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I. INTRODUCTION

The lattice approach to QCD pioneered by Wilson [1]
and first realized numerically by Creutz [2] is based on the
QCD action. Moreover, it has been mainly developed in a
Euclidean path-integral formulation. In contrast to that,
Hamiltonian techniques have remained less studied. With
the Hamiltonian, one can project out the correct ground
state by evolving an initial wave functional in imaginary
time. In continuum theory, some progress has been made
recently in the nonperturbative regime [3–5]. According to
these circumstances there have been only few contacts
between lattice QCD and light cone field theory (LCFT).

There is no doubt that LCFT is an important tool for the
description of high energy interactions. The knowledge of
wave functionals in the gauge field configuration space
may help to calculate light cone wave functions of hadrons.
In the following paper we attempt to take advantage of
lattice methods in LCFT (for previous work, see [6–9]).
Although the Hamiltonian is not Lorentz invariant, the
light cone Hamiltonian [8,10] offers the advantage of being
boost invariant and has—naively interpreted—a trivial
vacuum. On the other hand, one would be surprised if
QCD looses its nonperturbative vacuum structure in the
light cone limit. In our opinion much of the complicated
vacuum structure of QCD is hidden in the constraint equa-
tions appearing in light cone QCD. The constraint equa-
tions contain zero mode solutions which are difficult to
solve. These quantum constraint equations have been at-

tacked in lower dimensions for scalar theories, but gauge
theories still escape a solution in higher dimensions. In
Nambu Jona Lasinio models [11] one has been able to
solve these zero mode equations in the large Nc
approximation.

A quantization of scalar light cone field theory on the
lattice has been first analyzed in Ref. [6] where also the
time coordinate has been discretized. In this reference,
special care has been devoted to the constraints which arise
on the light cone. This approach has not found applica-
tions. In particular, it is not easily extendable to gauge
theories.

Remarkable progress has been made in light cone QCD
with a color dielectric lattice theory as a starting point
[7,9,12]. This approach is based on ‘‘fat’’ links which arise
from averaging gluon configurations by a block spinning
procedure [13,14]. With this method the spectrum of glue
balls and the pion light cone wave function have been
calculated [15]. In a Lagrangian framework the connection
to the original QCD Lagrangian can be easily made,
although the numerical accuracy is limited. On the light
cone, however, one is prevented from approaching the
continuum limit, since an effective potential for the link
matrices M 2 GL�N� with a nonvanishing vacuum expec-
tation value is not allowed. The norm of the link matrices
M 2 GL�N�, however, should approach unity in the con-
tinuum limit.

This is the reason why we propose to formulate QCD
near the light cone. We have already analyzed scalar
theories [16] and QCD [17,18] approaching the light
cone in a tilted near light cone reference system containing
a parameter � � 0 parametrizing the distance to the light
cone. Our work in this paper will follow this idea deriving a
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lattice Hamiltonian which describes the pure gauge sector
of QCD and which is suitable for a numerical treatment.
For QCD, we have already followed the path of maximal
gauge fixing [17,18] outlined by the Erlangen group [19] in
previous works. This way to eliminate all gauge degrees of
freedom looks very attractive analytically, but numerically
it is not advantageous. It includes solutions of constraint
equations which complicate the form of the Hamiltonian.
Hence we do not fix the gauge in the following work and
try to establish a form of the Hamiltonian describing the
near light cone dynamics similar to the QCD Hamiltonian
in an equal time approach, i.e. in terms of unitary matrices
describing the gauge degrees of freedom and their canoni-
cally conjugate momenta. In our lattice prescription, we
leave near light cone time continuous. It plays a similar
role as ordinary Minkowski time, therefore, we can follow
the conventional method of the transfer matrix in order to
derive the lattice Hamiltonian from the lattice action. The
transversal field strengths are increased in magnitude due
to the boost into the vicinity of the light cone whereas the
longitudinal fields remain unchanged. Constraint equations
arise in the light cone Hamiltonian framework, since the
Lagrangian contains the velocities in linear form. The
momenta related to these velocities obey constraint equa-
tions. The constraint equations appear in the near light
cone Hamiltonian as terms proportional to 1=�2. These
terms enforce the ‘‘equality’’ of the transverse chromo-
electric and chromomagnetic fields Eak � Fa�k. While the
longitudinal chromoelectric field and the longitudinal
chromomagnetic field appear in their usual form in the
light cone Hamiltonian, the Hamiltonian contains the
transverse chromomagnetic field squared in an unusual
quadratic Z�2� invariant form. The Z�2� invariance, how-
ever, is broken because the chromomagnetic fields also
appear linearly together with the transverse chromoelectric
field.

The lattice Hamiltonian density depends on an effective
constant which represents the product of the anisotropy
parameter � � a�=a? and the near light cone parameter
�. If one chooses � � 1 and lets �! 0 one obtains a
deformed system which is squeezed in the spatial
(�)-direction, if one uses � � 1 and lets �! 0 one ob-
tains the light cone limit. This equivalence has been advo-
cated before by Verlinde and Verlinde [20] and Arefeva
[21]. These authors have proposed to implement the strong
interaction with such asymmetric lattices in order to study
high energy scattering, motivating us to proceed in this
way. As it stands, the (anisotropic) lattice Hamiltonian
itself is not usable for Monte Carlo methods evolving an
arbitrary initial state in imaginary time to the ground state,
since the chromoelectric field strengths i.e. the momenta
canonically conjugate to the links appear linearly.
Therefore we propose to use the translational invariance
of the vacuum to add a term 1=�2P� in order to cancel
the unwanted terms. Naively this amounts to returning to

an effective lattice Hamiltonian which is proportional to
the energy in ordinary Minkowski coordinates. For the
ground state of the vacuum this seems a reasonable
procedure. Applications of the light cone coordinates in
finite temperature field theory have followed the same
route [22]. The new effective Hamiltonian contains two
parts: The first describing the dynamics of the longitudinal
chromoelectric and chromomagnetic fields is not influ-
enced by the smallness of the near light cone parameter
�. The second part containing the transverse chromoelec-
tric and chromomagnetic terms is enhanced with � in the
light cone limit.

We analytically investigate this effective Hamiltonian in
the strong and weak coupling limit. Such a procedure can
direct the search for an appropriate (approximate) guidance
wave functional needed to improve the convergence of the
Hamiltonian Monte Carlo method. The strong coupling
limit suggests a simple sum of plaquette terms with differ-
ent weights in the purely transverse and (�)-transverse
planes. The magnitude of the couplings follows the asym-
metries existing in the Hamiltonian. In the limit �! 0 the
plaquette terms in the purely transverse planes are
weighted very weakly, i.e. the longitudinal magnetic fields
can vary freely. The weak coupling approximation identi-
fies the ‘‘Abelian’’ fluctuations with their modified disper-
sion relations following the built in anisotropy. It is
particularly interesting that the light cone limit �! 0
produces long-range correlations in the minus direction,
which deviate from the local strong coupling ansatz. In fact
this anisotropy may help to make an ansatz for the ground
state wave functional which is especially appropriate in the
light cone limit. It correlates fluctuations of the longitudi-
nal chromomagnetic fields with long strings along the
(�)-direction. This ansatz may also point the way to find
a solution of the quantum constraint of the initial
Hamiltonian.

The outline of the paper is as follows: In Sec. II we
introduce near light cone coordinates. For the sake of
clarity, we first establish the methodology in the continuum
formulation. We derive the continuum Hamiltonian and
momentum operator. Furthermore, we motivate an effec-
tive Hamiltonian making an ordinary quantum diffusion
Monte Carlo algorithm possible. In Sec. III we switch to
the lattice formulation and derive the near light cone
Hamiltonian from the latticized action with the transfer-
matrix method. In Sec. IV we set up the effective
Hamiltonian. The time independent Schrödinger equation
for the effective Hamiltonian is analytically solved for the
ground state in the strong and weak coupling limit in
Sec. V. In Sec. VI we variationally optimize an ansatz for
the ground state wave functional motivated by the strong
and weak coupling analysis. It allows to interpolate be-
tween these two extreme limits and to investigate the �
behavior in the whole coupling range. Finally, in Sec. VII,
we present our conclusions and an outlook to future work.
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II. THE CONTINUUM QCD HAMILTONIAN AND
MOMENTUM NEAR THE LIGHT CONE

Before we start with the actual derivation of the QCD
Hamiltonian and momentum near the light cone, we would
like to introduce near light cone coordinates similar to the
coordinates first proposed by [23,24]. The transition to near
light cone (nlc) coordinates might be considered as a two-
step process. In the first step, one starts in ordinary
Minkowski space in the laboratory frame with unprimed
coordinates x� and transforms into a reference frame de-
scribed by primed coordinates x0� which moves with rela-
tive velocity � along the longitudinal direction relative to
the laboratory frame. The relative velocity � is chosen to
be given by

 � �
1� �2

1� �2 ; � 2 �0; 1�: (1)

The associated Lorentz transformation expressing the
primed coordinates in terms of laboratory frame coordi-
nates reads

 x00 � ��x0 � �x3�; x03 � ��x3 � �x0�;

� � �1� �2��1=2:
(2)

Here x0 and x3 denote the temporal coordinate and the
longitudinal spatial coordinate, respectively, in usual
Minkowski coordinates. From the boosted frame, one per-
forms an additional linear transformation not included in
the Lorentz group which rotates the temporal and longitu-
dinal coordinates. It is given by

 x� � 1
2��1� �

2�x00 � �1� �2�x03�; x� � �x00 � x03�:

(3)

Here, x� is defined to be the new time coordinate along
which the system evolves and x� is defined to be the new
spatial longitudinal coordinate. The transversal coordi-
nates x1 and x2 remain unchanged. By quantizing a theory
on a hypersurface of constant x�, one can smoothly inter-
polate between an equal time quantization and light cone
quantization by varying the external near light cone pa-
rameter � from 1 to 0. In the equal time limit � � 1, the
temporal coordinate x� is given by the ordinary
Minkowski time coordinate x� � x00 and � � 0, i.e. the
new reference frame is not moving relative to the labora-
tory frame. In the light cone limit �! 0, x� is propor-
tional to the usual temporal light cone coordinate and �
approaches � � 1. The nlc energy p� and longitudinal
momentum p� expressed in terms of the laboratory energy
E and longitudinal momentum p3 are given by

 p� �
1

�
�E� p3�; p� � �p3: (4)

The second relation in Eq. (4) shows that the magnitude of
longitudinal momenta is reduced by transforming to nlc

coordinates. In other words, large longitudinal momenta in
the lab frame p3 / 1=�a��� become accessible by a nlc
lattice with longitudinal lattice spacing a� for �! 0. This
makes nlc coordinates physically very attractive.

