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We propose a method to probe the nature of phase transitions in lattice QCD at finite temperature and
density, which is based on the investigation of an effective potential as a function of the average plaquette.
We analyze data obtained in a simulation of two-flavor QCD using p4-improved staggered quarks with
bare quark mass m=T � 0:4 and find that a first order phase transition line appears in the high density
regime for�q=T * 2:5. We also discuss the difference between the phase structures of QCD with nonzero
quark chemical potential and nonzero isospin chemical potential.
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I. INTRODUCTION

In the last several years remarkable progress has been
made in numerical studies of lattice QCD at finite tem-
perature (T) and quark chemical potential (�q). The tran-
sition line, separating hadron phase and quark-gluon
plasma (QGP) phase, was investigated from �q � 0 to
finite �q [1–5], and the equation of state was also com-
puted at low density [3,6–9]. Among others, the study of
the endpoint of the first order phase transition line in the
�T;�q� plane is particularly important both from the ex-
perimental and theoretical point of view. This existence of
such a critical point is suggested by phenomenological
studies [10–12]. The appearance of the critical endpoint
in the �T;�q� plane is closely related to hadronic fluctua-
tions in heavy ion collisions and may be experimentally
examined by an event-by-event analysis of heavy ion
collisions.

Although many trials have been made to prove the
existence of the critical endpoint by first principle calcu-
lation in lattice QCD, no definite conclusion on this issue is
obtained so far. The first trial to find the critical endpoint by
numerical simulations was performed in Ref. [2] investi-
gating the finite size scaling behavior of Lee-Yang zeros in
the complex � � 6=g2 plane. The difficulty in the Lee-
Yang zero method for finite density QCD is discussed in
Ref. [13]. The radius of convergence in the framework of
the Taylor expansion of the grand canonical potential can
establish a lower bound on the location of the critical
endpoint [6,7,14]. There are also studies in which the
behavior of the critical endpoint as a function of the quark
masses is examined by using the property that a critical
endpoint exists at �q � 0 in the very small quark mass
region for QCD with three flavors having degenerate quark
masses [15–17]. Moreover, studies by simulations of
phase-quenched finite density QCD have been performed
in Refs. [18–20].

The purpose of this study is to clarify the existence of the
endpoint of the first order phase transition line in the
�T;�q� plane. We propose a new method to investigate
the nature of transition. In the study of finite density lattice

QCD, the reweighting method [21,22] plays an important
role. However, the calculation of physical quantities be-
comes increasingly more difficult for large �q due to the
sign problem [23,24]. We also consider a way to avoid the
sign problem.

We evaluate an effective potential as a function of the
average plaquette and identify the type of transition from
the shape of the potential. The partition function can be
written as

 Z ��;�q� �
Z
R�P;�q�w�P�e�Sg�P;��dP; (1)

where P denotes the plaquette value, Sg�P;�� is the gauge
action, w�P� is the state density at �q � 0 for each P, and
R�P;�q� is the modification factor for finite �q. R�P;�q�

is obtained by calculating the quark determinant detM and
is assumed to be real and positive. We then define the
effective potential as V�P;�;�q� � � ln�Rwe�Sg�. If
there is a first order phase transition point, where two
different states coexist, the potential must have two min-
ima at two different values of P. However, the calculation
of the quark determinant is quite expensive and is actually
difficult except on small lattices. Moreover, the sign prob-
lem is serious when we calculate R�P;�q� directly.

This study is based on the following two ideas to avoid
these problems. One is that we perform a Taylor expansion
of ln detM��q� in terms of �q around �q � 0 and calcu-
late the expansion coefficients, as proposed in Ref. [3]. The
Taylor expansion coefficients are rather easy to calculate
by using the stochastic noise method. Although we must
cut off this expansion at an appropriate order in�q, we can
estimate the application range where the approximation is
valid for each analysis. While the application range of the
Taylor expansion of lnZ should be limited by the critical
point because lnZ is singular at the critical point, there is
no such limit for the application range in the expansion of
lnR�P;�q� because the weight factor should always be
well defined. This discussion is given in Sec. III B.

The second idea is that we consider the probability
distribution function in terms of the complex phase of the
quark determinant � when P and j detMj are fixed. We
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assume the distribution function is well approximated by a
Gaussian function, and perform the integration over �. If
we adopt this assumption, the sign problem in the calcu-
lation of lnR�P;�q� is completely solved. This assumption
is reasonable for sufficiently large volume and is suggested
by the simulation results given in this study. We discuss
this method in Sec. III C.

General remarks on the phase transition in lattice QCD
are given in Sec. II, and an effective potential as a function
of the average plaquette is introduced. We discuss the
reweighting method for the study of the QCD phase struc-
ture at nonzero temperature and density in Sec. III. We
evaluate the effective potential using data obtained with
two-flavors of p4-improved staggered quarks in Ref. [7].
We also discuss the phase structure of QCD with isospin
chemical potential. Our conclusions are given in Sec. IV.

