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We present results on the equation of state in QCD with two light quark flavors and a heavier strange
quark. Calculations with improved staggered fermions have been performed on lattices with temporal
extent N� � 4 and 6 on a line of constant physics with almost physical quark mass values; the pion mass is
about 220 MeV, and the strange quark mass is adjusted to its physical value. High statistics results on large
lattices are obtained for bulk thermodynamic observables, i.e. pressure, energy and entropy density, at
vanishing quark chemical potential for a wide range of temperatures, 140 MeV � T � 800 MeV. We
present a detailed discussion of finite cutoff effects which become particularly significant for temperatures
larger than about twice the transition temperature. At these high temperatures we also performed
calculations of the trace anomaly on lattices with temporal extent N� � 8. Furthermore, we have
performed an extensive analysis of zero temperature observables including the light and strange quark
condensates and the static quark potential at zero temperature. These are used to set the temperature scale
for thermodynamic observables and to calculate renormalized observables that are sensitive to deconfine-
ment and chiral symmetry restoration and become order parameters in the infinite and zero quark mass
limits, respectively.
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I. INTRODUCTION

Reaching a detailed understanding of bulk thermody-
namics of QCD, e.g. the temperature dependence of pres-
sure and energy density as well as the equation of state,
p��� vs �, is one of the central goals of nonperturbative
studies of QCD on the lattice. The equation of state clearly
is of central importance for the understanding of thermal
properties of any thermodynamic system. It provides direct
insight into the relevant degrees of freedom and their
correlation in different phases of strongly interacting mat-
ter. We have some understanding of the equation of state in
limiting cases of high and low temperatures from pertur-
bation theory [1–5] and hadron gas phenomenology [6],
respectively. In the transition region from the low tempera-
ture hadronic regime to the high temperature quark gluon
plasma, however, one has to rely on a genuine nonpertur-
bative approach, lattice regularized QCD, to study the
nonperturbative properties of strongly interacting matter.

Lattice studies of bulk thermodynamics are particularly
demanding as the most interesting observables, pressure
and energy density, are given in terms of differences of
dimension 4 operators. These differences are particularly
difficult to evaluate because both terms being subtracted
contain the pressure or energy density of the vacuum, an
unphysical quantity that is approximately 1=�aT�4 larger
than the sought-after difference. Numerical signals thus
rapidly decrease with the fourth power of the lattice spac-

ing, a, when one tries to approach the continuum limit at
fixed temperature (T). For this reason improved actions,
which allow one to perform calculations on rather coarse
lattices with relatively small lattice discretization errors,
are quite useful in thermodynamic calculations. Indeed, the
early calculations of bulk thermodynamics with standard
staggered [7] and Wilson [8] fermion discretization
schemes have shown that at high temperature bulk thermo-
dynamic observables are particularly sensitive to lattice
discretization errors. This closely follows observations
made in studies of the thermodynamics of SU�3� gauge
theories [9]. In order to minimize discretization errors at
high temperature, improved staggered fermion actions—
the p4-action [10] and the asqtad action [11]—have been
used to study the QCD equation of state. Recent studies,
performed with the asqtad action with almost physical
quark mass values on lattices with two different values of
the lattice cutoff [11], indeed show much smaller discreti-
zation errors than similar studies performed with the 1-
link, stout smeared staggered fermion action [12]. Another
source for cutoff errors arises, however, from the explicit
breaking of flavor symmetry in the staggered fermion
formulation. While this is not of much concern in the
chirally symmetric high temperature phase of QCD, it
leads to cutoff dependent modifications of the hadron
spectrum and thus may influence the calculation of ther-
modynamic observables in the low temperature hadronic
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phase of QCD. Techniques to reduce flavor symmetry
breaking through the introduction of so-called ‘‘fat links’’
are thus generally exploited in numerical calculations with
staggered fermions [13].

In this paper we report on a calculation of bulk thermo-
dynamics in QCD with almost physical light quark masses
and a physical value of the strange quark mass. Our cal-
culations have been performed with a tree-level Symanzik-
improved gauge action and an improved staggered fermion
action, the p4-action with 3-link smearing (p4fat3), which
removes O�a2� cutoff effects at tree-level and also leads to
small cutoff effects in O�g2� perturbation theory [14]. At
each temperature, we perform simulations with two degen-
erate light quark masses and a heavier strange quark mass
for two different values of the lattice cutoff, corresponding
to lattices with temporal extent N� � 4 and 6. In these
calculations we explore a wide range of temperatures
varying from about 140 MeV to about 800 MeV. This
corresponds to the temperature interval relevant for current
experimental studies of dense matter in heavy ion colli-
sions at RHIC as well as the forthcoming experiments at
the CERN LHC. Bare quark masses have been adjusted to
keep physical masses approximately constant when the
lattice cutoff is varied. At high temperatures, T *

350 MeV, we also performed calculations on lattices
with temporal extent N� � 8 to get control over cutoff
effects in the high temperature limit.

We will start in the next section by reviewing basic
thermodynamic relations in the continuum valid for ther-
modynamic calculations on such lines of constant physics
(LCP). In Sec. III we outline details of our calculational
setup with improved staggered fermions. In Sec. IV we
present our zero temperature calculations needed to define
the line of constant physics and the temperature scale
deduced from properties of the static quark-antiquark po-
tential. Section V is devoted to the presentation of our basic
result, the difference between energy density and 3 times
the pressure from which we obtain all other thermody-
namic observables, e.g. the pressure, energy and entropy
densities as well as the velocity of sound. Section VI is
devoted to a discussion of the temperature dependence of
Polyakov loop expectation values and chiral condensates
which provides a comparison between the deconfining and
chiral symmetry restoring features of the QCD transition.
We finally present a discussion of our results and a com-
parison with other improved staggered fermion calcula-
tions of bulk thermodynamics in Sec. VII.

II. THERMODYNAMICS ON LINES OF CONSTANT
PHYSICS

To start our discussion of QCD thermodynamics on the
lattice we recall some basic thermodynamic relations in the
continuum. For large, homogeneous media the basic bulk
thermodynamic observables we will consider here can be
obtained from the grand canonical partition function with

vanishing quark chemical potentials, Z�T; V�. We intro-
duce the grand canonical potential, ��T; V�, normalized
such that it vanishes at vanishing temperature,

 ��T; V� � T lnZ�T; V� ��0; (1)

with �0 � limT!0T lnZ�T; V�. With this we obtain the
thermal part of the pressure (p) and energy density (�)

 p �
1

V
��T; V�; � �

T2

V
@��T; V�=T

@T
; (2)

which by construction both vanish at vanishing tempera-
ture. Using these relations one can express the difference
between � and 3p, i.e. the thermal contribution to the trace
of the energy-momentum tensor ����T�, in terms of a
derivative of the pressure with respect to temperature, i.e.

 

����T�

T4
�
�� 3p

T4 � T
@
@T
�p=T4�: (3)

In fact, it is ����T� which is the basic thermodynamic
quantity conveniently calculated on the lattice. All other
bulk thermodynamic observables, e.g. p=T4, �=T4 as well
as the entropy density, s=T3 � ��� p�=T4, can be de-
duced from this using the above thermodynamic relations.
In particular, we obtain the pressure from ����T� through
integration of Eq. (3),

 

p�T�

T4
�
p�T0�

T4
0

�
Z T

T0

dT0
1

T05
����T0�: (4)

Usually, the temperature for the lower integration limit, T0,
is chosen to be a temperature sufficiently deep in the
hadronic phase of QCD where the pressure, p�T0�, receives
contributions only from massive hadronic states and is
already exponentially small. We will discuss this in more
detail in Sec. V. Equation (4) then directly gives the pres-
sure at temperature T. Using p=T4 determined from Eq. (4)
and combining it with Eq. (3), we obtain �=T4 as well as
s=T3. This makes it evident that there is indeed only one
independent bulk thermodynamic observable calculated in
the thermodynamic (large volume) limit. All other observ-
ables are derived through standard thermodynamic rela-
tions so that thermodynamic consistency of all bulk
thermodynamic observables is insured by construction.

We stress that the normalization introduced here for the
grand canonical potential, Eq. (1), forces the pressure and
energy density to vanish at T � 0. As a consequence of this
normalization, any nonperturbative structure of the QCD
vacuum, e.g. quark and gluon condensates, that contribute
to the trace anomaly ����0�, and would lead to a non-
vanishing vacuum pressure and/or energy density, eventu-
ally will show up as nonperturbative contributions to the
high temperature part of these thermodynamic observ-
ables. This is similar to the normalization used, e.g. in
the bag model and the hadron resonance gas, but differs
from the normalization used, e.g. in resummed perturbative
calculation at high temperature [15,16] or phenomenologi-
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cal (quasiparticle) models for the high temperature phase
of QCD [17]. This should be kept in mind when comparing
results for the equation of state (EOS) with perturbative
and model calculations. We also note that ambiguities in
normalizing pressure and energy density at zero tempera-
ture drop out in a calculation of the entropy density which
thus is the preferred observable for such comparisons.

III. LATTICE FORMULATION

In a lattice calculation, temperature and volume are
given in terms of the temporal (N�) and spatial (N�) lattice
extent as well as the lattice spacing, a, which is controlled
through the lattice gauge coupling � � 6=g2,

 T �
1

N�a���
; V � �N�a����3: (5)

As all observables that are calculated on the lattice are
functions of the coupling, �, we may rewrite Eq. (3) in
terms of a derivative taken with respect to � rather than T.
Furthermore we adopt the normalization of the pressure as
introduced in Eq. (1). This insures a proper renormaliza-
tion of thermodynamic quantities and, as a consequence,
forces the pressure to vanish in the vacuum, i.e. at T � 0.

Let us write the QCD partition function on a lattice of
size N3

�N� as

 ZLCP��;N�;N�� �
Z Y

x;�

dUx;�e�S�U�; (6)

where Ux;� 2 SU�3� denotes the gauge link variables and
S�U� � �SG�U� � SF�U;�� is the Euclidean action,
which is composed out of a purely gluonic contribution,
SG�U�, and the fermionic part, SF�U;��, which arises after
integration over the fermion fields. We will specify this
action in more detail in the next section but note here that
we will use tree-level improved gauge and fermion actions.
Although it would be straightforward to introduce one-
loop or tadpole improvement factors in the action the setup
used here greatly simplifies the analysis of thermodynamic
observables and in some cases also gives a more direct
relation to corresponding observables in the continuum.