The definition of nlc coordinates Eq. (3) induces the
following metric:

 g�� �

0 0 0 1
0 �1 0 0
0 0 �1 0
1 0 0 ��2

0BBB@
1CCCA;

g�� �

�2 0 0 1
0 �1 0 0
0 0 �1 0
1 0 0 0

0BBB@
1CCCA

(5)

with �; � � �; 1; 2;�; detg � 1. This defines the scalar
product

 x�y� � x�y� � x�y� � �2x�y� � ~x? ~y?

� x�y� � x�y� � �
2x�y� � ~x? ~y?: (6)

Note, that the metric has off-diagonal terms which implies
that there are terms mixing temporal and longitudinal
spatial coordinates in the scalar product. This has severe
consequences for a standard Euclidean lattice approach.

If we put a pair of color charges propagating along the
longitudinal coordinate x� described by a longitudinally
extended Wegner-Wilson loop and a stationary target mod-
eled by a transversal plaquette at fixed x� in this reference
frame, we can simulate color dipoles colliding with a
hadron [25] in the light cone limit. In the described way
one might be able to calculate cross sections between
hadrons. For �! 0, we approach the light cone from
spacelike distances which is different from the approach
of Balitsky [26] who approaches the light cone from time-
like distances closer to scattering experiments.

For QCD, the pure gluonic part of the Lagrange density
in manifestly covariant notation is given by

 L � �1
4F

a
��g��g��Fa��; (7)

with the non-Abelian field strength tensor

 Fa�� � @�Aa� � @�Aa� � gfabcAb�Ac�: (8)

In the following, we restrict ourselves to the color gauge
group SU�2� for which the structure constants fabc are
given by the three-dimensional totally antisymmetric
Levi-Cevita symbol 	abc. By using the nlc metric Eq. (5)
we obtain for the Lagrange density Eq. (7)
 

L �
X
a

�
1

2
Fa��F

a
�� �

X2

k�1

�
Fa�kF

a
�k �

�2

2
Fa�kF

a
�k

�

�
1

2
Fa12F

a
12

�
: (9)

Note, that there is a term in the Lagrange density which is
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only linear in one of the temporal field strengths, namely
Fa�kF

a
�k. Therefore, the numerical standard approach for

lattice gauge theory, the Monte Carlo sampling of the
Euclidean path integral does not apply for nlc coordinates.
The reasoning is as follows. If one performs in analogy to
equal time theories an analytical continuation to imaginary
nlc time x� ! �ix�E , each temporal field strength is re-
placed by its Euclidean counterpart times an additional
factor i. Therefore, the linear term yields a complex valued
Euclidean action and the integrand of the Euclidean path
integral is no longer interpretable as a probability density.
A similar problem arises for lattice gauge theory at finite
baryonic densities which is usually referred to as the sign
problem. So far, no convenient solution has been found. In
order to avoid these problems, we stay in Minkowski time
for the rest of the paper and we switch to a Hamiltonian
formulation. We perform a Legendre transformation to
switch to a Hamiltonian formulation, i.e. we have to ex-
press the temporal derivatives of the fields by their canoni-
cal conjugate momenta, in particular, which are given by
the functional derivatives of the Lagrange density with
respect to the temporal derivative of the correspondent
fields:

 �a
� �


L

�@�A

a
��
: (10)

Therefore, the canonical momenta conjugate to the gauge
fields are given by
 

�a
k �


L

@�A

a
k

�

L

Fa�k

� Fa�k � �
2Fa�k;

�a
� �


L

@�A

a
�

�

L

Fa��

� Fa��:

(11)

Here, we have chosen the axial gauge Aa� � 0 which is
quite natural because the temporal gauge field Aa� is not
dynamical, i.e. there is no temporal derivative appearing in
the Lagrange function. It acts like a Lagrange multiplier
which multiplies the Gauss law G � 0 with G given by

 G � Dac
��c

� �D
ac
k �c

k: (12)

HereDac
� denotes the ordinary covariant derivative—in the

adjoint representation—in spatial direction �

 Dac
� � @�
ac � gfabcAb�: (13)

In order to recover the full Lagrangian dynamics, we have
to supplement the equations of motion by Gauss’ law.
Hence, the Gauss law has to be imposed as a constraint
equation on physical states. We express the temporal de-
rivatives of the gauge fields in terms of the canonical
conjugate momenta by using Eq. (11), which yields
 

@�Aak � Fa�k �
1

�2 ��
a
k � F

a
�k�;

@�Aa� � Fa�� � �a
�:

(14)

We may obtain the QCD Hamiltonian and the momentum
operator via the energy momentum tensor, where we have
to substitute the temporal derivatives of the gauge fields by
the corresponding expressions involving the canonical
conjugate momenta Eq. (14). If the Lagrange density for
an arbitrary field theory with fields �r defined by the
Lagrangian density L is a function of the fields itself and
derivatives of the fields only, namely L � L��r; @��r�,
the energy momentum tensor in its most general form is
given by

 T�� �
X
r


L

�@��r�

@��r � g
��L: (15)

It defines the Hamiltonian density H and the longitudinal
momentum density P� by

 H � T��; P� � T��: (16)

Therefore, for the nlc QCD Lagrangian equation (9) we
find the Hamiltonian density

 H �
1

2

X
a

�
�a
��a

� � Fa12F
a
12 �

X2

k�1

1

�2 ��
a
k � F

a
�k�

2

�
(17)

and the longitudinal momentum density

 P � � �a
�@�A

a
� �

X2

k�1

�a
k@�A

a
k: (18)

This form of the local integrand for the generator P� of
longitudinal translations is not manifestly gauge invariant.
However, if one uses Gauss’ law and the definition of the
field strength tensor one can rewrite P� as

 P � � �a
kF

a
�k � @k��

a
kA

a
�� � @���a

�Aa��: (19)

So, the longitudinal momentum density P� may be ex-
pressed as a manifestly gauge invariant object plus some
total derivatives along the spatial directions which disap-
pear after integration with periodic boundary conditions.
We use the symmetrized form

 P � �
1
2 ��

a
kF

a
�k � F

a
�k�

a
k�: (20)

The integrated Hamiltonian density H is the generator of
nlc ‘‘time’’ translations and the integrated longitudinal
momentum operator P� is the generator of spatial trans-
lations in longitudinal direction:

 H �
Z
d2x?dx�H ; P� �

Z
d2x?dx�P�: (21)

We quantize the theory by choosing the following commu-
tation relations at equal light cone time x�:

 ��a
m� ~x�; A

b
n� ~y�� � �i
ab
mn


�3�� ~x� ~y�;

��a
m� ~x�;�

b
n� ~y�� � 0; �Aam� ~x�; A

b
n� ~y�� � 0:

(22)
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These commutator relations respect the Heisenberg equa-
tions of motion. Note, analogously for quantum mechanics,
one has to supplement the Heisenberg equations of motion
by the Gauss law constraint. In quantum mechanics, the
Gauss law constraint translates into a restriction of the
Hilbert space to the subspace of physical states i.e. states
� satisfying the Gauss law

 

�
Dab
� �b

�� ~x� �
X2

k�1

Dab
k �b

k� ~x�
�
j�i � 0 8 ~x; a: (23)

Since the Gauss law operator is the generator of gauge
transformations the physical subspace is given by that part
of the entire Hilbert space which is spanned by gauge
invariant states. The 1=�2-term in the Hamiltonian equa-
tion (17) favors expectation values of transverse chromo-
electric fields �a

k and transverse chromomagnetic fields
Fa�k to be equal in order to have a minimal energy. On the
other hand, this term introduces terms linear in momentum
which are difficult to handle, for example, with a numerical
quantum diffusion Monte Carlo algorithm [27–29] which
exploits the fact that the time evolution operator is a
projector onto the ground state when analytically contin-
ued to imaginary times. The terms linear in the momentum
enforce the wave functional to be complex valued in gen-
eral which spoils the whole procedure. These are exactly
the same terms which make the nlc action complex valued
after the Wick rotation in the action-based formulation.
Hence, the problem reappears in the Hamiltonian formu-
lation. However, for Hamiltonian nlc QCD it is possible to
define an effective Hamiltonian converging to the exact
ground state which avoids the problematic terms.

Obviously, the Hamilton operator H in Eq. (21) is trans-
lation invariant and gauge invariant. Hence, it commutes
with the longitudinal momentum operator P� and with the
Gauss operator G:

 �H;P�� � 0; �H;G� � 0: (24)

Therefore, common eigenstates exist which diagonalize
the Hamiltonian and the longitudinal momentum operator
simultaneously and in addition fulfill the Gauss law. In
particular, momentum is a good quantum number which is
left invariant by time evolution. In order to solve the
Hamiltonian we are interested in translation-invariant
states which are eigenstates of the longitudinal momentum
operator, i.e. with eigenvalue equal to zero. In vacuum,
with light cone momentum P� � 0, we can add �1=�2�P�
to define an effective Hamiltonian density H eff which is
only quadratic in momenta:

 

H eff �H �
1

�2 P�

�
1

2

X
a

�
�a
��a

� � F
a
12F

a
12

�
X2

k�1

1

�2 ��
a
k�a

k � F
a
�kF

a
�k�

�
: (25)

This effective Hamiltonian density is still symmetric under
the exchange

 �a
k $ Fa�k; (26)

but it does not enforce the equality between transverse
chromoelectric and transverse chromomagnetic fields
commonly used in the light cone limit also for the quantum
field theoretic system.

