to two loops, as a function of c_{SW} , for the plaquette action ($\beta = 5.29$, N = 3, $N_f = 2$).

FIG. 7 (color online). Improved and unimproved values of dm up to two loops, as a function of c_{SW} , for the Iwasaki action ($\beta = 1.95$, N = 3, $N_f = 2$).

ready be adequate enough, so as to obviate the need to consider higher loops; indeed, we find this to be the case and, consequently, we limit our discussion of two-loop improvement to only the plaquette action ($\beta = 5.29$, N = 3, $N_f = 2$), the Iwasaki action ($\beta = 1.95$, N = 3,

 $N_f = 2$), and the DBW2 action ($\beta = 0.87$ and $\beta = 1.04$, N = 3, $N_f = 2$). Using these values, the contribution to $dm_{(2-\text{loop})}^{\text{dr}}$ is a polynomial in c_{SW} :

$$dm_{(2-\text{loop}),\text{plaquette}}^{\text{dr}} = -0.773\,98(8) + 0.163\,30(4)c_{\text{SW}} + 0.062\,245\,34(1)c_{\text{SW}}^2 - 0.004\,400\,6(9)c_{\text{SW}}^3 - 0.000\,737\,80(6)c_{\text{SW}}^4,$$
(34)

$$dm_{(2\text{-loop}),\text{Iwasaki}}^{\text{dr}} = -0.081\,330\,2(9) + 0.043\,030(3)c_{\text{SW}} + 0.030\,819\,6(2)c_{\text{SW}}^2 - 0.007\,670\,90(8)c_{\text{SW}}^3 - 0.001\,160\,923(1)c_{\text{SW}}^4,$$
(35)

$$dm_{(2-\text{loop}),\text{DBW2}(\beta=0.87)}^{\text{dr}} = -0.044\,906(1) + 0.029\,449(4)c_{\text{SW}} + 0.023\,952\,2(2)c_{\text{SW}}^2 - 0.008\,223\,1(1)c_{\text{SW}}^3 - 0.001\,218\,955(4)c_{\text{SW}}^4,$$

$$dm_{(2-\text{loop}),\text{DBW2}(\beta=1.04)}^{\text{dr}} = -0.031\,260(1) + 0.021\,793(2)c_{\text{SW}} + 0.018\,802\,7(2)c_{\text{SW}}^2 - 0.007\,052\,84(9)c_{\text{SW}}^3$$
$$- 0.001\,055\,657(1)c_{\text{SW}}^4.$$

The comparison between the total dressed contribution $dm^{dr} = dm_{(1-\text{loop})}^{dr} + dm_{(2-\text{loop})}^{dr}$ and the unimproved contribution, dm, for the plaquette action is exhibited in Fig. 6, as a function of c_{SW} . Similarly, dm^{dr} for the Iwasaki and the DBW2 actions is shown in Figs. 7 and 8, respectively.

Finally, in Table XIV, we present a comparison of dressed and undressed results, for some commonly used values of β , N_f , c_{SW} , and we also compare with available nonperturbative estimates for κ_c [10,19–22]. We observe that improved perturbation theory, applied to one-loop results, already leads to a much better agreement with the nonperturbative estimates.

V. DISCUSSION

(36)

(37)

To recapitulate, in this paper we have calculated the critical mass m_c , and the associated critical hopping parameter κ_c , up to two loops in perturbation theory, using the clover action for fermions and the Symanzik improved gluon action with 4- and 6-link loops. The perturbative value of m_c is a necessary ingredient in the higher-loop renormalization of operators, in mass independent schemes: Such renormalizations are typically defined and calculated at vanishing renormalized mass, which amounts to setting the Lagrangian mass equal to m_c .

FIG. 8 (color online). Improved and unimproved values of dm up to two loops, as a function of c_{SW} , for the DBW2 action (N = 3, $N_f = 2$). We set $\beta = 0.87$ (solid lines) and $\beta = 1.04$ (dotted lines).

In our calculations, we have chosen for the Symanzik coefficients c_i a wide range of values, which are most commonly used in numerical simulations. The dependence of our results on the number of colors N and the number of fermion flavors N_f is shown explicitly. The dependence on the clover parameter c_{SW} is in the form of a fourth degree polynomial whose coefficients we compute explicitly; it is expected, of course, that the most relevant values for c_{SW} are those optimized for $\mathcal{O}(a)$ improvement, either at tree level ($c_{SW} = 1$), or at one loop [1], or nonperturbatively [10].

Since m_c is gauge invariant, we chose to calculate it in the Feynman gauge. The propagator appearing in Feynman diagrams is the inverse of a nondiagonal matrix; while this inverse can be written down explicitly, it is more convenient, and more efficient in terms of CPU time, to perform the inversion numerically. Integrations over loop momenta were performed as momentum sums on lattices of finite size *L*, where typically $L \leq 40$; extrapolation to $L \rightarrow \infty$ introduces a systematic error, which we estimate quite accurately.

Our results for m_c are significantly closer to zero in the case of Symanzik improved actions, as compared to the plaquette action. In particular, the DBW2 action stands out among the rest, in that m_c vanishes exactly for a value of c_{SW} around 1. Thus, improved actions seem to bring us quite near the point of chiral symmetry restoration. The dependence of m_c on the number of flavors is seen to be very mild. This fact would also suggest that, in the case of nondegenerate flavors, m_c should depend only weakly on the mass of the virtual fermion.