When using only tree-level improvement the gluonic
action does not depend on the gauge coupling, �, and the
fermion action depends on � only through the bare light
�m̂l� and strange �m̂s� quark masses. The subscript LCP in
Eq. (6) indicates that we have defined the partition function
ZLCP on a line of constant physics, i.e. when approaching
the continuum limit by increasing the gauge coupling
��! 1� the bare quark masses �m̂l���; m̂s���� in the
QCD Lagrangian are tuned towards zero such that the
vacuum properties of QCD remain unchanged. The quark
masses thus are not independent parameters but are func-
tions of � which are determined through constraints im-
posed on zero temperature observables; e.g. one demands

that a set of hadron masses remains unchanged when the
continuum limit is approached on a LCP.

We now may rewrite Eq. (3) in terms of observables
calculable in lattice calculations at zero and nonzero tem-
perature,

 

����T�

T4
� �R����N4

�

�
1

N3
�N�

�
dS
d�

�
�
�

1

N3
�N0

�
dS
d�

�
0

�
:

(7)

Here h. . .ix, with x � �, 0 denote expectation values eval-
uated on finite temperature lattices of size N3

�N�, with
N� � N�, and zero temperature lattices, i.e. on lattices
with large temporal extent, N3

�N� with N� � N0 * N�,
respectively. Furthermore, R� denotes the lattice version
of the QCD �-function which arises as a multiplicative
factor in the definition of ����T� because derivatives with
respect to T have been converted to derivatives with respect
to the lattice spacing a on lattices with fixed temporal
extent N�,

 R���� � T
d�
dT
� �a

d�
da
: (8)

We note that in the weak coupling, large � limit, R�
approaches the universal form of the 2-loop �-function of
3-flavor QCD,

 R���� � 12b0 � 72b1=��O���2�; (9)

with b0 � 9=16�2 and b1 � 1=4�4.
We analyze the thermodynamics of QCD with two

degenerate light quarks (m̂l � m̂u � m̂d) and a heavier
strange quark (m̂s) described by the QCD partition func-
tion given in Eq. (6). For our studies of bulk thermody-
namics we use the same discretization scheme which has
been used recently by us in the study of the QCD transition
temperature [18], i.e. we use an O�a2� tree-level improved
gauge action constructed from a 4-link plaquette term and
a planar 6-link Wilson loop as well as a staggered fermion
action that contains a smeared 1-link term and bent 3-link
terms. We call this action the p4fat3-action; further details
are given in Ref. [10] where the p4fat3 action was first used
in studies of the QCD equation of state on lattices with
temporal extent N� � 4 and larger quark masses. With this
action, bulk thermodynamic quantities like pressure and
energy density are O�a2� tree-level improved; corrections
to the high temperature ideal gas limit only start at
O�1=N4

�� and are significantly smaller than for the Naik
action or the standard staggered action which suffers from
large O�1=N2

�� cutoff effects at high temperature. An
analysis of cutoff effects in the ideal gas limit and in
O�g2� lattice perturbation theory [14] shows that devia-
tions from perturbative results are already only a few
percent for lattices with temporal extent as small as
N� � 6.

Following the notation used in Ref. [18] the Euclidean
action is given as
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 S�U� � �SG�U� � SF�U;��; (10)

with a gluonic contribution, SG�U�, and a fermionic part,
SF�U;��. The latter can be expressed in terms of the
staggered fermion matrices, Dm̂l�m̂s�

, for two light (m̂l)
and a heavier strange quark (m̂s),

 SF�U;�� �
1

2
Tr lnD�m̂l���� �

1

4
Tr lnD�m̂s����: (11)

Here we took the fourth root of the staggered fermion
determinant to represent the contribution of a single fer-
mion flavor to the QCD partition function.1

We also introduce the light and strange quark conden-
sates calculated at finite (x � �) and zero temperature (x �
0), respectively,
 

h �  iq;x �
1

4

1

N3
�Nx
hTrD�1�m̂q�ix; q� l; s; x� 0; �;

(12)

as well as expectation values of the gluonic action density,

 hsGix �
1

N3
�Nx
hSGix: (13)

All numerical calculations have been performed using the
rational hybrid Monte Carlo (RHMC) algorithm [22] with
parameters that have been optimized [18] to reach accep-
tance rates of about 70%. Some details on our tuning of
parameters of the RHMC algorithm have been given in
[23].

For the discussion of the thermodynamics on a LCP it
sometimes is convenient to parametrize the quark mass
dependence of SF in terms of the light quark mass m̂l and
the ratio h � m̂s=m̂l rather than m̂l and m̂s separately. We
thus write the �-dependence of the strange quark mass as
m̂s��� � m̂l���h���. In the evaluation of ��� 3p�=T4 we
then will need to know the derivatives of these parametri-
zations with respect to �. We define

 Rm��� �
1

m̂l���
dm̂l���

d�
; Rh��� �

1

h���
dh���

d�
:

(14)

With these definitions we may rewrite Eq. (7) as

 

�� 3p

T4
� T

d

dT

�
p

T4

�
� R����

@p=T4

@�

�
���
G �T�

T4 �
���
F �T�

T4 �
���
h �T�

T4 ; (15)

with

 

���
G �T�

T4
� R�	hsGi0 � hsGi�
N

4
�; (16)

 

���
F �T�

T4 � �R�Rm	2m̂l�h �  il;0 � h �  il;��

� m̂s�h �  is;0 � h �  is;��
N4
�; (17)

 

���
h �T�

T4
� �R�Rhm̂s	h �  is;0 � h �  is;�
N4

�: (18)

We will show in the next section that to a good approxi-
mation h��� stays constant on a LCP. Rh thus vanishes on
the LCP and consequently the last term in Eq. (15), ���

h ,
will not contribute to the thermal part of the trace anomaly,
����T�. The other two terms stay finite in the continuum
limit and correspond to the contribution of the thermal
parts of gluon and quark condensates to the trace anomaly.
We note that the latter contribution vanishes in the chiral
limit of three flavor QCD (m̂l; m̂s ! 0). The trace anomaly
would then entirely be given by ���

G �T� and the observ-
ables entering the calculation of bulk thermodynamic
quantities in the chiral limit of QCD would reduce to those
needed also in a pure SU�3� gauge theory [9]. In fact, we
also find that for physical values of the quark masses the
trace anomaly is dominated by the gluonic contribution,
���
G �T�. As will become clear in Sec. V ���

F �T� contrib-
utes less than 10% to the total trace anomaly for tempera-
tures large than about twice the transition temperature.

We also note that the prefactor in Eq. (17) will approach
unity in the continuum limit as Rm attains a universal form
up to 2-loop level which is similar to that ofR�1

� and is only
modified through the anomalous dimension of the quark
mass renormalization [24]. For the relevant combination of
�-functions that enters the fermionic part of the trace
anomaly, one has

 � �R����Rm����
1�loop � 1�

16b0

3�
: (19)

IV. STATIC QUARK POTENTIAL AND THE LINE
OF CONSTANT PHYSICS

A. Construction of the line of constant physics

We will calculate thermodynamic observables on a LCP
that is defined at T � 0 as a line in the space of light and
strange bare quark masses parametrized by the gauge
coupling�. Each point on this line corresponds to identical
physical conditions at different values of the lattice cutoff
which is tuned towards the continuum limit by increasing
the gauge coupling �. We define the line of constant
physics by demanding (i) that the ratio of masses for the
strange pseudoscalar and the kaon mass, m�ss=mK, stays
constant and (ii) that m�ss expressed in units of the scale
parameter r0 stays constant. The latter gives the distance at
which the slope of the zero temperature, static quark

1There is a controversy regarding the validity of the rooting
approach in numerical calculations with staggered fermions. For
further details we refer to recent reviews presented at the Lattice
conference [19–21] and references therein.
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potential, V �qq�r�, attains a certain value. We also introduce
the scale r1, which frequently is used on finer lattices to
convert lattice results expressed in units of the cutoff to
physical scales,

 

�
r2

dV �qq�r�

dr

�
r�r0

� 1:65;
�
r2

dV �qq�r�

dr

�
r�r1

� 1:0:

(20)

We checked that (i) and (ii) also hold true, if we replacem�ss
by the mass of the light quark pseudoscalar meson, m�.
However, errors on m�r0 and �m�=mK� are generally
larger which, in particular, at large values of � makes the
parametrization of the LCP less stringent.

Leading order chiral perturbation theory suggests that
the ratio �m�ss=mK�

2 is proportional to m̂s=�m̂l � m̂s�. One
thus expects this ratio to stay constant for fixed h �
m̂s=m̂l. This is, indeed fulfilled in the entire regime of
couplings, �, explored in our calculations (see Table I).
The first condition for fixing the LCP parameters thus, in
practice, has been replaced by choosing h � m̂l=m̂s to be
constant. As a consequence we find Rh��� � 0, which
simplifies the calculation of thermodynamic quantities.

In order to define a line of constant strange quark mass,
as a second condition for the LCP we demand that the
productm�ssr0 stays constant. For our LCP we chose 1.59 as
the value for the product. Here one should note that m�ss
determined in our calculations only receives contributions
from connected diagrams and does not include discon-
nected loops. In order to compare our value (1.59, see
discussion below) to a physical one, we therefore follow

the argumentation of Ref. [25] and adopt m�ss ������������������������
2m2

K �m
2
�

q
� 686 MeV as the physical mass of our

strange pseudoscalar. Together with the scale r0 �
0:469�7� fm as determined in Ref. [26] through a compari-
son of r0 with level splittings of the charmonium system
[27], this yields m�ssr0 ’ 1:63. Of course, there is some
ambiguity in this choice as current determinations of r0

differ by about 10% [26,28]. This introduces some system-
atic error in the definition of the physical LCP. The main
reason for deviation from the physical LCP in the present
calculation, however, is due to the choice of the light quark
masses which are about a factor two too large.