One finds the ground state j�0i of H by evolving a
translation-invariant trial state j�i not orthogonal to j�0i
with the effective time evolution operator

 j�0i � lim
�!1

exp���Heff � Eeff���j�i (27)

related to the effective Hamiltonian. For the details of an
explicit implementation of the ground state projection
operator with a guided quantum diffusion Monte Carlo
algorithm, we refer the reader to [27–29]. In order to direct
the Monte Carlo into regions of the configuration space
which have large acceptance rates, i.e. which have a large
exact ground state probability density for the given con-
figuration, one introduces a guidance wave functional
which is an approximation of the exact ground state.
Instead of evolving the trial state itself, one evolves a
probability density in imaginary time which converges to
the product of the exact ground state wave functional and
the guidance wave functional for asymptotic times.
Obviously, the application of a guidance wave functional
introduces some bias in the computation of expectation
values. However, in principle one can get rid of this bias by
applying forward walking techniques [30,31].

The algorithm preserves Gauss’ law as long as the
guidance/trial wave functional is a functional of closed
loops only. In principle, there are also multiple connected
loops possible, but then the chromoelectric flux must be
conserved at each site. In this paper our primary objective
is to translate the discussed methodology onto the
lattice and to determine variationally a good starting and
guidance wave functional j�i for the quantum diffusion
Monte Carlo evolution based on Eq. (27) which is moti-
vated by analytical computations in the strong and weak
coupling limit.

III. NEAR LIGHT CONE HAMILTONIAN H ON
THE LATTICE

In order to regularize the continuum formulation we go
over to the lattice formulation. In a previous paper [32] we
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have started deriving the Hamiltonian for gauge theories on
the lattice from the path integral via the transition a� ! 0.
Here, we go through the procedure in detail. We introduce
in four-dimensional space SU�N� link variables Ui�x� con-
necting the site xwith the 4D site x� êi (êi; i � �;�, 1, 2,
is a unit vector in 4D space-time) in the following way:

 Ui�x� � P exp
�
ig
Z x�êi

x
dy�Aa��y�

�a
2

�
; (28)

where P is implementing path ordering from left to right
with increasing y� and �a are Hermitian color generators.
In the following, we restrict to SU�2� where the �a are
given by the Pauli matrices. The Hermitian conjugate of
the link variables, Uyi �x�, connect the site x� êi with the
site x in reverse order. Plaquettes Uij�x� are related to the
field strengths Fij�x� and have the usual form

 Uij�x� � Ui�x�Uj�x� êi�U
y
i �x� êj�U

y
j �x�: (29)

Expanding a plaquette around its center x� êi
2 �

êj
2 in

orders of the lattice spacing one obtains

 Uij�x� � 1� igaiajF
a
ij
�a
2
�

1

2
g2a2

i a
2
jF

a
ijF

b
ij
�a
2

�b
2
� . . .

(30)

Here ai denotes the lattice spacing for direction i, i.e. we
allow in general for different lattice spacings in the tem-
poral, longitudinal, and transversal directions. A corre-
spondent expansion is obtained for Uyij�x�. Therefore, the
sum over color indices a � b of a product of field strengths
is given in the limit ai ! 0 as follows

 FaijF
a
ij�x� �

4

g2a2
i a

2
j

Tr�1� Re�Uij�x���: (31)

Or more general

 FaijF
a
kl�x� �

2

g2aiajakal
Tr�Im�Uij�x�� Im�Ukl�x���: (32)

Here, Re�U� and Im�U� are defined as

 Re �U� �
U�Uy

2
; Im�U� �

U�Uy

2i
: (33)

In Eq. (32) the two plaquettes Uij and Ukl begin and end at
the common site x. Note, that Eqs. (31) and (32) are
representations of the field strengths squared terms which
are only valid in leading order of the lattice spacing. So far,
there is no improvement included. By using the relations

equations (31) and (32), we may rewrite the continuum nlc
Lagrange density equation (9) in terms of plaquettes such
that it is recovered in the naive continuum limit. Similar to
the equal time case [33], one can fix inside the path integral
on the lattice a maximal tree of links to arbitrary group
elements. A maximal tree of links is a tree to which no
more links can be added without forming a loop. By doing
so, the path integral itself and expectation values of gauge
invariant operators are not affected. Hence, we fix all
timelike links U��x� to U��x� � 1 in the following. This
corresponds to the temporal gauge A� � 0 and one obtains
for the lattice analog Slat of the action S �

R
d4xL:

 

Slat �
2

g2

X
x

�
a2
?

a�a�
Tr�1� Re�U��x� ê��Uy��x���

�
a�a�
a2
?

Tr�1� Re�U12�x���

�
X
k

Tr�Im�Uk�x� ê��U
y
k �x�� Im�U�k�x���

�
a�
a�

�2
X
k

Tr�1� Re�Uk�x� ê��U
y
k �x���

�
: (34)

Therefore, the QCD path integral on the lattice in the A� �
0 gauge and with the SU�2� Haar measure dU is given by

 Z �
Z �Y

x

Y
j�1;2;�

dUj�x�
�
eiSlat : (35)

In order to obtain the lattice Hamiltonian, we would like to
go over from the action-based path integral to a Hilbert-
space formulation of the near light cone QCD lattice gauge
theory in the following, letting the timelike lattice constant
approach zero. The method is similar to the transition from
the action to the Hamiltonian in ordinary Euclidean SU�2�
lattice gauge theory carried out by Creutz [33].

The procedure consists of two steps. First, we construct
the transfer matrix T. Second, we define the space on
which it acts and rewrite the transfer matrix in terms of
the conjugated momenta of the links and extract the lattice
Hamiltonian by identifying the transfer matrix with the
time evolution operator which propagates the system from
one time slice to the next.

Note, that the lattice action equation (35) is local in the
temporal direction. Each piece is connecting two adjacent
time slices x0� � x� � a� and x� which means that the
path integral factorizes into a product of transfer matrices
T�x0�; x��.

 

T �
�Y

~x

exp
�
i

2

g2

a2
?

a�a�
Tr�1� Re�U�� ~x; x0��Uy�� ~x; x����

���Y
~x;k

exp
�
i

2

g2 �
2 a�
a�

Tr�1� Re�Uk� ~x; x0��U
y
k � ~x; x

����

�

	 exp
�
i

2

g2 Tr�Im�Uk� ~x; x0��U
y
k � ~x; x

��� Im�U�k� ~x; x����
���Y

~x

exp
�
�i

2

g2

a�a�
a2
?

Tr�1� Re�U12� ~x; x����
��
: (36)
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Here, ~x denotes a lattice vector in the three-dimensional spatial sub lattice. If we denote by the set of links U�x�� an entire
spatial lattice configuration at time x�, the transfer matrix T evolves the configuration U�x�� at the time slice x� to the
configuration U�x0�� at the neighboring time slice x0� in our convention. The construction of the Hilbert space and the
transcription of the temporal plaquettes in terms of momenta canonically conjugate to the links is similar to the steps
performed in [33]. The interested reader may find the explicit calculation in Appendix B. One finally obtains for the lattice
Hamiltonian

 Hlat �
X
~x

��
g2

2

1

a�

X
k;a

1

�2

�
�a
k� ~x� �

2

g2 Tr
�
�a
2

Im�U�k� ~x��
��

2
�
g2

2

a�
a2
?

X
a

�a
�� ~x�

2 �
2

g2

a�
a2
?

Tr�1� Re�U12� ~x���
��
:

(37)

Here, the operators �a
k� ~x� are canonically conjugate to the

link operators and they obey the following commutation
relations
 

��a
j � ~x�; Uj0 � ~x

0�� �
�a
2
Uj� ~x�
j;j0
~x; ~x0 ;

��a
j � ~x�; U

y
j0 � ~x

0�� � �Uyj � ~x�
�a
2

j;j0
~x; ~x0 ;

��a
j � ~x�;�

b
j0 � ~x

0�� � i"abc�c
j� ~x�
j;j0
~x; ~x0 ;

��j� ~x�
2;�b

j0 � ~x
0�� � 0:

(38)

In analogy to the continuum Hamiltonian density
cf. Eq. (17) we introduce the lattice Hamiltonian density

 H lat �
Hlat

Vlat
�

1

�a3
?

Hlat

N�N
2
?

: (39)

The lattice anisotropy parameter � is given by the ratio of
the longitudinal lattice spacing to the transversal lattice
spacing

 � �
a�
a?

: (40)

Furthermore, in order to simplify the notation, we have
introduced the coupling constant  which is related to the
ordinary SU�2� lattice gauge theory coupling � by

  �
4

g4 �

�
1

2
�
�

2
; � �

4

g2 : (41)

Therefore, we obtain for the Hamiltonian density on the
lattice
 

H lat�
1

N�N2
?

1

a4
?

2����

p

X
~x

	

�X
a

1

2
�a
�� ~x�

2�
1

2
Tr�1�Re�U12� ~x���

�
X
k;a

1

2

1

�2�2

�
�a
k� ~x��

����

p

Tr
�
�a
2

Im�U�k� ~x��
��

2
�
:

(42)

One observes that the energy density H lat only depends on
the effective constant ~� defined as the product of the
anisotropy parameter � � a�=a? with � instead of both

of them separately

 ~� � � 
 �: (43)

Very clearly one can vary two independent parameters  �
4=g4 and ~�. The ~� variation may be interpreted in two
parametrically distinct but physically equivalent ways. If
one chooses � � 1 and varies �, one simulates an effective
equal time theory with a ratio of lattice constants � �
a�=a?. In the limit �! 0 one ends up with a system,
which is contracted in the longitudinal direction. Verlinde
and Verlinde [20] and Arefeva [21] have advocated such a
setup to describe high energy scattering. A contracted
longitudinal system means that the minimal momenta be-
come high in longitudinal direction and this looks to be a
promising starting point for high energy scattering. It is
obvious that this limit leads to the same physics as the limit
�! 0 and � � 1, i.e. as the light cone limit with equal
lattice constants in longitudinal and transverse directions.