Finally, we have made some comparisons among perturbative and nonperturbative results for κ_c . While these are expected to differ for a power divergent additive renormalization, such as the quantity under study, we nevertheless find a reasonable agreement. This agreement is further enhanced upon using an improved perturbative scheme, which entails resumming, to all orders in the coupling constant, a dominant subclass of tadpole diagrams. The method, originally proposed for the Plaquette action (see Ref. [7]), was extended in Ref. [9] to encompass all possible gluon actions made of closed Wilson loops, and can be applied at any given order in perturbation theory. As would be desirable, one-loop improvement is seen to be already adequate to give a reasonable agreement among perturbative and nonperturbative values. Indeed, our results for $\kappa_{1-\text{loop}}^{\text{dr}}$ are significantly closer to the nonperturbative evaluations, as shown in Table XIV; in fact, the two-loop dressing procedure introduces no further improvement to the comparison.

ACKNOWLEDGMENTS

This work is supported in part by the Research Promotion Foundation of Cyprus (Proposal No. ENTA $\Xi/0504/11$ and No. ENI $\Sigma X/0505/45$).

Action	N_f	β	$c_{\rm SW}$	$\kappa_{1-\text{loop}}$	$\kappa_{2-\text{loop}}$	$\kappa_{1-\text{loop}}^{\text{dr}}$	$\kappa_{2-\text{loop}}^{\text{dr}}$	$\kappa_c^{\text{non-pert}}$ [Ref.]
Plaquette	0	6.00	1.479	0.1301	0.1335	0.1362	0.1362	0.1392 [19]
Plaquette	0	6.00	1.769	0.1275	0.1306	0.1337	0.1332	0.1352 [10]
Plaquette	2	5.29	1.9192	0.1262	0.1307	0.1353	0.1341	0.1373 [20] 0.1363 [21]
Iwasaki	2	1.95	1.53	0.1292	0.1368	0.1388	0.1379	0.1421 [22]
TILW (8.60)	0	3.7120	1.0	0.1339	0.1370	0.1378	0.1384	
TILW (8.00)	0	3.2139	1.0	0.1348	0.1387	0.1397	0.1406	
DBW2	2	0.87	0.0	0.1502	0.1384	0.1460	0.1479	
DBW2	2	0.87	1.0	0.1352	0.1372	0.1379	0.1379	
DBW2	2	1.04	0.0	0.1454	0.1375	0.1421	0.1434	
DBW2	2	1.04	1.0	0.1334	0.1348	0.1352	0.1352	

TABLE XIV. One- and two-loop results, and nonperturbative estimates for κ_c .

- B. Sheikholeslami and R. Wohlert, Nucl. Phys. **B259**, 572 (1985).
- [2] K. Symanzik, Nucl. Phys. B226, 187 (1983); B226, 205 (1983).
- [3] A. Skouroupathis and H. Panagopoulos, Phys. Rev. D **76**, 094514 (2007).
- [4] E. Follana and H. Panagopoulos, Phys. Rev. D **63**, 017501 (2000).
- [5] H. Panagopoulos and Y. Proestos, Phys. Rev. D **65**, 014511 (2001).
- [6] S. Caracciolo, A. Pelissetto, and A. Rago, Phys. Rev. D 64, 094506 (2001).
- [7] H. Panagopoulos and E. Vicari, Phys. Rev. D 58, 114501 (1998).
- [8] H. Panagopoulos and E. Vicari, Phys. Rev. D 59, 057503 (1999).
- [9] M. Constantinou, H. Panagopoulos, and A. Skouroupathis, Phys. Rev. D 74, 074503 (2006).
- [10] M. Lüscher et al., Nucl. Phys. B491, 323 (1997).
- [11] M. Lüscher and P. Weisz, Phys. Lett. B 158, 250 (1985).

- [12] Y. Iwasaki, University of Tsukuba Report No. UTHEP-118, 1983.
- [13] K. Symanzik, Nucl. Phys. B226, 187 (1983).
- [14] M. Lüscher and P. Weisz, Commun. Math. Phys. 97, 59 (1985); 98, 433(E) (1985).
- [15] M.G. Alford et al., Phys. Lett. B 361, 87 (1995).
- [16] T. Takaishi, Phys. Rev. D 54, 1050 (1996).
- [17] G. Parisi, in *Proceedings of the 20th International Conference on High Energy Physics, Madison, 1980*, edited by L. Durand and L. G. Pondrom (AIP, New York, 1981).
- [18] G. P. Lepage and P. B. Mackenzie, Phys. Rev. D 48, 2250 (1993).
- [19] K. C. Bowler *et al.* (UKQCD Collaboration), Phys. Rev. D 62, 054506 (2000).
- [20] C. R. Allton *et al.* (UKQCD Collaboration), Phys. Rev. D 65, 054502 (2002).
- [21] M. Della Morte *et al.* (ALPHA Collaboration), J. High Energy Phys. 07 (2005) 007.
- [22] A. Ali Khan *et al.* (CP-PACS Collaboration), Phys. Rev. D 65, 054505 (2002); 67, 059901(E) (2003).