Fixing the light and strange pseudoscalar masses in units
of r0 required some trial runs for several � values. We then
used the leading order chiral perturbation theory Ansatz
m2

�ss � m̂s (or m2
� � m̂l) to choose m̂s and m̂l � m̂s=10 at

several values of the gauge coupling and used a renormal-
ization group inspired interpolation to determine quark
mass values at several other � values at which high statis-
tics simulations have been performed. It turned out that
these values are best fitted by m�ssr0 � 1:59. We thus use
this value rather than the value 1.63 mentioned above, to
define our LCP. For all other simulations we then used the
results of these zero temperature calculations to determine

the quark mass values that belong to a line of constant
physics characterized by

 LCP : �i� m�ssr0 � 1:59; �ii� h � m̂s=m̂l � 10:

In general our calculations are thus performed at parameter
values close to the LCP which is defined by the above
condition. The parameters of all our zero temperature
calculations performed to determine the LCP, results for
meson masses and parameters of the static quark potential
are summarized in Table I. As can be seen, at our actual
simulation points the results for m�ssr0 fluctuate around the
mean value by a few percent. We also checked the sensi-
tivity of the meson masses used to determine the LCP to
finite volume effects. At � � 3:49 and 3.54 we performed
calculations on 324 lattices in addition to the 163 � 32
lattices. As can bee seen from Table I results for m�ss and
mK agree within statistical errors and volume effects are at
most on the level of 2% for the light pseudoscalar.

The LCP is furthermore characterized by m�=mK �
0:435�2� and m�ss=mK � 1:33�1�. Using r0 � 0:469�7� fm
to convert to physical scales we find that on the LCP the
light and strange pseudoscalar masses are m� ’
220�4� MeV, m�ss ’ 669�10� MeV and the kaon mass is
given by mK ’ 503�6� MeV.

B. The static quark potential and the scale r0

On the LCP we determine several parameters, e.g. the
short distance scale r0 and the linear slope parameter, the
string tension �, that characterize the shape of the static
quark potential calculated at T � 0 in a fixed range of
physical distances. The distance r0, defined in Eq. (20),
is used to define the temperature scale for the thermody-
namics calculations.

The static quark potential, V �qq�r�, has been calculated
from smeared Wilson loops as described in [18] for all
parameter sets listed in Table I. We checked that the
smeared Wilson loops project well onto the ground state
at all values of the cutoff by verifying the independence of
the extracted potential parameters on the number of smear-
ing levels used in the analysis. The set of gauge couplings,
� 2 	3:15; 4:08
, used in this analysis covers a large inter-
val in which the lattice cutoff changes by a factor 6 from
a ’ 0:3 fm down to a ’ 0:05 fm. When analyzing the
static potential over such a wide range of cutoff values
one should make sure that the potential is analyzed in
approximately the same range of physical distances. The
fit interval 	�r=a�min; �r=a�max
 for fits with a Cornell type
Ansatz for the static potential thus has been adjusted for the
different values of gauge couplings such that it covers
approximately the same range of physical distances,
r0=2 & r & 2r0, or 0:25 fm & r & 1 fm. We confirmed
our analysis of the static quark potential and the determi-
nation of r0 also independently by using spline interpola-
tions which are not biased by a particular Ansatz for the
form of the potential.
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The left-hand part of Fig. 1 shows the static quark
potential for several of our parameter sets. We have renor-
malized these potentials by matching2 all potentials at a
large distance, r=r0 � 1:5, to a common value that is taken
to be identical to the large distance string potential,
Vstring�r� � ��=12r� �r. The result of this matching is
shown in the lower part of Fig. 1(left) and the constant
shifts needed to obtain these renormalized potentials are
listed in Table I. The good matching of all the potential
data obtained at different values of the cutoff already gives
a good idea of the smallness of finite cutoff effects in this
observable. We note that this matching procedure provides
renormalization constants for the static quark potential,
which we also will use later to renormalize the Polyakov
loop expectation value.

To further analyze the shape of the static quark potential
we determined the scale parameter r0=a as well as the

square root of the string tension in lattice units,
����
�
p

a.
These parameters have been obtained from three and four
parameter fits. As described in [18] the latter fit Ansatz has
been used to estimate systematic errors in our analysis of
the scale parameters.

Results for r0=a and
����
�
p

a are given in Table I. We note
that the product r0

����
�
p

stays constant on the LCP and
changes by less than 2% in the entire range of couplings
� in which the lattice cutoff changes by a factor 6. For a �
0:15 fm we used a quadratic fit Ansatz, �r0

����
�
p
�a � r0

����
�
p
�

c�a=r0�
2, to fit 10 data points. The asymptotic value for

r0

����
�
p

coincides within errors with a simple average over
all values of �r0

����
�
p
�a in this interval. This confirms that

O�a2� corrections indeed are small for this product.
Similarly we determined the scale parameter r1 frequently
used to set the scale in calculations performed on finer
lattices. Both fits for r0

����
�
p

and r0=r1 yield �2=dof ’ 0:7.
From this analysis we obtain the parameters characterizing
the shape of the heavy quark potential at masses in the
vicinity of the LCP,

 r0

����
�
p
� 1:1034�40�; r0=r1 � 1:4636�60�: (21)

TABLE I. Light quark and strange pseudoscalar meson masses and parameters of the static quark potential calculated on zero
temperature lattices of size N3

�N�. The last column gives the renormalization constants times r0 needed to renormalize the heavy quark
potential to the string potential at distance r=r0 � 1:5.

� 100m̂l N3
� � N� m�a m�ssa mKa r0=a

����
�
p

a c�g2�r0

3.150 1.100 163 � 32 0.3410(2) 1.0474(1) 0.7854(2) 1.467(72) 0.75(18) 0.97(12)
3.210 1.000 163 � 32 0.3262(1) 0.9988(1) 0.7496(1) 1.583(36) 0.685(75) 1.118(68)
3.240 0.900 163 � 32 0.3099(2) 0.9485(2) 0.7125(3) 1.669(31) 0.658(36) 1.243(67)
3.277 0.765 163 � 32 0.2881(7) 0.8769(5) 0.6599(6) 1.797(19) 0.612(53) 1.362(53)
3.290 0.650 163 � 32 0.2667(8) 0.8104(7) 0.6101(8) 1.823(16) 0.623(32) 1.362(29)
3.335 0.620 163 � 32 0.2594(3) 0.7884(2) 0.5941(5) 1.995(11) 0.5668(73) 1.504(22)
3.351 0.591 163 � 32 0.2541(7) 0.7692(5) 0.5800(7) 2.069(12) 0.551(11) 1.594(24)
3.382 0.520 163 � 32 0.2370(6) 0.7194(5) 0.5422(5) 2.230(14) 0.5100(82) 1.718(57)
3.410 0.412 163 � 32 0.2098(4) 0.6371(6) 0.4796(8) 2.503(18) 0.440(10) 2.073(49)
3.420 0.390 243 � 32 0.2029(8) 0.6177(5) 0.4675(5) 2.577(11) 0.4313(56) 2.124(33)
3.430 0.370 243 � 32 0.1986(6) 0.6000(3) 0.4529(5) 2.6467(81) 0.4225(53) 2.178(17)
3.445 0.344 243 � 32 0.1909(7) 0.5749(4) 0.4335(5) 2.813(15) 0.3951(68) 2.388(35)
3.455 0.329 243 � 32 0.1833(10) 0.5580(6) 0.4204(8) 2.856(20) 0.3895(68) 2.375(42)
3.460 0.313 163 � 32 0.1808(16) 0.5443(11) 0.4102(11) 2.890(16) 0.3831(84) 2.391(55)
3.470 0.295 243 � 32 0.1686(19) 0.5233(8) 0.3940(12) 3.065(18) 0.3592(75) 2.617(41)
3.490 0.290 163 � 32 0.1689(14) 0.5115(11) 0.3842(11) 3.223(31) 0.3423(66) 2.757(59)
3.490 0.290 324 0.1679(8) 0.5113(8) 0.3840(7)
3.510 0.259 163 � 32 0.1525(40) 0.4740(20) 0.3554(22) 3.423(61) 0.322(14) 2.934(92)
3.540 0.240 163 � 32 0.1495(24) 0.4458(20) 0.3358(19) 3.687(34) 0.3011(46) 3.128(51)
3.540 0.240 324 0.1469(11) 0.4451(6) 0.3339(11)
3.570 0.212 243 � 32 0.1347(53) 0.4053(18) 0.3028(23) 4.009(26) 0.2743(38) 3.414(47)
3.630 0.170 243 � 32 0.1126(20) 0.3386(7) 0.2537(8) 4.651(41) 0.2352(44) 3.939(59)
3.690 0.150 243 � 32 0.1020(90) 0.2960(20) 0.2230(30) 5.201(48) 0.2116(36) 4.320(63)
3.760 0.130 242 � 32 � 48 0.0857(32) 0.2530(16) 0.1894(16) 6.050(61) 0.1810(29) 4.984(73)
3.820 0.125 323 � 32 0.0830(40) 0.2310(38) 0.1744(50) 6.835(44) 0.1701(21) 5.541(106)
3.920 0.110 323 � 32 0.0750(70) 0.2020(10) 0.1550(20) 7.814(83) 0.1423(24) 6.037(72)
4.080 0.081 323 � 32 0.0700(70) 0.1567(36) 0.1220(50) 10.39(23) 0.1060(35) 7.710(183)

2Further details on the matching of the zero temperature heavy
quark potentials, its application to the renormalization of the
Polyakov loop and finite temperature free energies will be
published elsewhere.
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We note that the result obtained here for r0=r1 is in good
agreement with the corresponding continuum extrapolated
value, r0=r1 � 1:474�7��18�, determined with the asqtad
action from an analysis of the quark mass dependence of
this ratio at two different values of the lattice spacing, a ’
0:12 fm and a ’ 0:09 fm, respectively [29]. We show re-
sults for r0=r1 and r0

����
�
p

calculated at parameter sets close
to the LCP in Fig. 1 (right).