In both limiting cases, i.e. for ~�! 0, the near light
cone Hamiltonian is dominated by the term pro-
portional to �1=~�2�. Therefore, in the light cone limit
the transverse chromoelectric fields �k should become
equal to the scaled transverse chromomagnetic fields
Tr��a=2 Im�U�k��. This is a form of electromagnetic dual-
ity characteristic of light cone gauge field theory.

In the following we set � � 1 bearing in mind that the
physical ratio of longitudinal to transverse lattice spacings
for � � 0 may be modified by quantum corrections from
the QCD dynamics.

IV. EFFECTIVE NEAR LIGHT CONE LATTICE
HAMILTONIAN

To obtain the same cancellation of linear terms in �k in
the effective lattice Hamiltonian as in the continuum equa-
tion (25) in order to make a guided diffusion Monte Carlo
in principle possible, we add P�;lat to the lattice
Hamiltonian density

 H eff;lat �H lat �
1

�2 P�;lat: (44)

Here the density P�;lat is defined as
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P�;lat �
P�;lat

Vlat

�
1

N�N
2
?

1

�2

1

a4
?

X
~x;k;a

�
�a
k� ~x� 
 Tr

�
�a
2

Im�U�k� ~x��
�

� Tr
�
�a
2

Im�U�k� ~x��
�

�a

k� ~x�
�
: (45)

In the naive continuum limit, i.e. for infinitesimal a�
Eq. (45) becomes the generator of translations along the
longitudinal direction. However, P�;lat does not generate
translations on the lattice for finite lattice spacings. As a
consequence, translation-invariant states on the lattice are
not exact eigenstates of P�;lat. There are higher order
corrections in a� which prevent P�;lat from being the exact
longitudinal lattice translation operator.

In a numerical simulation with an explicit implementa-
tion of the ground state projection operator one has to
ensure that the substitution of the lattice Hamiltonian by
the effective lattice Hamiltonian is justified. If the relative
magnitude of the corrections with respect to the ground
state energy is of the order of the time evolution step size
�� of the quantum diffusion Monte Carlo, then the induced
defect in the time evolution is effectively of quadratic order
in ��. Hence it can be safely neglected due to the fact that
the quantum diffusion Monte Carlo algorithm itself is only
valid up to quadratic order in ��. In order to quantify the
quality of the substitution it is important to measure the
typical magnitude of the fluctuations hP2

�;lati of P�;lat

around its expectation value hP�;lati where the expectation
values are computed with respect to the translation-
invariant trial/guidance wave functional to which the pro-
jection operator is applied. Both expectation values are
equal to zero for the exact generator of longitudinal trans-
lations. This is not true for P�;lat. In order to minimize the
defect in the time evolution, the expectation value of P�;lat

with respect to the trial wave functional has to be equal to
zero and its relative fluctuations have to be of the order of
the time evolution step size as discussed. Therefore, the
trial wave functional has to be selected accordingly.

The effective lattice Hamiltonian can then be chosen as
 

H eff;lat�
1

N�N
2
?

1

a4
?

2����

p

X
~x

	

�
1

2

X
a

�a
�� ~x�2�

1

2
Tr�1�Re�U12� ~x���

�
X
k;a

1

2

1

~�2

�
�a
k� ~x�

2�
�
Tr
�
�a
2

Im�U�k� ~x��
��

2
��
:

(46)

By construction, the effective lattice Hamiltonian equa-
tion (46) is equivalent to a naively latticized version of
the effective continuum Hamiltonian equation (25). For
~� � 1 this effective lattice Hamiltonian is very similar to

the traditional Hamiltonian used in equal time lattice the-
ory. They differ in the potential energy terms for the U�k
plaquettes. Instead of the usual Tr�1� Re�U�k�� term
resembling the field strength squared in the naive contin-
uum limit, the effective nlc Hamiltonian has the form
�Tr��a=2 Im�U�k���2 which corresponds to the plaquette
in the adjoint representation. These terms which coincide
in the continuum limit have different finite lattice spacing
corrections.

Note that the effective Hamiltonian equation (46) has a
symmetry which the original Hamiltonian equation (42)
did not have, namely, it is invariant under a Z�2� trans-
formation of the following form
 

Uk� ~x?; x
�� ! zUk� ~x?; x

�� 8 ~x? and x� fixed;

z 2 Z�2�: (47)

Under this transformation, the longitudinal-transversal pla-
quettes U�k� ~x?; x�� and U�k� ~x?; x� � 1� involving trans-
versal links belonging to the longitudinal slice x�

transform like
 

U�k� ~x?; x
�� ! zU�k� ~x?; x

��;

U�k� ~x?; x
� � 1� ! zU�k� ~x?; x

� � 1�:
(48)

Of course, this symmetry can be spontaneously broken. In
order to preserve the symmetry properties of the original
Hamiltonian we have to restrict ourselves to the phase in
which the symmetry is spontaneously broken. The order
parameter of the phase transition is the expectation value of
Tr ReU�k. In the symmetric phase, the expectation value is
equal to zero and in the broken phase it acquires a non-
vanishing expectation value

 hTr�Re�U�k��i
�
� 0Z�2� symmetric phase
� 0Z�2� broken phase

: (49)

The light cone limit ~�! 0 enhances the importance of
transverse chromoelectric and magnetic fields similar to
the full nlc Hamiltonian without the unwanted linear terms
in the momenta. The resulting vacuum solution should be a
plausible extrapolation of the vacuum solution of QCD.

V. ANALYTICAL SOLUTIONS OF THE
EFFECTIVE LATTICE HAMILTONIAN

With regard to a subsequent implementation of a guided
diffusion Monte Carlo it is important to know as much as
possible about the true ground state. Analytical solutions of
the effective lattice Hamiltonian are possible in certain
regions of the parameter space given by �;��. In particu-
lar, we would like to analyze the behavior of the ground
state wave functional, i.e. the vacuum state, when the
effective parameter ~�! 0 makes the vacuum approach
the light cone vacuum. Therefore, we have a closer look
on the strong (� 1) and weak coupling (� 1) solution
of the Schrödinger equation for the effective lattice
Hamiltonian in the following.
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A. The strong coupling solution of the effective lattice
Hamiltonian

In this section we investigate the strong coupling limit of
the Schrödinger equation for which we are able to find
analytic solutions. In the strong coupling limit g� 1, i.e.
� 1 the effective Hamiltonian density equation (46) is
dominated by chromoelectric fields which represent the
kinetic energy terms. In comparison with the kinetic en-
ergy, the potential energy terms are suppressed by factors
of  � 4=g4. Therefore, we may interpret the effective
Hamiltonian density as an unperturbed part T plus a small
perturbation V pot

 H eff;lat � T � V pot: (50)

Here the kinetic energy density T is given by

 T �
1

N�N2
?

1

a4
?

2����

p

X
~x;a

�
1

2

1

~�2

X
k

�a
k� ~x�

2 �
1

2
�a
�� ~x�2

�
:

(51)

The potential energy density V pot represents a small
perturbation
 

V pot �
1

N�N
2
?

1

a4
?

2����

p

	
X
~x

�
1

2

1

~�2

X
k

�
1�

�
1

2
Tr�Re�U�k� ~x���

�
2
�

�

�
1�

1

2
Tr�Re�U12� ~x���

��
: (52)

In order to write the potential energy density V pot in the
given form Eq. (52), we have used the following identity

 

X
a

�
Tr
�
�a

2
Im�U�k� ~x��

��
2
� 1�

�
1

2
Tr�Re�U�k� ~x���

�
2
:

(53)

We perform perturbation theory in . Then the ground state
j�0i as well as the ground state energy density 	0 are
written as a power series in  where ‘‘�n�’’ denotes the
nth order correction

 j�0i �
X1
n�0

nj��n�0 i; 	0 �
X1
n�0

n	�n�0 : (54)

The unperturbed Hamiltonian T is a sum of quantum rigid
rotators, one for each lattice site and for each spatial
direction [34]. The spectrum of each

P
a�a2 is given by

El � l�l� 1� with l 2 �0; 1=2; 1; . . .� in SU�2�. Each ei-
genvalue El is �2l� 1�2-fold degenerate. Therefore, the
unperturbed ground state j��0�0 i of T is the state which has
l � 0 for each rotator. It is annihilated by all the momen-
tum operators

 �a
j � ~x�j�

�0�
0 i � 0 8 ~x; a ^ 8 j 2 f1; 2;�g: (55)

This state does not depend on the Uj� ~x� in the link-
coordinate representation, i.e. is a constant and is non-
degenerate. The corresponding ground state energy is
given by

 	�0�0 � 0: (56)

The space of states may be constructed from the ground
state j��0�0 i by applying the link operator in a given repre-
sentation (l) which is then again an eigenstate of

P
a�a

j � ~x�
2

with eigenvalue El

 

X
a

�a
j � ~x�

2U�l�j � ~x�j�
�0�
0 i � l�l� 1�U�l�j � ~x�j�

�0�
0 i: (57)

Note that the representation index (l) of the link explicitly
refers to its SU�2�-representation whereas links without a
representation index are defined to be in the fundamental
representation

 Uj� ~x� � U�1=2�
j � ~x�: (58)

Because of the nondegenerate ground state we may apply
standard Raleigh-Schrödinger perturbation theory. In gen-
eral, the first order correction to the ground state reads

 j��1�0 i �
1

	�0�0 �T
V potj�

�0�
0 i � �

1

T
V potj�

�0�
0 i: (59)

The correspondent first order correction to the ground state
energy density is given by

 	�1�0 � h�
�0�
0 jV potj�

�0�
0 i: (60)

It is a Haar integral over the whole configuration space
which is given by

 	�1�0 �
Z

V pot�U�
Y
~x;j

dUj� ~x� �
1

~�2

1

a4
?

2����

p

�
3

4
� ~�2

�
:

(61)

This yields a total ground state energy density in the strong
coupling limit

 	0 �
1

~�2

1

a4
?

��
3

2
� 2 ~�2

� ����

p
�O�3=2�

�
: (62)

In order to compute Eq. (59) we use the fact that the trace
of the plaquette U12� ~x� and the squared trace of the pla-
quette U�k� ~x� minus one are eigenstates of the kinetic
energy operator with eigenvalues t� and t?, respectively,
(cf. Eqs. (A2) and (A3) in Appendix A)
 

T Tr�Re�U12� ~x���j�
�0�
0 i � t� Tr�Re�U12� ~x���j�

�0�
0 i;

T ��Tr�Re�U�k� ~x����
2 � 1�j��0�0 i

� t?��Tr�Re�U�k� ~x����2 � 1�j��0�0 i: (63)

The eigenvalues t� and t? are given by
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 t� �
�

1

N�N2
?

1

a4
?

2����

p

2

~�2

�



3

4
;

t? �
�

1

N�N
2
?

1

a4
?

2����

p

�
1�

1

~�2

��

 2:

(64)

The factor 3=4 in t� is related to the fundamental repre-
sentation (l � 1=2) of the plaquette and the factor of 2 in
t? arises from the squared trace of the plaquette minus one
in the fundamental representation which is equivalent to
the trace of the plaquette in the adjoint representation (l �
1). Hence, the first order correction to the ground state
wave functional is given by
 

j��1�0 i �
X
~x

�
1

3
~�2 Tr�Re�U12� ~x���

�
1

16

1

1� ~�2

X
k

�Tr�Re�U�k� ~x����
2

�
j��0�0 i: (65)

The state j��1�0 i does not contain any products of plaquettes
involving field strengths at different spatial positions.
Therefore, to this order in perturbation theory, the ground
state wave functional factorizes in a product of single
plaquette wave functionals similar to the vacuum wave
functional obtained for an equal time lattice Hamiltonian
[28]
 

j�0i �

�
1�

X
~x

�
1

3
~�2 Tr�Re�U12� ~x���

�
1

16

1

1� ~�2

X
k

�Tr�Re�U�k� ~x����2
�
�O�2�

�

	j��0�0 i

�
Y
~x

exp
�
1

3
~�2 Tr�Re�U12� ~x���

�
1

16



1� ~�2

X
k

�Tr�Re�U�k� ~x����
2

�
j��0�0 i�O�2�:

(66)

In the wave functional, the purely transversal plaquettes
U12 involving the longitudinal chromomagnetic fields are
suppressed by ~�2 in the light cone limit ~�! 0. To this
order in perturbation theory, the strong coupling ground
state wave functional Eq. (66) respects the Z�2� symmetry
of the effective Hamiltonian which the full Hamiltonian,
however, does not share.

B. Weak coupling solution of the effective lattice
Hamiltonian

In the weak coupling regime, i.e. g! 0 or ! 1 the
effective lattice Hamiltonian equation (46) in SU�2� de-
pends on a triplet of free U�1� gauge fields and their
corresponding momenta. To reduce the Hamiltonian into
this form it is convenient to substitute the gauge field

gAai � ~x� in Eq. (28) by a rescaled gauge field ~Aai � ~x�
(cf. Eq. (67)). Note that all vector indices throughout this
section refer to a flat space metric equal to the unit matrix.
Furthermore, 	ijk is the totally antisymmetric Levi-Cevita
symbol with 	12� � 1. In the g! 0 limit, the field
strength tensor reduces to the chromomagnetic field
Bai � ~x�, which is the ith spatial component of the lattice
curl of ~Aa� ~x� and which is rescaled to ~Bai � ~x�
 

gAai � ~x� �
~Aai � ~x�����

p ; i � 1; 2;�;

gBai � ~x� � g	ilm�Aam� ~x� � Aam� ~x� ~el��;

gBai � ~x� �
~Bai � ~x�����

p :

(67)

Similar to the equal time theory [27,28] one can expand the
effective lattice Hamiltonian in a power series in �1. The
expansion of the potential energy is straightforward. The
kinetic energy of the effective lattice Hamiltonian is a sum
of the Casimir operators acting on SU�2�. Each of them
represents a Laplace-Beltrami operator on the curved
manifold of SU�2�. The expansion in a power series of
this operator yields in leading order a flat space Laplacian
in three dimensions given by

 

X
a

~�a
j � ~x�2 � �

X
a


2


 ~Aaj � ~x�
2
: (68)

Hence, the ~�a, ~Aa obey effectively the following commu-
tation relations
 

� ~�a
i � ~x�; ~Abj � ~y�� � �i
ab
ij
~x; ~y;

� ~�a
i � ~x�; ~�b

j � ~y�� � 0;

� ~Aai � ~x�; ~Abj � ~y�� � 0:

(69)

The described expansion of the effective lattice
Hamiltonian in the weak coupling limit yields in leading
order
 

H eff;lat �
1

N�N2
?

1

a4
?

1����

p

X
~x;a

�
 ~�a

�� ~x�
2�

1

4
~Ba��x�

2

�
X
k

1

~�2

�
 ~�a

k� ~x�
2�

1

4
~Bak�x�

2

��
�O

�
1

~�25=4

�
:

(70)

This Hamiltonian is equivalent to the Abelian limit and the
order �5=4 corrections represent the triple gluon vertex
gAAA.

Instead of solving the ground state in terms of the gauge
variant fields ~Ak as done in Ref. [35], we express the kinetic
energy operator acting on the gauge fields in terms of
effective operators which act on chromomagnetic fields
~Bk. These are gauge invariant in the Abelian limit. By
doing so, we obtain a ground state wave functional which
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depends only on gauge invariant objects. This avoids an
otherwise necessary projection onto a gauge invariant sub-
space of the Hilbert space. After transforming the
Hamiltonian into Fourier space, several unitary transfor-
mations convert the Hamiltonian into a Hamiltonian of
decoupled harmonic oscillators. The necessary unitary
transformations are similar to transformations performed
for a compact equal time U�1� Hamiltonian in Ref. [35].
However, additional factors due to the nlc metric appear
which can be traced in the computation. Once the harmonic
oscillator Hamiltonian is obtained, the ground state wave
functional and the ground state energy 	0 are easily found

 

	0 �
1

a4
?

6

~�2

1

N�N2
?

X
~k

�
~�2 sin

�
k1

2

�
2
� ~�2 sin

�
k2

2

�
2

� sin
�
k�
2

�
2
�

1=2
: (71)

Here ki denote the lattice momentum values

 ki �
2�
Ni
ni; ni � 0; . . . ; Ni � 1: (72)

In Fig. 1 we show the dimensionless energy density
Eq. (71) for a 163-lattice as a function of ~�. A leading
1=~�2 -dependence of the effective energy density is ob-
vious from Eq. (71) and arises from the 1=~� dependence of
the light cone energy and the ~� dependence of the volume
V � N2

?N�a
2
?a�. This dependence is scaled out in the

figure. In the Abelian limit, the energy density is given by
the dispersion relation summed over all modes, times the
color degeneracy factor. If we identify pi � sin��ni=Ni�
with the latticized version of the ith component of the
gluon momentum pi, then the nlc dispersion relation !nlc

of a free gluon gas is given by (cf. Eq. (4))

 !nlc �
1

~�
�
�����������������������������
p2

1 � p
2
2 � p

2
3

q
� p3�

��������p3�p�=~�
: (73)

Here p3 refers to the longitudinal mode in the laboratory
frame and p� refers to the longitudinal mode in the nlc
frame. Hence, by summing !nlc over all modes and taking
into account that the total longitudinal momentum adds up
to P� � 0 we obtain Eq. (71). The ground state wave
functional is a multivariate Gaussian wave functional in
the chromomagnetic fields where �ij~�� ~x� ~x0� denote the
matrix elements of the covariance matrix
 

�0 � exp
�
�

����

p X

~x; ~x0

X
a;i;j

g
2
Bai � ~x��

ij
~�� ~x� ~x0�

g
2
Baj � ~x

0�

�
;

�~�� ~x� ~x0� �

�~�� ~x� ~x0� 0 0

0 �~�� ~x� ~x0� 0

0 0 ~�2�~�� ~x� ~x0�

0BB@
1CCA:
(74)

Here �~� denotes the spatial part of the covariance matrix. It
depends only on the relative distance ~x� ~x0 of the chro-
momagnetic fields in the wave functional
 

�~�� ~x� ~x0� �
1

2

1

N�N
2
?

X
~k�~0

�~�2 sin�k1=2�2 � ~�2 sin�k2=2�2

� sin�k�=2�2��1=2ei ~k
� ~x� ~x0�: (75)

The function �~�� ~x� ~x0� is real due to the invariance under

space reflections. In Fig. 2 we show �~��~0� for a 163-lattice

as a function of ~�. The asymptotic behavior of �~��~0� in the
light cone limit ~�! 0 can be computed by summing all
modes with ~k � ~0 and k� � 0 in Eq. (75). For a
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FIG. 1. Rescaled dimensionless energy density 	0a
4 ~�2 of the

effective nlc Hamiltonian in leading order of the weak coupling
limit for a 163-lattice as a function of ~�.
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FIG. 2. Diagonal element � ~��~0� of the spatial part of the
covariance matrix for a 163-lattice as a function of ~� (solid
line). Its asymptotic behavior in the light cone limit ~�! 0,
�~��~0�  0:038=~� is shown by the dashed line.
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163-lattice, it is given by

 �~��~0� 
0:038

~�
; ~�! 0: (76)

For ~� � 1 the 3	 3 covariance matrix �~� Eq. (74) equals
the covariance matrix which was found by Chin et al.

[27,28] for an equal time theory since our Hamiltonian
coincides with the correspondent equal time Hamiltonian
in the weak coupling limit. For small values of ~� the
chromomagnetic field in the longitudinal direction Ba� /
Fa12 is suppressed in the wave functional by a factor of ~� in
comparison with the other field strengths. On the other
hand, the chromomagnetic fields in transversal directions
Ba1 / F�2 and Ba2 / F�1 are not suppressed.