Despite the good scaling behavior of dimensionless
combinations of scale parameters deduced from the static
potential, one expects, of course, to still find substantial
deviations from asymptotic scaling relations that are con-
trolled by universal 2-loop �-functions. For the scale pa-
rameter r0=a we parametrize deviations from asymptotic
scaling using a rational function Ansatz,

 r̂ 0 �
r0

a
�

1� erâ2��� � frâ4���

arR2����1� brâ
2��� � crâ

4��� � drâ
6����

;

(22)

where

 R2��� � exp
�
�

�
12b0

��
6b0

�

�
�b1=�2b2

0�

(23)

denotes the 2-loop �-function of QCD for three massless
quark flavors and â��� � R2���=R2�3:4�. With this pa-
rametrization it is straightforward to calculate the
�-function R� entering all basic thermodynamic observ-
ables,

 R���� �
r0

a

�
dr0=a

d�

�
�1
: (24)

Furthermore, we need a parametrization of the
�-dependence of the bare quark masses to determine the

second �-function entering the thermodynamic relations,
i.e. Rm��� defined in Eq. (14). For this purpose we use a
parametrization of the product of the bare light quark mass,
m̂l and r̂0 that takes into account the anomalous scaling
dimension of quark masses [24],

 m̂ lr̂0 � am

�
12b0

�

�
4=9
P���; (25)

with am being related to the renormalization group invari-
ant quark mass in units of r0 and P��� being a sixth order
rational function that parametrizes deviations from the
leading order scaling relation for the bare quark mass,

 P��� �
1� bmâ

2��� � cmâ
4��� � dmâ

6���

1� emâ
2��� � fmâ

4��� � gmâ
6���

: (26)

This Ansatz insures that the parametrization for the two
�-functions as well as the parametrization of their product,
R����Rm���, reproduces the universal 2-loop results given
in Eqs. (9) and (19).

In Fig. 2 we show our results for r̂0 � r0=a and m̂lr̂0

together with the fits described above. The fit parameters
defining the quark masses on the LCP have been obtained
from �2-fits in the interval � 2 	3:1; 4:08
. Results for the
fit parameters are given in Table II. In addition we find
am � 0:0190�9� which turns into a value of 8.0(4) MeV in
physical units. Fit results for r0=a differ from the actually
calculated values given in Table II by less than 1%.

Like in the pure gauge theory calculations of the equa-
tion of state, we also find for QCD with light dynamical
quarks that, in the parameter range of interest for finite
temperature calculations, �-functions deviate significantly
from the asymptotic scaling form. In particular, we find a
dip in R� at � ’ 3:43. For small values of N�, the interest-
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FIG. 1 (color online). The static quark potential in units of the scale r0 versus distance r=r0 (left) and dimensionless combinations of
the potential shape parameters r0=r1 and r0

����
�
p

extracted from fits to these potentials (right). The left-hand figure shows potentials for
several values of � taken from our entire simulation interval, � 2 	3:15:4:08
. The lowest curve in this figure combines all potentials
by matching them to the string potential (solid line) as explained in the text. Curves in the right-hand figure show quadratic fits and a fit
to a constant with a 1% error band. The lattice spacing has been converted to physical units using r0 � 0:469 fm.
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ing parameter range thus includes the crossover region
from the strong to weak coupling regime.

We use the interpolating fits for r̂0 and m̂lr̂0 to determine
the two �-functions R� and Rm that enter the calculations
of thermodynamic quantities. As all basic thermodynamic
observables are directly proportional to R�, we should
check the sensitivity of R� on the particular interpolation
form used. We thus have used a completely different
interpolation that restricts the renormalization group mo-
tivated Ansatz to the small coupling regime, �  3:52, and
uses purely rational functions to piecewise fit 2 intervals at
smaller �. We find that results for R� are sensitive to the fit
Ansatz only for small �-values, i.e. � & 3:25, where the
dependence of r̂0 on � becomes weak. As discussed later
the uncertainty on R� at small values of the coupling only
affects the three smallest temperatures used for the analysis
of the equation of state on the N� � 4 lattices.

Using the parametrizations of r̂0 and m̂lr̂0 given in
Eq. (22) and (25) as well as the above discussed piecewise
interpolation of r̂0 we now can derive the two �-functions
R���� and Rm���. In Fig. 3 we show R� as well as the
combination �R�Rm which enters the calculation of the
gluonic and fermionic contributions to ��� 3p�=T4. For r̂0

as well as for the two �-functions, we show results ob-
tained with our two different fit Ansätze. As can be seen,

the different fit forms lead to differences in the fit result at
the edges of the parameter range analyzed. We take care of
this in our analysis of the equation of state by averaging
over the results obtained with the two different fit Ansätze
and by including the difference of both fit results as a
systematic error. We note that the �-function R� has a
minimum at � ’ 3:43. This characterizes the transition
from strong to weak coupling regions and is similar to
what is known from �-functions determined in pure gauge
theory [9] as well as in QCD with heavier quark masses
[10]. The details of this region will differ in different
discretization schemes as the QCD �-functions are univer-
sal only up to 2-loop order in perturbation theory. In order
to understand the origin of cutoff effects in thermodynamic
observables it is, however, important to have good control
over R� in this nonuniversal regime as well, as R� enters
the calculation of all relevant lattice observables as an
overall multiplicative factor.3

TABLE II. Parameters of the fit of the scale parameter r0 in lattice units based on the Ansatz given in Eq. (22) (lower half) and the fit
of the renormalization group invariant combination of light quark masses and r0 [Eq. (25)] on the line of constant physics (upper half).
The �2=d:o:f for these fits are 1.5 for 19 degrees of freedom (lower half ) and 0.84 for 18 degrees of freedom (upper half ).

bm cm dm em fm gm

�2:149�121� 1.676(178) �0:365�144� �2:290�162� 1.829(425) �0:356�335�

ar br cr dr er fr
13.250(363) �1:201�91� 0.054(196) 0.406(109) �1:682�103� 0.823(76)
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FIG. 2 (color online). The scale parameter r̂0 � r0=a versus � � 6=g2 (left) and its product with the bare light quark mass on the
LCP (right). The two curves shown in the left-hand part of this figure correspond to two different fit Ansätze. As explained in the text in
addition to the renormalization group motivated Ansatz given in Eq. (22) the result from a 3-interval fit is shown. The curve in the
right-hand part of the figure shows a fit based on the Ansatz given in Eqs. (25) and (26).

3We note that in order to insure thermodynamic consistency
the �-function used in the definition of thermodynamic quanti-
ties has to be determined from the cutoff dependence of the
observable used to set the temperature scale, i.e. r0=a in our
study.
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V. BULK THERMODYNAMICS

A. The trace anomaly: ��� 3p�=T4

The basic lattice observables needed to determine the
QCD equation of state with our tree-level improved gauge
and fermion actions are expectation values of the gauge
action as well as the light and strange quark chiral con-
densates calculated on the LCP on finite (N� � N�) and
zero (N� * N�) temperature lattices. We have performed
finite temperature calculations on lattices with temporal
extent N� � 4, 6 and 8. In all cases the spatial extent of the
lattices (N�) was at least 4 times larger than the temporal
extent (N�), i.e. most finite temperature calculations have
been performed on lattices of size 1634 and 2436, respec-
tively. In particular at high temperature, we found it im-
portant to increase the spatial volume in our calculations on
N� � 6 lattices to check for possible finite volume effects
and also to add a few calculations on N� � 8 lattices to get
control over the cutoff dependence seen in the trace anom-
aly. In these cases, calculations on 3236 and 3238 lattices
have been performed. For all parameter sets, corresponding
zero temperature calculations have been performed on
lattices of size 16332 and 24332. In a few cases we used
lattices of size 242 � 32 � 48 as well as 324. The length of
individual calculations on the finite temperature lattices
varied between 6500 and 35 000 trajectories on the N� � 4
lattices and 5000 to 17 600 iterations on the N� � 6 latti-
ces, where Metropolis updates were done after hybrid
Monte Carlo evolutions of trajectory length �MD � 0:5.
At all values of the gauge couplings the length of runs on
zero temperature lattices has been adjusted such that the
statistical errors of basic observables, e.g. action expecta-
tion values, are of similar magnitude as in the T > 0 runs.
This typically required 2500 to 6000 trajectories. With this
amount of statistics, we achieved statistical errors on the
basic thermodynamic observable, ��� 3p�=T4, of below
20% at all temperatures. In fact, they are below 10% in the

temperature interval T 2 	180 MeV; 700 MeV
 and are
less than 5% for T 2 	195 MeV; 300 MeV
.

The basic zero and finite temperature observables
needed to calculate the trace anomaly in units of the fourth
power of the temperature, ����T�=T4 � ��� 3p�=T4,
from Eq. (7) are summarized in Tables III, IV, V, and VI.
To extract ����T�=T4 one furthermore needs to know the
derivatives of bare couplings and quark masses, R� and
Rm. Their calculation from zero temperature observables
has been discussed in the previous section. With this input,
we obtain the result for ����T�=T4, shown in Fig. 4 for the
entire range of temperatures explored by us. Here, and in
all subsequent figures, the temperature scale has been
determined from our results for r0=a, which characterizes
the slope of the static quark potential and has been ex-
tracted from the zero temperature potential as discussed in
the previous section. On lattices with temporal extent N�
we then have Tr0 � r̂0=N�. Whenever we show in the
following temperatures in units of MeV we use r0 �
0:469 fm [26] to convert Tr0 to a MeV-scale. We will,
however, show in all figures both scales which should
allow us to compare the results presented here unambigu-
ously with any other lattice calculation performed within a
different regularization scheme.

In QCD with light (u, d)-quarks and a heavier strange
quark the trace anomaly receives, in addition to the gluonic
contribution to the trace over the energy-momentum ten-
sor, also contributions from the light and heavy quark
chiral condensates [Eqs. (16) and (17)]. In the chiral limit
only the former contributes and all fermionic contributions
enter indirectly through modifications of the gauge field
background. It thus is interesting to check the relative
importance of direct contributions from the chiral conden-
sates to ��� 3p�=T4. In Fig. 5 we show the fermion
contribution ���

F =T4 to the total trace anomaly shown in
Fig. 4. The right-hand part of this figure shows the relative
magnitude of the light and strange quark contributions. As
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FIG. 3 (color online). The �-function on the LCP [Eq. (24)] (left) and the product R�Rm (right). The horizontal lines show the weak
coupling behavior given in Eqs. (9) and (19). The two curves result from two different fits of r̂0 as discussed in the text.
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TABLE IV. Expectation values of the pure gauge action density, light and strange quark chiral condensates calculated on lattices
with temporal extent N� � 4. The last two columns give the trace anomaly, �� 3p, and the pressure, p, in units of T4.