We compare correlation matrix elements �~�� ~x� ~x0� for
� ~x � 0 with the matrix element at � ~x � 0 by forming the
ratio R�� ~x�

 R�� ~x� �
�~��� ~x�

�~��~0�
: (77)

In Fig. 3,R�� ~x� is shown for a 16	 16-lattice and for three
different values of ~�, namely ~� � 1, ~� � 10�1, and ~� �
10�2. For reasons of presentability, we have restricted
ourselves to a 2-dimensional section through the 3-
dimensional lattice spanned by x? � x1 and x� at x2 �
0. This representation allows to see the anisotropy devel-
oping for very small ~�. Here and in the following, the
notion ‘‘off diagonal in position space’’ refers to � ~x � 0
whereas ‘‘diagonal in position space’’ refers to � ~x � 0.
For ~� � 1, the covariance matrix has only weakly off-
diagonal contributions in position space. Therefore, it is
reasonable to consider the weak coupling wave functional
in the diagonal approximation [28] as a product of single
plaquette functionals. For decreasing ~� one observes that
the correlations among plaquettes separated along the lon-
gitudinal direction become more and more important. In
the light cone limit, every plaquette is equally correlated
with any other plaquette which is longitudinally separated
from the first one.

However, for not too small values of ~�, at least an
effective description by a product of single plaquette
wave functionals is possible. In Sec. VII we discuss a
possibility to include long-range correlations in the wave
functional by a combined optimization and quantum dif-
fusion Monte Carlo method.

VI. VARIATIONAL OPTIMIZATION OF THE
GROUND STATE WAVE FUNCTIONAL

In the last two sections we have analyzed the strong and
weak coupling behavior of the Hamiltonian and its ground
state. We have seen that in the strong coupling limit the
ground state wave functional may be approximated by a
product of single site wave functionals. Also in the weak
coupling limit for not too small ~� the bilocality of the
chromomagnetic field strength is less important. In the
following we construct an effective wave functional which
smoothly interpolates between the strong and weak cou-
pling solution. In addition we would like to choose the
ground state wave functional in such a way that it is not
invariant under the unwanted additional Z�2� symmetry of

-0.2
 0
 0.2
 0.4
 0.6
 0.8
 1

 0
 2
 4

 6
 8
 10

 12
 14
 16 0  2  4  6  8  10  12  14  16

-0.4
-0.2

 0
 0.2
 0.4
 0.6
 0.8

 1

-0.2
 0
 0.2
 0.4
 0.6
 0.8
 1

 0
 2

 4
 6

 8
 10

 12
 14

 16  0  2  4  6  8  10  12  14  16

-0.4
-0.2

 0
 0.2
 0.4
 0.6
 0.8

 1

-0.4
-0.2
 0
 0.2
 0.4
 0.6
 0.8
 1

 0
 2

 4
 6

 8
 10

 12
 14

 16
 0  2  4  6  8  10  12  14  16

-0.4
-0.2

 0
 0.2
 0.4
 0.6
 0.8

 1

FIG. 3 (color online). Ratio of covariance matrix elements
R�� ~x� as a function of the separation � ~x for a two-dimensional
16	 16 lattice at three different values of �2.
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the effective Hamiltonian in which the linear momentum
terms are compensated by the translation operator.
Therefore, me make a variational ansatz of the ground state
wave functional for the whole coupling range which con-
tains a product of single site plaquettes with two variational
parameters � and 
. We denote the normalization constant
by N

 �0��; 
� � N
Y
~x

exp
�X2

k�1

�Tr�Re�U�k� ~x���

� 
Tr�Re�U12� ~x���
�
: (78)

With this normalized wave functional we variationally
optimize the energy expectation value 	0��; 
� of the ef-
fective Hamiltonian which is given in terms of plaquette
expectation values.

 

	0��; 
� � h�0jH eff j�0i

�
1

N�N2
?

1

a4
?

2����

p

X
~x

��
3

4




~�2 �

2

�
hTr�Re�U12� ~x��i � 

�
�

1

N�N2
?

1

a4
?

2����

p

X
~x;k

�
3

8
�
�
1�

1

~�2

�
hTr�Re�U�k� ~x���i

�

�
1

N�N2
?

1

a4
?

2����

p

X
~x;k

�

2

1

~�2

�
1�

1

4
h�Tr�Re�U�k� ~x����2i

��
: (79)

The explicit dependence of the energy expectation value on
� and 
 comes from the kinetic energy terms in H eff .
There is an implicit dependence in the plaquette expecta-
tion values which are computed as averages over link
configurations generated by the probability density

 dP�U� � j�0��; 
�j2
Y
~x;j

DUj� ~x�: (80)

With the special form of our trial ground state wave func-
tional Eq. (78), the energy expectation value of the effec-
tive Hamiltonian equation (46) coincides with the energy
expectation value of the full Hamiltonian equation (42).
Even if we do not use the invariance of the trial wave
functional under translations, the expectation value of the
longitudinal momentum operator with respect to the trial
wave functional Eq. (78) vanishes identically. This is due
to the fact that the expectation value of the chromoelectric
field operator �a

j � ~y� times an arbitrary functional G�fUg�
of the links with respect to a purely real valued exponential
wave functional obeys

 h�0j�
a
j � ~y�G�fUg�j�0i � �h�0jG�fUg��a

j � ~y�j�0i: (81)

The above relation equation (81) may be interpreted as a
‘‘partial’’ integration rule and is proven in Appendix A.
Hence, the ground state wave functional Eq. (78) minimiz-
ing the energy density equation (79) optimizes simulta-
neously the effective and the full Hamiltonian. In order to
optimize the ground state wave functional we sample the
probability distribution equation (80) with a local heat bath
algorithm [36] on a 163-lattice and measure the expectation
values of the plaquettes and the squared plaquettes with the
bootstrap method [37] using an initial sample size of 500
and a bootstrap sample size of 1000. We compute these

expectation values as a function of the parameters � and 

on a 50	 50 grid where each of the parameters varies in
the interval [0, 10] with a sterilize of 0.2. This yields a set
of 2500 distinct expectation values which we interpolate
with polynomials of fifth order. For a first coarse estimate
of the optimized parameters, we find the minimum of
Eq. (79) with a standard Mathematica minimization
routine.

For the fine determination of the optimal parameters we
then generate 50 different pairs with energy expectation
values less than 3% higher than the energy at the coarse
estimate of �0, 
0. Finally, we fit these energy values with a
quadratic form Eq. (82) centered at the optimal values
��0; 
0� where the linear term in the Taylor series vanishes
due to the minimum condition
 

	0��; 
� � 	0��0; 
0� �
1

2

�� �0


� 
0

 !
T




@2	0

@�@�
@2	0

@�@


@2	0

@
@�
@2	0

@
@


0B@
1CA



�� �0


� 
0

 !
: (82)

The described method is tested by comparing our results
with the variational results of Chin et al. [28] who opti-
mized a one parameter (2� � 2
 � �Chin) wave func-
tional of the form given in Eq. (78) with respect to the
standard equal time Hamiltonian containing only plaquette
terms without anisotropy. Note that Chin’s results have
been obtained on a 43-lattice, but the authors show that
the dependence of the energy density and the optimal wave
functional parameter on the lattice size is small. We find
0.5% agreement between the results of our method and the
values obtained by Chin et al. [28].
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Next we apply the described optimization method to the
nlc Hamiltonian. The optimized energy density is pre-
sented in Fig. 4 as a function of  for different values of
~�2. The 1=~�2 divergence is scaled out. The curve has a

����

p

behavior for strong coupling and is independent of  for
weak coupling as found in Sec. V

 

	0jstrong coupling �
1

~�2

1

a4
?

�
3

2
� 2 ~�2

� ����

p
;

	0jweak coupling �
1

a4
?

6

~�2

1

N�N2
?

	
X
~k

�
~�2 sin

�
k1

2

�
2
� ~�2 sin

�
k2

2

�
2

� sin
�
k�
2

�
2
�

1=2
:

(83)

In Figs. 5 and 6, we present the variationally optimized
wave functional parameters �0 and 
0 as a function of  for
different values of ~�2. The parameters are divided by a
factor

����

p

such that they become constant in the weak
coupling limit (! 1). The uncertainties on the varia-
tional parameters are typically 5% and are larger in the
region where the Hamiltonian with the adjoint plaquette in
��k�-direction induces a phase transition. Therefore, in
principle only couplings in the weak coupling region above
 � 7 are meaningful where the Z�2� symmetry is sponta-
neously broken.

By using the strong coupling solution from Eq. (66) and
the diagonal part of the covariance matrix at � ~x � ~0 of the
weak coupling solution Eq. (74), we get analytically the
following estimates for �0 and 
0

 

�0�; ~�� �

(
0 for � 1����

p
�~��~0� for � 1

;


0�; ~�� �

( 1
3~�2 for � 1����

p

~�2�~��~0� for � 1
;

�~��~0�
�
0:038=~� for ~�! 0

� 0:454 for ~�! 1
:

(84)

FIG. 4 (color online). Optimized energy density as a function
of  obtained from the simulation on a 163 lattice for three
different values of ~�2. The red shaded area corresponds to the
phase transition region for all values of ~�2. The dotted lines
show the predicted analytical strong coupling behavior. The
arrows indicate the expected asymptotic behavior for weak
coupling which is a constant independent of .
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FIG. 6 (color online). Optimal wave functional parameter

0�; ~�� as a function of  obtained from the simulation on a
163 lattice for three different values of ~�2. The red shaded area
corresponds to the phase transition region for all values of ~�2.
The dotted lines show the predicted analytical strong coupling
behavior. The arrows indicate the expected asymptotic behavior
for weak coupling which is proportional to

����

p

, i.e. a constant
independent of  in the plot. The solid lines show the actual
analytic parametrizations in the weak coupling regime
(cf. Eq. (86)).
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FIG. 5 (color online). Optimal wave functional parameter
�0�; ~�� as a function of  obtained from the simulation on a
163 lattice for three different values of ~�2. The red shaded area
corresponds to the phase transition region for all values of ~�2.
The dotted lines show the predicted analytical strong coupling
behavior. The arrows indicate the expected asymptotic behavior
for weak coupling which is proportional to

����

p

, i.e. a constant
independent of  in the plot. The solid lines show the actual
analytic parametrizations in the weak coupling regime
(cf. Eq. (86)).
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The variationally determined parameters are in good agree-
ment with the analytic predictions in the strong coupling
regime. In the weak coupling regime the optimal parame-
ters differ from the analytical estimates Eq. (84). In both
cases the analytic predictions disagree more for small ~�.
This is natural, since the light cone limit ~�! 0 builds up
correlations among plaquettes separated along the longitu-
dinal direction. The parameters optimizing our product of
single plaquette wave functionals effectively describe these
correlations and adopt values which differ from the weak
coupling estimate given by the diagonal entries of the
covariance matrix equation (84).

In the following we analyze the ~� dependence of the
optimal wave functional parameters for fixed values of 
which lie in the physical relevant region above  � 7. We
show in Figs. 7 and 8 the optimal wave functional parame-
ters �0, 
0 divided by

����

p
�1�~0�, i.e.

����

p
�~��~0� for ~� � 1,

which is the expected behavior for the equal time
Hamiltonian. This way we can show the variations of the
wave functional parameters in the light cone limit. For a
direct comparison, we plot the analytical weak coupling
prediction Eq. (84) by dotted lines in the same figures. The
analytical results for �0 (Eq. (84)) overestimate the varia-
tionally determined values, whereas the analytical predic-
tions for 
0 (Eq. (84)) underestimate the optimized
parameters as a function of ~�. Here again, the large dif-
ference for small ~� originates from the effective descrip-
tion of long-range correlations by the parameters of our
ground state wave functional in this parameter region. For
sufficiently large values of , the ~� behavior for �0 and 
0

becomes universal and independent of . We determine
functions f� and f
 which describe the deviations of the
variationally optimized wave functional parameters from

the weak coupling limit
����

p
�1�~0� at ~� � 1 (cf. Figs. 7 and

8)

 �0�; ~�� �
����

p
�1�~0�f��; ~��;


0�; ~�� �
����

p
�1�~0�f
�; ~��:

(85)

In the extreme weak coupling limit ! 1 and close to
~�! 1, each of the functions f� and f
 may be described
by linear functions of ~�. Therefore, it is reasonable to
assume that f� and f
 can be approximated by expansions
around !1 and ~� � 1
 

fi�; ~�� � c0;i

�
1�

c1;i


� c2;i�1� ~�� �

c3;i

2 � c4;i
�1� ~��


� c5;i�1� ~��2
�
; i � �; 
: (86)

The coefficients c0;i represent the effective single plaquette
equal time wave functional parameters. A good fit of the
parameters c0;i; . . . ; c5;i minimizing �2 in the range  2
�10; 95� and ~� 2 �0:15; 1� gives the coefficients tabulated
in Table I. This analytical parametrization of the ground
state wave functional allows to smoothly interpolate be-
tween ground state wave functionals belonging to different
coupling constants and different values of ~� in the physical
relevant coupling constant region. Furthermore, the given

FIG. 8 (color online). Optimal wave functional parameter

0�; ~�� as a function of ~� obtained from the simulation on a
163 lattice for four different values of . The expected 1=2�1�~0�
behavior for the equal time Hamiltonian with ~� � 1 is scaled
out. The solid lines show the analytical parametrizations. The
dotted line corresponds to the naive analytical weak coupling
prediction.

FIG. 7 (color online). Optimal wave functional parameter
�0�; ~�� as a function of ~� obtained from the simulation on a
163 lattice for four different values of . The expected 1=2�1�~0�
behavior for the equal time Hamiltonian with ~� � 1 is scaled
out. The solid lines show the analytical parametrizations. The
dotted line corresponds to the ‘‘naive’’ analytical weak coupling
prediction.

TABLE I. Coefficients of Eq. (86) obtained from least square
minimization.

i c0;i c1;i c2;i c3;i c4;i c5;i

� 0.90 �1:74 0.72 4.06 �0:40 �0:14

 0.95 0.93 �1:21 �3:22 �0:83 0.32
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form induces generically a vanishing expectation value of
P�;lat which makes it optimal for the use in a guided
diffusion Monte Carlo as discussed in Sec. IV. Since it is
an approximation to the exact ground state it may be used
for further qualitative investigations: In a forthcoming
paper we plan to determine hadronic cross sections by
simulating how a color dipole moving along the light
cone hits a neutral hadron localized at x� � 0. With the
parametrization of Eq. (86) we are able to extrapolate the
parameters of the wave functional to ~� � 0

 �0�; 0� �
�
0:65�

0:87


�

1:65

2

� ����

p
;


0�; 0� �
�
0:05�

0:04


�

1:39

2

� ����

p
:

(87)

At ~� � 0, the color dipole can be represented by a
longitudinal-transversal Wilson loop extended in x� direc-
tion and the simplified target can be modeled by a trans-
verse plaquette. Varying the impact parameter one can
sample the correlation function of the two gauge invariant
objects and thereby obtain the profile function.

VII. CONCLUSIONS AND OUTLOOK

Light cone coordinates are especially suited to parame-
trize high energy reactions for which perturbative QCD
calculations have reached an unprecedented accuracy. In
this paper we have addressed the question how to include
nonperturbative features of QCD on the light cone. We
propose to use lattice gauge theory formulated in exactly
these coordinates.

We start from the standard lattice action written in terms
of near light cone coordinates such that the continuum
action is recovered in leading order in the lattice spacing.
The distance to the light cone is tuned by the adjustment of
an external parameter �. A transition to Euclidean time in
this framework turns out to be problematic from a numeri-
cal point of view due to the fact that the Euclidean action
remains complex which means that the integrand of the
path integral cannot be interpreted as a probability measure
anymore. Similar problems for QCD at finite baryonic
density are generally referred to as the sign problem for
which, up to the moment, no solution is known. In our case,
this problem can be circumvented by applying the follow-
ing strategy. We stay in Minkowski time, but switch to a
Hamiltonian formulation of lattice gauge theory. Then the
time evolution operator can be analytically continued to
imaginary times and acts as a projector onto the exact
ground state when it is applied to a trial state with a non-
vanishing overlap with the exact ground state. Hence,
instead of sampling the Euclidean path integral one manip-
ulates a probability distribution for the product of the exact
ground state wave functional and a guidance wave func-
tional in a quantum diffusion Monte Carlo algorithm. For
an improvement of the convergence of the diffusion

Monte Carlo, the guidance wave functional should be
sufficiently close to the exact ground state. The main
goal of the present paper has been to develop a convenient
and numerically realizable ground state projection operator
and to propose such a guidance wave functional.

We first work out the more obvious continuum formu-
lation. The continuum near light cone Hamiltonian has an
asymmetry in the longitudinal and transversal fields. The
transversal fields are ‘‘enhanced’’ in the Hamiltonian in
comparison to the longitudinal ones by a factor of 1=�2

which is due to the underlying Lorentz transformation of
the chromomagnetic and chromoelectric fields. Further-
more, the obtained near light cone Hamiltonian is similar
to the classical Hamiltonian of a charged particle moving
in an electromagnetic background field, which contains
terms linear in the particle momentum. Such terms yield
complex branching ratios in a quantum Monte Carlo algo-
rithm which cannot be interpreted as probabilities and
make it fail. However, this problem can be avoided.
Linear terms in the QCD near light cone Hamilton operator
can be compensated by the generator of longitudinal trans-
lations. The QCD ground state is translation invariant, i.e.
an eigenstate of the longitudinal translation operator with
zero eigenvalue. Since the Hamiltonian commutes with the
longitudinal momentum operator, the longitudinal momen-
tum is not affected by time evolution. Therefore, one is
able to construct an effective Hamiltonian feasible for a
quantum diffusion Monte Carlo having the same ground
state as the exact Hamiltonian by adding the longitudinal
momentum operator to the exact Hamiltonian.

Having checked feasibility in the continuum we derive
the lattice Hamiltonian from the action via the transfer-
matrix method. We allow in general different lattice spac-
ings in longitudinal and transversal directions. It is remark-
able that the parameter � controlling the distance to the
light cone multiplies the lattice anisotropy parameter �
which represents the ratio of the longitudinal lattice spac-
ing and the transversal lattice spacing. Since these two
parameters always appear together, there is no difference
between the light cone limit and the anisotropic lattice
limit. We can construct an effective Hamiltonian similar
to the continuum case by adding the effective longitudinal
momentum operator to the lattice Hamiltonian.

We analytically compute the lattice ground state wave
functional of the effective Hamiltonian in the strong and
weak coupling limit. In the strong coupling limit we obtain
a product of single plaquette wave functionals similar to
the equal time scenario. In the weak coupling limit, the
solution is equivalent to the solution of the near light cone
Hamiltonian with Abelian fields, i.e. it is a multivariate
Gaussian wave functional with a covariance matrix weight-
ing correlations of field strengths at different spatial
separations.

Motivated by the strong and weak coupling solutions,
we have constructed an effective ground state wave func-
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tional which smoothly interpolates between these two ex-
treme results and which can be used as a guidance wave
functional for a quantum diffusion Monte Carlo algorithm.
It is a variational ansatz for the whole coupling range
which contains a product of single plaquette wave func-
tionals with two variational parameters. We have variation-
ally optimized the parameters by minimizing the energy
expectation value of the effective Hamiltonian with respect
to the ground state wave functional. The effective ground
state wave functional serves as a starting point for further
qualitative explorations. It can also be extrapolated to ~� �
0 and may be used to simulate correlation functions which
appear in hadronic cross sections.