� 100m̂l N3
� #traj: hsGi� h �  il;� h �  is;� ��� 3p�=T4 p=T4

3.150 1.100 163 16 016 4.824 13(46) 0.281 65(22) 0.390 82(12) 0.54(29) 0.0639
3.210 1.000 163 21 170 4.685 25(41) 0.243 57(19) 0.355 22(12) 1.03(27) 0.1492
3.240 0.900 163 18 741 4.609 04(46) 0.219 62(26) 0.329 20(16) 1.23(18) 0.2060
3.277 0.765 163 12 893 4.5001(12) 0.177 84(83) 0.286 88(47) 3.18(25) 0.3208
3.290 0.650 163 30 169 4.451 42(58) 0.151 32(49) 0.256 54(28) 4.61(25) 0.4037
3.335 0.620 163 17 327 4.285 41(91) 0.049 64(84) 0.190 82(51) 10.77(20) 1.0757
3.351 0.591 163 12 427 4.2453(11) 0.037 44(76) 0.174 23(59) 9.68(18) 1.4748
3.382 0.520 163 8111 4.166 23(92) 0.018 75(19) 0.137 97(43) 7.70(12) 2.2418
3.410 0.412 163 16 000 4.104 65(41) 0.011 657(41) 0.102 29(15) 5.56(12) 2.8435
3.460 0.313 163 10 208 4.009 31(64) 0.007 148(28) 0.068 78(17) 3.57(11) 3.5917
3.490 0.290 163 9422 3.959 41(38) 0.006 156 3(83) 0.060 172(57) 2.668(71) 3.8864
3.510 0.259 163 10 000 3.925 64(36) 0.005 256 8(56) 0.051 830(48) 2.249(56) 4.0322
3.540 0.240 163 6258 3.878 12(62) 0.004 627 0(88) 0.045 837(76) 1.687(76) 4.1947
3.570 0.212 163 21 196 3.832 12(28) 0.003 904 4(27) 0.038 807(22) 1.378(51) 4.3116
3.630 0.170 163 10 000 3.745 81(27) 0.002 912 2(17) 0.029 047(16) 0.896(49) 4.4751
3.690 0.150 163 7117 3.665 59(24) 0.002 431 2(11) 0.024 276(10) 0.592(38) 4.5789
3.760 0.130 163 33 378 3.577 27(13) 0.001 998 46(36) 0.019 966 2(36) 0.404(22) 4.6498
3.820a 0.110 163 32 011 3.506 20(13) 0.001 627 76(26) 0.016 268 3(26) 0.273(28) 4.6830
3.920 0.110 323 6530 3.395 380(89) 0.001 544 11(10) 0.015 433 7(10) 0.188(21) 4.7156

aNote that at � � 3:82 simulations on N� � 4 and 6 lattices have been performed at slightly different quark masses.

TABLE III. Expectation values of the pure gauge action density, light and strange quark chiral condensates calculated on zero
temperature lattices of size N3

�N�. Also given is the number of trajectories generated at each value of the gauge coupling � with light
quarks of mass m̂l and bare strange quark mass m̂s � 10m̂l.

� 100m̂l N3
� � N� #traj: hsGi0 h �  il;0 h �  is;0

3.150 1.100 163 � 32 4544 4.825 64(21) 0.287 27(11) 0.392 677(53)
3.210 1.000 163 � 32 5333 4.689 44(27) 0.252 84(14) 0.358 813(80)
3.240 0.900 163 � 32 5110 4.614 41(29) 0.231 56(16) 0.333 957(88)
3.277 0.765 163 � 32 3408 4.516 60(41) 0.202 32(17) 0.298 34(12)
3.290 0.650 163 � 32 3067 4.476 96(37) 0.188 07(19) 0.275 06(14)
3.335 0.620 163 � 32 3689 4.360 44(25) 0.154 29(17) 0.244 25(10)
3.351 0.591 163 � 32 7005 4.318 80(34) 0.141 75(20) 0.230 45(13)
3.382 0.520 163 � 32 5051 4.234 99(26) 0.115 15(14) 0.199 22(11)
3.410 0.412 163 � 32 5824 4.159 90(43) 0.090 13(27) 0.162 56(20)
3.420 0.390 243 � 32 2448 4.136 16(20) 0.083 03(17) 0.153 04(12)
3.430 0.370 243 � 32 1849 4.112 17(29) 0.076 06(15) 0.143 64(11)
3.445 0.344 243 � 32 1707 4.077 70(23) 0.066 50(10) 0.130 718(86)
3.455 0.329 243 � 32 2453 4.056 05(36) 0.060 98(24) 0.123 14(18)
3.460 0.313 163 � 32 2513 4.044 71(35) 0.057 33(25) 0.117 34(17)
3.470 0.295 243 � 32 3079 4.023 46(18) 0.052 37(10) 0.109 388(88)
3.490 0.290 163 � 32 4300 3.984 56(31) 0.044 24(22) 0.100 72(15)
3.510 0.259 163 � 32 2279 3.946 49(29) 0.036 57(21) 0.087 64(14)
3.540 0.240 163 � 32 4067 3.893 02(37) 0.028 16(22) 0.075 13(17)
3.570 0.212 243 � 32 2400 3.843 92(17) 0.021 767(89) 0.062 829(68)
3.630 0.170 243 � 32 3232 3.752 91(10) 0.013 176(93) 0.045 175(67)
3.690 0.150 243 � 32 2284 3.669 908(81) 0.008 740(85) 0.035 734(47)
3.760 0.130 242 � 32 � 48 2538 3.580 005(77) 0.005 781(55) 0.027 805(20)
3.820 0.125 323 � 32 2913 3.508 124(74) 0.004 467(68) 0.024 666(37)
3.920 0.110 323 � 32 4677 3.396 477(51) 0.002 967(69) 0.019 635(15)
4.080 0.081 323 � 32 5607 3.234 961(31) 0.001 546(43) 0.012 779(16)

M. CHENG et al. PHYSICAL REVIEW D 77, 014511 (2008)

014511-10



can be seen they are of similar size close to the transition
temperature. With increasing temperature, however, the
importance of the light quark contribution rapidly drops
and becomes similar to the ratio of light to strange quark
masses at about twice the transition temperature. As can be
seen in Fig. 5 (left) the total fermionic contribution shows a
significant cutoff dependence. This partly arises from the
large change of the product of �-functions, R�Rm that still
deviates a lot from the asymptotic weak coupling value in
the range of couplings relevant for the N� � 4 and 6
calculations, respectively [see Fig. 3 (right)]. The influence
of this cutoff dependence on the calculation of the total
trace anomaly, however, is strongly reduced as the contri-
bution of ���

F =T4 only amounts to about 20% in the
transition region and already drops below 10% at about
1:5Tc.

As all other thermodynamic observables will eventually
be deduced from ��� 3p�=T4 using standard thermody-
namic relations, we should analyze its structure carefully.
Bulk thermodynamics of QCD in different temperature
intervals addresses quite different physics. This includes

TABLE V. Expectation values of the pure gauge action density, light and strange quark chiral condensates calculated on lattices with
temporal extent N� � 6. The last two columns give the trace anomaly, �� 3p, and the pressure, p, in units of T4.

� 100m̂l N3
� #traj: hsGi� h �  il;� h �  is;� ��� 3p�=T4 p=T4

3.335 0.620 243 14 090 4.359 80(34) 0.152 42(19) 0.243 67(13) 0.51(25) 0.0480
3.351 0.591 243 17 610 4.317 01(34) 0.138 65(20) 0.229 23(14) 1.19(25) 0.0686
3.382 0.520 243 15 530 4.233 36(35) 0.111 03(20) 0.197 73(14) 0.97(19) 0.1393
3.410 0.412 243 10 350 4.157 10(36) 0.082 51(31) 0.159 47(19) 1.58(24) 0.2606
3.420 0.390 243 9550 4.130 75(41) 0.072 14(39) 0.148 12(24) 2.68(19) 0.3347
3.430 0.370 243 11 520 4.104 98(50) 0.061 10(54) 0.136 71(31) 3.57(23) 0.4400
3.445 0.344 243 14 380 4.066 34(49) 0.042 31(68) 0.119 37(35) 5.64(28) 0.6766
3.455 0.329 243 9050 4.041 26(43) 0.029 28(64) 0.107 88(36) 7.39(32) 0.8982
3.460 0.313 243 7690 4.029 13(42) 0.023 74(46) 0.100 61(31) 7.82(34) 1.0240
3.470 0.295 243 9190 4.008 34(33) 0.017 15(29) 0.091 12(24) 7.73(26) 1.2885
3.490 0.290 243 8360 3.970 23(30) 0.011 87(19) 0.081 85(26) 7.58(27) 1.7784
3.510 0.259 243 7880 3.933 93(23) 0.008 204(59) 0.068 22(14) 6.80(20) 2.2005
3.540 0.240 243 6920 3.883 47(21) 0.006 247(31) 0.057 47(15) 5.48(23) 2.7123
3.570 0.212 243 7310 3.836 71(17) 0.004 923(12) 0.047 364(56) 4.31(19) 3.0925
3.630 0.170 243 4760 3.748 30(17) 0.003 426 3(61) 0.033 892(45) 2.98(17) 3.6137
3.690 0.150 243 5190 3.666 97(15) 0.002 765 6(24) 0.027 530(19) 2.09(14) 3.9362
3.760 0.130 243 8860 3.578 01(12) 0.002 225 1(10) 0.022 203 1(93) 1.49(10) 4.1681
3.820 0.125 323 7870 3.506 568(90) 0.002 035 46(42) 0.020 324 7(40) 1.23(11) 4.3136
3.920 0.110 323 9322 3.395 328(56) 0.001 676 42(12) 0.016 750 4(12) 0.973(86) 4.5057
4.080 0.081 323 6806 3.234 336(54) 0.001 140 13(10) 0.011 397 6(10) 0.599(78) 4.7085

TABLE VI. Expectation values of the pure gauge action density, light and strange quark chiral condensates calculated on lattices
with temporal extent N� � 8. The last column gives the trace anomaly, �� 3p, in units of T4.