The effective ground state wave functional can be im-
proved by allowing also long-range correlations in the
wave functional. This is motivated by the observation
that in the weak coupling limit, the covariance matrix
elements of the analytical ground state wave functional
which connect longitudinally separated spatial points be-
come more and more important. An exponential ansatz
then may contain plaquettes which are connected back
and forth via long strings of gauge links. In the light
cone limit the energetically most favorable string configu-
rations are elongated along the minus direction. Such an
ansatz may interpolate in the whole coupling range by
allowing a covariance matrix with adjustable parameters.
Numerical techniques [38] exist for a guided random walk
in parameter space. So it may be possible to construct on

the basis of an improved weak coupling solution a reason-
able numerical procedure to obtain a good ground state for
the effective lattice Hamiltonian.

There have been strong advances in light cone physics
recently in string and supersymmetric theory [39,40]. A
careful study of near light cone theory in lattice QCD may
supplement this successful work.
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APPENDIX A: SOME USEFUL COMMUTATOR
RELATIONS

In this section we collect some useful formulae for the
computation of matrix elements. First, we want to apply an
arbitrary kinetic energy operator to the unperturbed strong
coupling ground state j��0�0 i (cf. Sec. VA) multiplied by an
arbitrary function of the links

 

X
j;a; ~y

cj�a
j � ~y�

2f�fUg�j��0�0 i �
X
j;a; ~y

cj��a
j � ~y�

2; f�fUg��j��0�0 i �
X
j;a; ~y

cj�a
j � ~y���

a
j � ~y�; f�fUg��j�

�0�
0 i

�
X
j;a; ~y

cj��a
j � ~y�; ��

a
j � ~y�; f�fUg���j�

�0�
0 i: (A1)

The following double commutators are of special interest

 

X
j;a; ~y

cj��
a
j � ~y�; ��

a
j � ~y�;Tr�Re�Ukl� ~x����� �

3

2
�ck � cl�Tr�Re�Ukl� ~x��� (A2)

and

 

X
j;a; ~y

cj��
a
j � ~y�; ��

a
j � ~y�; �Tr�Re�Ukl� ~x����

2�� � 4�ck � cl���Tr�Re�Ukl� ~x����
2 � 1�: (A3)

For the elementary plaquette, we have the following commutation relation

 ��̂a
j � ~y�;Tr�Re�Ukl� ~x���� � i Tr

�
�a

2
Im�Ukl� ~x��

�

~y; ~x
jk � i Tr

�
�a

2
Im�Uyk � ~x�Ukl� ~x�Uk� ~x��

�

~y; ~x� ~ek
jl

� i Tr
�
�a

2
Im�Uyl � ~x�Ukl� ~x�Ul� ~x��

�

~y; ~x� ~el
jk � i Tr

�
�a

2
Im�Ukl� ~x��

�

~y; ~x
jl: (A4)

In the following we assume an exponential ground state wave functional with exponent F�fUg� where F�fUg� is some
arbitrary real valued functional of the links and j��0�0 i is the unperturbed strong coupling ground state (cf. Sec. VA)

 j�0i � exp�F�fUg��j��0�0 i ) h�0j � h�
�0�
0 j exp�F�fUg��: (A5)

Then, the expectation value of the color trace of the momentum operator �a
j � ~y� squared with respect to the ground state
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equation (A5) is given by

 

X
j;a; ~y

cjh�0j�
a
j � ~y�

2j�0i �
X
j;a; ~y

cjh�0j
1

2
��a

j � ~y�; ��
a
j � ~y�; F�U���j�0i: (A6)

The expectation value of the momentum operator �a
j � ~y� times an arbitrary functional G�fUg� of the links is given by

 h�0j�
a
j � ~y�G�fUg�j�0i � h�

�0�
0 j exp�F�fUg���a

j � ~y�G�fUg� 
 exp�F�fUg��j��0�0 i

� �h��0�0 j��
a
j � ~y�; exp�F�fUg���G�fUg� 
 exp�F�fUg��j��0�0 i

� �h��0�0 j exp�F�fUg��G�fUg� 
 ��a
j � ~y�; exp�F�fUg���j��0�0 i

� �h��0�0 j exp�F�fUg��G�fUg��a
j � ~y� 
 exp�F�fUg��j��0�0 i � �h�0jG�fUg��a

j � ~y�j�0i: (A7)

APPENDIX B: DERIVATION OF THE
TRANSFER-MATRIX OPERATOR T

In this appendix we construct the transfer-matrix opera-
tor T propagating a spatial lattice configuration from one
time slice to the next and the Hilbert space on which it acts.
Operators are written explicitly in boldface. The Hilbert
space on which T operates contains general states j�i
which can be expanded in link states:

 j�i �
Z

DU��U�jUi: (B1)

The measure DU in Eq. (B1) refers to the correspondent
product of SU�2� Haar measures

 DU �
Y
~x;j

dUj� ~x�: (B2)

The inner product in this Hilbert space is given by

 h�0j�i �
Z

DU�0�U����U�: (B3)

We define the operator T such that its matrix elements in
the link basis are given by the transfer matrix Eq. (36)

 hU�x0��jTjU�x��i � T�x0�; x��: (B4)

The path integral for finite lattice of N� time slices with
periodic boundary conditions can be written as the trace of
the N�-fold product of transfer matrices

 

Z Y
x

Y
j�1;2;�

dUj�x�eiSlat � Tr�TN��: (B5)

The transfer-matrix operator T is related to the
Hamiltonian, the generator of time translations

 T � e�ia�H ) H � lim
a�!0

�
1

ia�
log�T�: (B6)

We define with the group elements gj� ~x� 2 SU�2� the
following operators
 

Uj� ~x�jUi � Uj� ~x�jUi 8 j; ~x;

R�gj� ~x��jUi � jU0i;

jU0i � j . . . ; gj� ~x�Uj� ~x�; . . .i:

(B7)

Here all links in jU0i coincide with the correspondent links
in jUi except for the link Uj� ~x� which is left multiplied by
gj� ~x�. The operator R�gj� ~x�� is similar to the translation
operator in quantum mechanics. It is a unitary operator and
satisfies the group representation property, i.e.

 R �gj� ~x��R�g0j� ~x�� � R�gj� ~x� 
 g0j� ~x��: (B8)

The group elements gj� ~x� are parametrized by the expo-
nential map which yields the Haar measure dgj� ~x�

 gj� ~x� � ei�aj � ~x��
a=2; �aj � ~x� 2 reals;

dgj� ~x� � J� ~�j� ~x��
Y
a

d�aj � ~x�:
(B9)

The Jacobian J is equal to unity in a neighborhood of
~�j� ~x� � ~0. Introducing the momentum operators �a

j � ~x�
canonically conjugate to Uj� ~x� we have
 

R�gj� ~x�� � e�i�aj � ~x��
a
j � ~x�;

gj� ~x� � ei�aj � ~x��
a=2;

��a
j � ~x�;Uj0 � ~x

0�� �
�a
2

Uj� ~x�
j;j0
~x; ~x0 ;

��a
j � ~x�;U

y
j0 � ~x

0�� � �Uyj � ~x�
�a
2

j;j0
~x; ~x0 :

(B10)

In contrast to the continuum commutation relations
Eq. (22), the lattice momentum operators canonically con-
jugate to Uj� ~x� do not commute.

 ���a
j � ~x�;�

b
j0 � ~x

0��;Uk� ~y�� �
��
�a

2
;
�b

2

�
;Uk� ~y�

�

j;k
~x; ~y
j0;k
~x0; ~y � i	abc

�
�c

2
;Uk� ~y�

�

j;j0
~x; ~x0
j;k
~x; ~y

� i	abc��c
j� ~x�;Uk� ~y��
j;j0
~x; ~x0 : (B11)
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Since this relation is true for arbitrary Uk� ~y�, we get

 ��a
j � ~x�;�

b
j0 � ~x

0�� � i"abc�c
j� ~x�
j;j0
~x; ~x0 ; (B12)

 ��j� ~x�
2;�b

j0 � ~x
0�� � 0: (B13)

Note that we have defined the translation operator on the group manifold R with an opposite sign inside of the exponential
in comparison with [2]. Our definition yields the same commutation relations as [34] which reproduce the continuum
commutation relations Eq. (22) with the gauge field Aaj � ~x� in the naive continuum limit. For simplicity we abandon to write
quantum mechanical operators explicitly in boldface in the following. By using the group translation operators R we may
write for the transfer-matrix operator
 

T �
��Y

~x

Z
dg�� ~x�R�g�� ~x�� exp

�
i

2

g2

a2
?

a�a�
Tr�1� Re�g�� ~x��

�����Y
~x;k

Z
dgk� ~x�R�gk� ~x��

	 exp
�
i

2

g2 �
2 a�
a�

Tr�1� Re�gk� ~x���
�

exp
�
i

2

g2 Tr�Im�gk� ~x�� Im�U�k� ~x���
���

	

��Y
~x

exp
�
�i

2

g2

a�a�
a2
?

Tr�1� Re�U12� ~x���
���

: (B14)

It still has the right matrix elements Eq. (B4). In order to arrive at Eq. (B14) one uses the fact that R�gj� ~x�� parametrizes the
translation in group space from Uj� ~x; x�� ! Uj� ~x; x0��

 gj� ~x� � Uj� ~x; x
0��Uyj � ~x; x

��: (B15)

Now, one may perform the group integrations in Eq. (B14) explicitly. In the limit a� ! 0, the time evolution along one
temporal step a� induces rotations gj� ~x� which are of the order a� and are close to 1. This implies that the parameters
�aj � ~x� parametrizing these shifts are of the order a� as well. Therefore, it is convenient to make an expansion around
�aj � ~x� � 0 up to order O�a2

��. In this limit, the Jacobian is approximately equal to 1 and the integrals become Gaussian
integrals which can be analytically computed. One obtains

 Hlat � lim
a�!0

�
�

1

ia�
log�T�

�

�
X
~x

��
g2

2

1

a�

X
k;a

1

�2

�
�a
k� ~x� �

2

g2 Tr
�
�a
2

Im�U�k� ~x��
��

2
�
g2

2

a�
a2
?

X
a

�a
�� ~x�2 �

2

g2

a�
a2
?

Tr�1� Re�U12� ~x���
��
:

(B16)
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