� 100m̂l N3
� #traj: hsGi� h �  il;� h �  is;� ��� 3p�=T4

3.820 0.125 323 15 100 3.507 493(335) 0.002 144 9(31) 0.021 365 4(187) 2.37(23)
3.920 0.110 323 27 100 3.395 797(61) 0.001 743 14(39) 0.017 407 3(31) 1.72(19)
4.080 0.081 323 24 100 3.234 705(68) 0.001 175 43(14) 0.011 748 8(14) 0.75(13)
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FIG. 4 (color online). The trace anomaly ����T� � �� 3p in
units of T4 versus temperature obtained from calculations on
lattices with temporal extent N� � 4, 6 and 8. The temperature
scale, Tr0 (upper x-axis) has been obtained using the parame-
trization given in Eq. (22), and T [MeV] (lower x-axis), has been
extracted from this using r0 � 0:469 fm.
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(i) the low temperature regime, which in the vicinity of the
transition temperature often is compared with the physics
of a resonance gas and which at lower temperatures is
sensitive to properties of the hadron spectrum controlled
by chiral symmetry breaking; (ii) the genuine nonpertur-
bative physics in the transition region and at temperatures
above but close to the crossover region which is probed
experimentally at RHIC and presumably is a still strongly
interacting medium with a complicated quasiparticle struc-
ture; and (iii) the high temperature regime, which even-
tually becomes accessible to resummed perturbative
calculations. In numerical calculations on a lattice these
three regimes also deserve a separate discussion as discre-
tization effects influence lattice calculations in these re-
gimes quite differently. Before proceeding to a calculation
of other bulk thermodynamic observables we therefore will
discuss in the following three subsections properties of
��� 3p�=T4 in three temperature intervals: (i) T &

200 MeV or T & Tc, (ii) 200 MeV & T & 300 MeV or
1:0 & T=Tc & 1:5 and (iii) T * 300 MeV or T * 1:5Tc.

1. Trace anomaly at low temperatures

In Fig. 6 we show the low temperature part of ���
3p�=T4 obtained from our calculations with the p4fat3
action on lattices with temporal extent N� � 4 and 6 and
spatial size N�=N� � 4. We compare these results with
calculations performed with the asqtad action [11] for
N� � 6. These latter calculations have been performed
on lattices with smaller spatial extent, N�=N� � 2, and
results are based on lower statistics. These calculations are,
however, consistent with our findings. We also note that
results obtained for two different values of the lattice cut-
off, N� � 4 and 6, are compatible with each other.

In the transition region from high to low temperature it is
generally expected that thermodynamic quantities can be
described quite well by a hadron resonance gas (HRG) [6];
the freeze-out of hadrons in heavy ion experiments takes

place in this region and observed particle abundances are,
in fact, well described by a HRG model [30]. Also a
comparison of lattice results for the EOS with heavier
quarks with a resonance gas model Ansatz was quite sat-
isfactory [31] but required the use of a suitably adjusted
hadron mass spectrum. As we now can perform lattice
calculations with almost physical quark mass values a
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FIG. 5 (color online). The fermionic contribution to the trace anomaly (left) and the ratio of the light and strange quark contributions
to ���

F =T4 (right).
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FIG. 6 (color online). Comparison of the low temperature part
of ��� 3p�=T4 calculated on lattices with temporal extent N� �
4 and 6 with a resonance gas model that includes all resonances
up to mass 2.5 GeV (dashed curve). The solid curve shows a
polynomial fit to the N� � 6 data obtained with the p4fat3
action. Data for calculations with the asqtad action are taken
from [11].
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more direct comparison using the HRG model with physi-
cal quark mass values should be appropriate.

We use a HRG model constructed from all resonances,
with masses taken from the particle data book up to a
maximal value mmax � 2:5 GeV,

 

�
�� 3p

T4

�
low�T

�
X

mi�mmax

di
2�2

X1
k�1

���i�
k�1 1

k

�

�
mi

T

�
3
K1�kmi=T�: (27)

Here different particle species of massmi have degeneracy
factors di and �i � �1��1� for bosons (fermions). A
comparison of the HRG model with the lattice results is
shown as the upper curve in Fig. 6.

As can be seen in this figure the HRG model captures the
qualitative features of the lattice results on ��� 3p�=T4

quite well, although the lattice data seem to drop somewhat
faster at low temperature. Whether this points towards a
failure of the HRG model at lower temperatures, or is due
to difficulties in correctly resolving the low energy hadron
spectrum in the current calculations on still rather coarse
lattices, will require more detailed studies on finer (N� �
8) lattices in the future. We will return to this question in
Sec. VII.

We also note that the current lattice calculations are
performed with light quark masses that are a factor two
larger than the physical ones. Reducing the light quark
masses to their physical values will shift the lattice data to
smaller temperatures and will thus improve the comparison
with the HRG model. From the known systematics of the
quark mass dependence of other thermodynamic quanti-
ties, e.g. the transition temperature, chiral condensates or
Polyakov loop expectation values [18], one can estimate
this shift to be less than 5 MeV. Moreover, we note that the
scale r0 used to convert lattice results to physical units has
an error of about 2%. This is indicated in Fig. 6 by a
horizontal error bar for the data. Within this error all data
may be shifted coherently.

The low temperature region of the QCD EOS clearly
deserves more detailed study in the future.

2. Trace anomaly in the strongly nonperturbative regime

At temperatures just above the transition temperature,
��� 3p�=T4 shows the largest deviations from the confor-
mal limit, � � 3p. The peak in ��� 3p�=T4 at a tempera-
ture Tmax that is only slightly larger than the transition
temperature Tc constitutes a prominent structure of the
trace anomaly which is relatively easy to determine in a
lattice calculation. It is closely related to the softest point in
the QCD equation of state [32], i.e. the minimum of p=� as
function of the energy density. Tmax thus plays an important
role for the construction of model equations of state that
are consistent with lattice calculations and may be used
in hydrodynamic models for the expansion of dense

matter created in heavy ion collisions. As Tmax and, in
particular ��� 3p�=T4

max are easily determined they may
also serve as consistency checks between different lattice
calculations.

In Fig. 7 we show results for ��� 3p�=T4 in the inter-
mediate temperature interval 180 MeV< T < 300 MeV.
Also shown here are results from calculations performed
with the asqtad action on lattice with temporal extent N� �
6 [11]. As can be seen these calculations are in quite good
agreement with the results obtained with the p4fat3 action
on lattice with the same temporal extent but larger spatial
volume. Estimates for Tmax and the peak height on lattices
with temporal extent N� � 4 and 6 are given in Table VII.
Also given there are estimates for the transition tempera-
ture Tcr0 obtained previously in a dedicated analysis of the
transition temperature on N� � 4 and 6 lattices [18]. The
values quoted in the table give the fit results obtained from
a joint fit of transition temperatures on both lattice sizes for
different quark mass values evaluated at the pseudoscalar
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FIG. 7 (color online). The trace anomaly in the vicinity of the
transition temperature calculated on lattices with temporal extent
N� � 4 and 6 on lattices with aspect ratio N�=N� � 4. Data for
calculations with the asqtad action are taken from [11] which
have been performed on finite temperature lattices with a smaller
physical volume corresponding to an aspect ratio N�=N� � 2.

TABLE VII. Position of the peak in ��� 3p�=T4 and its value
calculated on lattices with different values of the temporal extent
N� on a line of constant physics that corresponds to a pion mass
of about 220 MeV. Errors on the peak positions have been
estimated from cubic fits in the peak region by varying the fit
intervals. The second and third columns show the transition
temperature determined on the LCP used for this study of the
EOS. For N� � 4 this had been determined in [18] and for N� �
6 in this analysis (see discussion in Sec. VI).

N� Tcr0 Tc [MeV] �Tr0�max Tmax [MeV] ��� 3p�=T4
max

4 0.484(4) 204(2) 0.50(1) 211(4) 10.8(3)
6 0.466(6) 196(3) 0.49(1) 208(4) 7.8(4)
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mass values corresponding to our LCP. We note that the
temperature Tmax is only about 3% larger than the transi-
tion temperatures determined from peaks in the chiral
susceptibility.

On the coarse N� � 4 lattices the analysis of ���
3p�=T4 in the transition region is still quite sensitive to
the nonperturbative structure of the �-functions, R� and
R�Rm shown in Fig. 3; this region is still close to the strong
coupling regime below and in the vicinity of the dip in R�
shown in Fig. 3 (left). This seems to be the main reason for
the large differences seen in the peak height for ���
3p�=T4 between the N� � 4 and 6 lattices. In the latter
case the transition and peak region is already in the regime
where the lattice �-functions smoothly approach the con-
tinuum results. We thus expect that these results are much
less affected by this source of lattice artifacts. Nonetheless,
a better control over the cutoff dependence in this region
clearly is needed and does require calculations on a larger
lattice in order to control the continuum extrapolations of
Tmaxr0 as well as ��� 3p�=T4

max.

3. Trace anomaly at high temperatures

In Fig. 8 we show results for ��� 3p�=T4 in the high
temperature regime, T * 1:5Tc. A comparison with data
obtained with the asqtad action on lattices with temporal
extent N� � 6 shows that the results obtained here with the
p4fat3 action are compatible with the former for T &

400 MeV (� 2Tc). The current analysis performed with
the p4fat3 action, however, has been extended to much

larger temperatures, T � 4Tc, i.e. into the temperature
regime accessible to heavy ion experiments at the LHC.

For temperatures larger than Tmax the trace anomaly
rapidly drops. Eventually, when the high temperature per-
turbative regime is reached, the temperature dependence is
expected to be controlled by the logarithmic running of the
QCD coupling constant. To leading order in high tempera-
ture perturbation theory ����T� for massless quarks is
given by [1]

 

�� 3p

T4
�

1

3
b0

�
1�

5

12
nf

�
g4�T� �O�g5�; (28)

with nf � 3 for massless 3-flavor QCD, which corre-
sponds to the high temperature limit for our (2� 1)-flavor
QCD calculations performed on a LCP with fixed nonzero
quark mass values.

For temperatures larger than about 2:0Tc results for
����T�=T4 obviously are sensitive to lattice cutoff effects.
The results on N� � 6 lattices drop significantly slower
with temperature than the N� � 4 results. In order to make
sure that this effect does not superimpose with possible
finite volume effects, we increased in this temperature
region the spatial lattice size from 243 to 323. No statisti-
cally significant volume effects have been observed for
����T�=T4, although we observe a sensitivity of the
zero temperature light and strange quark chiral conden-
sates on the volume; as the condensates contribute less than
10% to the trace anomaly at these high temperature values
(see Fig. 5) modifications of the condensates by a few
percent contribute insignificantly to finite volume effects
in ����T�=T4. Moreover, as the entire fermionic contri-
bution, ���

F �T�=T
4, to the total trace anomaly is small for

T * 400 MeV, it is obvious that the contribution of the
fermion condensates is not the source for the cutoff effects
at high temperature. The cutoff dependence seen in Fig. 8
arises from the gluonic sector of ����T�=T4, which of
course also receives contributions from virtual quark loops.

In the high temperature region we also added calcula-
tions on lattices with temporal extent N� � 8 at 3 different
values of the temperature. Results from these calculations
are summarized in Table VI and are also shown in Fig. 8.
As can be seen in this figure results obtained for the trace
anomaly on the N� � 8 lattice are in good agreement with
the N� � 6 results suggesting that remaining cutoff effects
in this temperature range are small for N�  6.

We note that larger values for ����T�=T4 at high tem-
perature also lead to larger values for the pressure, which is
obtained from an integral over the trace anomaly, and also
results in larger values for the energy and entropy densities,
i.e. these quantities approach the Stefan-Boltzmann limit
more rapidly on the N� � 6 lattices than they did on the
N� � 4 lattice. It thus is important to get good control over
cutoff effects at high temperatures and obtain further con-
firmation of the results obtained in our N� � 6 lattices, and
through further calculations, on the N� � 8 lattices at
higher temperatures.
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FIG. 8 (color online). The high temperature part of ���
3p�=T4 calculated on lattices with temporal extent N� � 4, 6
and 8. The curves show fits to the N� � 4 and 6 data with the
Ansatz given in Eq. (29).
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As discussed previously, ����T�=T4 contains a contri-
bution from the vacuum quark and gluon condensates that
gets suppressed by a factor T4 at high temperature. In the
case of a pure gauge theory it has, however, been noted that
up to temperatures a few times the transition temperature
the dominant powerlike correction to the perturbative high
temperature behavior is O�T�2� rather than O�T�4�
[33,34]. These qualitative features also show up in our
results for ����T�=T4 at temperatures T * 1:5Tc. In
Fig. 8 we show a comparison of the lattice results with
such a phenomenologically motivated polynomial fit
Ansatz,

 

�
�� 3p

T4

�
high�T

�
3

4
b0g4 �

b

T2 �
c

T4 : (29)

Here we used the parametric form of the leading order
perturbative result given in Eq. (28) with a temperature
independent coupling g2 to characterize the high tempera-
ture behavior of ��� 3p�=T4 in the fit interval T 2
	300 MeV; 800 MeV
. For N� � 4 we only performed a
2-parameter fit as it turned out that the fit does not require
the contribution from a constant term (g2 � 0). The fit
parameters obtained from fits in the region T 
300 MeV are given in Table VIII. We note that the vacuum
condensate contribution (� c=T4) is small compared to
the genuine thermal part. The present analysis, however,
does not yet allow us to disentangle logarithmic from
powerlike (quadratic) corrections.

Of course, it is tempting to relate the coefficient of
the quartic term to a bag constant or zero temperature
quark and gluon condensate contribution, c � 4B. This
yields quite a reasonable value, B1=4 � 247�25� MeV.
Nonetheless, it seems that a more detailed analysis of the
scaling behavior in the high temperature region and better
control over cutoff effects is needed before a proper run-
ning of the gauge coupling can be established that would
unambiguously allow one to single out powerlike (qua-
dratic) corrections in the high temperature regime which
then would also allow one to establish a connection to the
perturbative regime for the trace anomaly.

B. Pressure, energy and entropy density

As indicated in Eq. (4) we obtain the pressure difference,

 �p�T� �
p�T�

T4 �
p�T0�

T4
0

; (30)

by integrating over the trace anomaly weighted with an
additional factor of T�1 in the interval [T0; T]. We have
started our integration at T0 � 100 MeV, or Tr0 ’ 0:24, by
setting the trace anomaly to zero at this temperature. As
discussed in the previous section, this leaves us with an
uncertainty for the value of the pressure at T0, which we
estimate to be of the order of the pressure in a hadron
resonance gas, i.e. 	p�T0�=T

4
0
HG � 0:265�2�. The results

obtained for �p�T� from our lattice calculations for the
pressure at higher temperatures thus yield p=T4 up to a
systematic uncertainty on p�T0�=T

4
0 . We also note again

that the normalization at T0 does not take care of the
overall normalization of the pressure at T � 0.

To calculate �p�T� by integrating the numerical results
obtained for ����T�=T4 from Eq. (4), we have used
straight line interpolations of our results for ���=T4 at
adjacent values of the temperature. We also used stepwise
interpolations obtained by fitting quadratic polynomials to
the data in small intervals that are matched to fits in the
previous interval. Results of the latter approach are then
used to perform the integration in the various regions
analytically. Differences between this approach and the
straight line interpolations are nowhere larger than 1.5%.
We then used the smooth polynomial interpolations to
determine the pressure and combined this result with that
for ����T� to obtain the energy density. Both are shown in
the left-hand part of Fig. 9. The uncertainty arising from
the normalization of the pressure at T0 is indicated as a
small vertical bar in the upper right part of this figure. We
note that at T � 4Tc results for p=T4 and �=T4 stay about
10% below the ideal gas value.

In particular, for applications to heavy ion phenomenol-
ogy and for the use of the QCD equation of state in hydro-
dynamic modeling of the expansion of matter formed in
heavy ion collisions, it is of importance to eliminate the
temperature in favor of the energy density and thus obtain
the pressure as function of energy density. The ratio p=� is
shown in the right-hand part of Fig. 9. As can be seen at low
temperature, in the vicinity of the minimum in p=�, results
are consistent with values extracted for this quantity from a
hadron resonance gas model. We also note that in the high
temperature regime it has been found in [35] that the ratio
p=� shows little dependence the baryon number density
when evaluated on lines of constant entropy per baryon
number.

The density dependence of p=� is related to the square
of the velocity of sound

 c2
s �

dp
d�
� �

dp=�
d�
�
p
�
: (31)

In the high temperature limit as well as in the transition
region where the derivative d�p=��=d� vanish, c2

s is di-
rectly given by p=�. We therefore find that the velocity of
sound is close to the ideal gas value, c2

s � 1=3, for energy
densities � * 100 GeV=fm3 and drops by a factor of 4 to a

TABLE VIII. Fit parameters for 2-parameter fits (N� � 4) and
3-parameter fits (N� � 6) to ��� 3p�=T4 in the region T 
300 MeV using the Ansatz given in Eq. (29).

N� g2 b [GeV2] c [GeV4]

4 � � � 0.101(6) 0.024(1)
6 2.3(7) 0.16(6) 0.013(6)
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minimal value of about �c2
s�min ’ 0:09 that is reached at

� * �1–2� GeV=fm3. The dependence of p=� on the en-
ergy density can be parametrized in the high temperature
region with a simple Ansatz [35],

 

p
�
�

1

3

�
C�

A

1� B�fm3=GeV

�
; (32)

which then also allows a simple calculation of the velocity
of sound, using Eq. (31). We find that the above parame-
trization yields a good fit of the N� � 6 data in the interval
1:3 � �1=4=�GeV=fm3�1=4 � 6 with a �2=dof of 1.3. For
the fit parameters we obtain, C � 0:964�5�, A � 1:16�6�
and B � 0:26�3�. This fit and the resulting velocity of
sound are also shown in Fig. 9 (right).

At energy densities below � ’ 1 GeV=fm3 the lattice
calculations indicate a rise of p=� as expected in hadron
resonance gas models. However, the current resolution and
accuracy of lattice calculations in this regime clearly is not
yet sufficient to allow for a detailed comparison between
both.

As pointed out in Sec. II the nonperturbative vacuum
condensates of QCD show up at high temperature as
powerlike corrections to temperature dependence of the
trace anomaly and consequently also to pressure and en-
ergy density. These vacuum condensate contributions drop
out in the entropy density which is shown in Fig. 10. It thus
is an observable most suitable for comparisons with (re-
summed) perturbative calculations [15]. Like energy den-
sity and pressure, the entropy also deviates from the ideal
gas value by about 10% at T � 4Tc.

We note that for T & 2Tc the results obtained with the
asqtad action [11] for the entropy density are in good
agreement with the results obtained with the p4fat3 action,
although at least in the high temperature limit the cutoff
dependence of both actions is quite different. This suggests
that at least up to temperature T ’ 2Tc nonperturbative
contributions dominate the properties of bulk thermody-
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FIG. 9 (color online). Energy density and 3 times the pressure as function of the temperature (left) and the ratio p=� as function of
the fourth root of the energy density (right) obtained from calculations on lattices with temporal extent N� � 4 and 6. Temperature and
energy density scales have been obtained using the parametrization of r0=a given in Eq. (22) and r0 � 0:469 fm. The small vertical bar
in the left-hand figure at high temperatures shows the estimate of the systematic uncertainty on these numbers that arises from the
normalization of the pressure at T0 � 100 MeV. The dashed curve (HRG) in the right-hand figure shows the result for p=� in a hadron
resonance gas for temperatures T < 190 MeV.
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FIG. 10 (color online). Entropy density as function of the
temperature obtained from calculations on lattices with temporal
extent N� � 4 and 6. Temperature and energy density scales
have been obtained using the parametrization of r0=a given in
Eq. (22) and r0 � 0:469 fm. The small vertical bar at high
temperatures shows the estimate of the systematic uncertainty
on these numbers that arises from the normalization of the
pressure at T0 � 100 MeV.
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namic observables like the entropy density. It also gives
rise to the expectation that additional cutoff effects are
small. Nonetheless, the result presented in this section on
properties of bulk thermodynamic observables clearly need
to be confirmed by calculations on lattices with larger
temporal extent.

VI. RENORMALIZED POLYAKOV LOOP AND
CHIRAL CONDENSATES

As part of our analysis of bulk thermodynamic observ-
ables we have gathered a lot of information on the static
quark potential at zero temperature. This has been dis-
cussed in Sec. IV and results obtained for V �qq�r� have
been used there to determine a temperature scale for our
thermodynamic calculations. Furthermore, we have ob-
tained a lot of information on the chiral condensates at
zero temperature that entered our calculation of thermody-
namic quantities. Together with corresponding results on
heavy quark free energies and chiral condensates at finite
temperature this allows us to analyze the deconfining
properties as well as the change of chiral properties of
the finite temperature transition in terms of observables
which are related to exact order parameters for deconfine-
ment and chiral symmetry restoration in the infinite
quark mass and vanishing quark mass limits of QCD,
respectively.

As discussed in the previous sections, the deconfining
aspect of the finite temperature transition, i.e. the sudden
liberation of partonic degrees of freedom in QCD, is re-
flected in the rapid change of bulk thermodynamic observ-
ables. This is also reflected in the rapid change of the static
quark free energy which characterizes the response of a
thermal medium to the addition of static quark sources.
The static quark free energy, Fq, is related to the Polyakov
loop expectation value, hLi � exp��Fq�T�=T�,

 hLi �
�

1

N3
�

X
~x

L~x

�
with L~x �

1

3
Tr

YN�
x0�1

U�x0; ~x�;0̂
: (33)

It may more rigorously be defined through the asymptotic
large distance behavior of static quark-antiquark correla-
tion functions [36],

 hLi2 � lim
j ~x� ~yj!1

hL~xL
y
~y i: (34)

The Polyakov loop needs to be renormalized in order to
attain a physically meaningful value in the continuum
limit. To construct the renormalized Polyakov loop from
the bare Polyakov loop expectation values, hLi, calculated
on lattices with temporal extent N� at a temperature con-
trolled by the gauge coupling �,

 Lren�T� � ZN�ren���hLi; (35)

we can make use of our extensive calculations of the static
potential at zero temperature. As outlined in Sec. IV we
have extracted renormalization constants, �c���a�, from
the matching of the static potential to the string potential.
These renormalization constants are given in Table I in
terms of the product c���r0. With this we obtain the
renormalization constants for the Polyakov loop as
Zren��� � exp�c���a=2�.

Results for the renormalized Polyakov loop are shown in
Fig. 11 (left). We note that the cutoff dependence of Lren on
lattices with temporal extent N� � 4 and 6 is small, which
is in agreement with results obtained in studies of Lren in
pure SU�3� gauge theories [36]. A similar renormalization
of the Polyakov loop obtained in calculations with the 1-
link, stout smeared staggered fermion action has been used
in [37]. The large cutoff dependence of Lren observed in
this case mainly seems to be due to the choice of observ-
able (fK) that has been used to set the temperature scale. In
fact, when using r0 instead of fK to determine the lattice
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FIG. 11 (color online). Renormalized Polyakov loop on lattices with temporal extent N� � 4, 6 and 8 (left) and the normalized
difference of light and strange quark chiral condensates defined in Eq. (36). The vertical lines show the location of the transition
temperature determined in [18] on lattices with temporal extent N� � 4 (right line) and in this analysis for N� � 6 (left line).
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spacing, and thus the temperature, most of the cutoff
dependence of Lren is removed in the data shown in [37].

Another important aspect of the QCD transition is, of
course, the change of chiral properties with temperature.
This is generally reflected in the temperature dependence
of the chiral condensate or related susceptibilities. Also the
chiral condensates need to be renormalized to obtain finite,
well defined quantities in the continuum limit. To eliminate
the quadratic divergences in the linear quark mass depen-
dent correction to the chiral condensates [24] we calculate
a suitable combination of light and strange quark conden-
sates at finite temperature. We furthermore normalize this
quantity by the corresponding combination of condensates
calculated at zero temperature at the same value of the
lattice cutoff, i.e. at the same value of the gauge coupling
�,

 �l;s�T� �
h �  il;� �

m̂l
m̂s
h �  is;�

h �  il;0 �
m̂l
m̂s
h �  is;0

: (36)

This eliminates multiplicative renormalization factors.
In Fig. 11 (right) we show results obtained for �l;s�T� on

the LCP for N� � 4 and 6. In this figure, as well as in the
corresponding figure for Lren�T� shown on the left-hand
side, we also give estimates for the pseudocritical tempera-
ture extracted from the position of the peak in the discon-
nected part of the light quark chiral susceptibility. For
N� � 4 this value has been determined previously by us
[18] as the quark mass parameters for the LCP used here
are close to those used in [18] to determine Tc on the N� �
4 lattices for m̂l=m̂s � 0:1. For N� � 6 the choice of the
strange quark mass differs slightly from the one used in
that earlier study. We therefore performed a new determi-
nation of the transition temperature for the N� � 6 lattice
and the parameters of the LCP used here. From the peak
positions of the disconnected parts of the light and strange
quark susceptibilities we find �c�N� � 6� � 3:445�3�.
Using the value for r0=a quoted for this value of the
coupling in Table I we find4 Tcr0 � 0:466�6� or Tc �
196�3�.

We note that the region of most rapid change in the
subtracted and normalized chiral condensate, �l;s�T�, is in
good agreement with the region where the Polyakov loop
expectation value as well as bulk thermodynamic quanti-
ties, e.g. the energy and entropy densities, change most
rapidly.

VII. DISCUSSION AND CONCLUSIONS

We have presented here a detailed analysis of the QCD
equation of state with an almost physical quark mass
spectrum. The current calculations have been performed

with a physical strange quark mass value and two degen-
erate light quark masses that are about a factor two larger
than the physical average light quark mass value. In a wide
temperature range, results have been obtained on large
spatial lattices close to the thermodynamic limit for two
different values of the lattice cutoff, corresponding to
lattices of temporal extent N� � 4 and 6. At high tempera-
tures additional calculations on lattices with temporal ex-
tent N� � 8 have been performed, which allow us to
control apparent cutoff effects in this temperature range.
All finite temperature calculations have been supple-
mented with corresponding zero temperature calculations
to perform necessary vacuum subtractions and to accu-
rately set the temperature scale.

At high temperature, T * 2Tc, bulk thermodynamic
observables such as pressure, energy and entropy density
deviate from the continuum Stefan-Boltzmann values only
by about 10% and show little cutoff dependence. This
weak cutoff dependence could only be achieved through
the use of O�a2� improved gauge and fermion actions. On
the other hand, a closer look at the trace anomaly, ���
3p�=T4, from which these quantities are derived, clearly
unravels cutoff effects when comparing results obtained
for the N� � 4 and 6 lattices; for temperatures T * 2:5Tc
or equivalently T * 500 MeV results for ��� 3p�=T4 on
the N� � 4 lattices are systematically lower than for N� �
6. Additional calculations performed on N� � 8 lattices in
this high temperature region are consistent with the results
obtained on N� � 6 lattices and thus suggest that cutoff
effects are small on lattice with temporal extentN�  6. Of
course, this should be confirmed through additional calcu-
lations on lattices with temporal extent N� � 8 at larger
temperatures. On these fine lattices it also will be interest-
ing to analyze in more detail the contribution of charm
quarks to the equation of state [38,39].

Getting better control over the temperature dependence
of ��� 3p�=T4 at high temperature clearly is important
when one wants to make contact between lattice calcula-
tions for, e.g. the entropy density and high temperature
perturbation theory. Although our present high statistics
analysis seems to have achieved good control over the
cutoff dependence of ��� 3p�=T4 in this high temperature
regime, a more extended analysis of the temperature de-
pendence on N� � 8 lattices is still needed to make firm
contact with perturbative or resummed perturbative
calculations.

At low temperatures, T & 200 MeV, the influence of
cutoff effects is less apparent. We observe that at a given
value of the temperature results for ��� 3p�=T4 obtained
on the N� � 6 lattice are systematically larger than those
obtained on the N� � 4 lattice. This is, in fact, expected
and is consistent with the cutoff dependence observed in
calculations of the transition temperature on lattices with
temporal extent N� � 4 and 6 [18]. Also on lattices with
temporal extent N� � 8 indications for this to happen have

4Our earlier analysis for ml � 0:1ms on a 1636 lattice, per-
formed with a 20% larger strange quark mass, gave Tcr0 �
0:4768�51� or Tc � 201�2�.
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been found in preliminary studies of chiral and quark
number susceptibilities as well as Polyakov loop expecta-
tion values [40]. We thus expect that with increasing N�,
i.e. closer to the continuum limit, the region where ���
3p�=T4 and all other thermodynamic observables will start
to rise rapidly, continues to shift towards smaller tempera-
tures. A further, although smaller shift of the transition
region towards smaller values of the temperature will arise
from an extrapolation to physical quark masses. Judging
from the known temperature dependence of the transition
temperature [18] and other thermodynamic observables,
like the Polyakov loop expectation value or quark number
susceptibilities [40], this will amount to a shift of the scale
by a few MeV. In fact, extrapolations of the transition
temperature in quark mass and lattice spacing to the physi-
cal point have been performed by several groups for stag-
gered as well as Wilson fermions [18,41,42]. These
extrapolations consistently show that the quark mass de-
pendence of the transition temperature is weak. We take
the quark mass dependence of the transition temperature as
indicator for the shift of the transition region one has to
expect in future calculations on finer lattices with physical
values of the quark masses. We also should stress that
current estimates for the bare lattice parameters that cor-

respond to physical values of the light quark mass, m̂q ’

0:04m̂s, of course, are based on studies of the spectrum on
lattices with finite cutoff. Eliminating these systematic
effects will require further calculations on finer lattices.
This may also improve the comparison with model calcu-
lations of the equation of state in the low temperature phase
of QCD.
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