II. PROBABILITY DISTRIBUTION FUNCTION
AND PHASE TRANSITION

The grand canonical partition function of lattice QCD is
given by

 Z ��;�q� �
Z

DU�detM�Nfe�Sg ; (2)

and the expectation value of an operator O is calculated by

 hOi �
1

Z

Z
DUO�detM�Nfe�Sg ; (3)

where M��q� is the quark matrix. Nf is the number of
flavors. When one uses a staggered type quark action, Nf is
replaced byNf=4. Sg��� is the gauge action, which is given
by a linear combination of the Wilson loops WI�J

�� �x�,
where I � J,��, and x are the size, direction, and position
of the Wilson loop, respectively, � is a simulation parame-
ter related to the gauge coupling g being � � 6=g2. The
simplest gauge action is the standard plaquette action given
by the following equation,

 Sg � ��
X
x;�>�

W1�1
�� �x�: (4)

Because the 1� 1 Wilson loop is defined on an elementary
square (plaquette), W1�1

�� is usually called plaquette or
plaquette variable.

In a Monte Carlo simulation, we generate configurations
of link variables fU��x�g with the probability in proportion
to the weight factor �detM�Nfe�Sg and the state density of
fU��x�g. The expectation value is then estimated by taking
an average of the operator O�U�� over the generated
configurations fU��x�g

 hOi��� �
1

Nconf

X
fU��x�g

O�U��: (5)

We introduce a probability distribution function of the
plaquette, w�P�, which is defined by

 w�P0� �
Z

DU��P0 � P��detM�Nfe6�NsiteP; (6)

where ��x� is the delta function. For later discussions, we
define the average plaquette P as P 	 �Sg=�6�Nsite�. This
is the average of the plaquette over all elementary squares
for the standard gauge action, Eq. (4). Nsite � N3

s � Nt is
the number of sites. Using the distribution function, the
expectation value can be rewritten as

 hO�P�i��� �
1

Z

Z
O�P�w�P�dP; Z �

Z
w�P�dP;

(7)

for an operator given by the plaquette O�P�. In the
calculation of Eq. (6), we actually use an approximate
delta function such as a box type function, ��x� �
f1=��for�=2< x 
 �=2�; 0�otherwise�g, or a Gaussian
function, ��x� � 1=��

����
�
p
� exp���x=��2�. For the case of

the box type, we can estimate w�P� by counting the number
of configurations for each value of P with the width of box
�. As � decreases, the approximation becomes better but
the statistical error becomes large because the number of
configurations in each block becomes small. Hence, we
must adjust the size of � appropriately.

Next, we discuss the shape of the probability distribution
function. In general, the number of states increases expo-
nentially as the gauge fields become random. On the other
hand, the random configurations are exponentially sup-
pressed by the weight factor exp�6�NsiteP�, since the pla-
quette is one when the gauge field is U��x� � 1 uniformly
(free gas limit) and P decreases as the configuration be-
comes random. Therefore, the most probable P is deter-
mined by the balance of the number of states and the
weight factor, and the value of the plaquette variable dis-
tributes around the most probable value for each point and
each configuration.

We first consider the case that there is no spatial corre-
lation between the plaquette variables at each point and the
volume is sufficiently large. In this case, the shape of the
probability distribution as a function of the plaquette aver-
aged over the space must be a Gaussian function. The
central limit theorem tells us that the probability distribu-
tion of the average of the random numbers which have the
same probability distribution is always of Gaussian type
when the set of random numbers is large enough. We can
apply this theorem in this case. Hence,

 w�P� �

�������������
6Nsite

2��P

s
exp

�
�

6Nsite

2�P
�P� hPi�2

�
; (8)

where hPi is the expectation value of P and �P is the
susceptibility,
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 hPi �
Z
Pw�P�dP;

�P 	 6Nsiteh�P� hPi�
2i � 6Nsite

Z
�P� hPi�2w�P�dP:

(9)

We expect that w�P� is of Gaussian type also for more
general interacting cases when the correlation length is
much shorter than the size of the system. If we divide the
space into domains which are larger than the correlation
length and average the plaquette variables in these do-
mains, the averaged plaquettes can be independent for
each domain. When the number of domains is large, the
distribution function as a function of the plaquette aver-
aged over space must be a Gaussian function.

However, we do expect that the probability distribution
function is not of Gaussian type for the following two
cases. One is, of course, the case that the correlation length
is not small in comparison to the size of the system because
the above-mentioned argument cannot be applied. The
other case is that the most probable values of plaquette is
not unique. For this case, the whole space is separated into
domains having different states, and the plaquette variables
in each domain distribute around one of the most probable
values of plaquette. Although, on the surface separating
these domains, the most probable plaquette value may not
be realized, the effect from the wall becomes smaller as the
volume increases, since the effect from the wall increases
as a function of the area of the wall. Consequently, the
existence of the domain wall does not affect the probability
in the infinite volume limit. The probability distribution
function should then be flat in the range between these
most probable values of P because the spatial average of P
depends on the size of these domains but the probability
does not change in this range. However, in a finite volume,
the effect from the domain wall cannot be neglected, hence
the distribution function has two peaks when the number of
most probable values for P is two. Clearly the two excep-
tions discussed here correspond to the case at a second
order phase transition point and at a first order phase
transition point, respectively.

Here, it is convenient to introduce the effective potential
defined by

 V�P� � � lnw�P�: (10)

As discussed above, the distribution function is normally
written as w�P� � expf��6Nsite=2�P��P� hPi�2g. When
one considers a Taylor expansion of V�P� around the
minimum hPi, where the slope of the potential dV=dP is
zero, the effective potential is dominated by the second
order term in the region near the minimum, i.e. the poten-
tial is a quadratic function in the vicinity of hPi, and the
second derivative (curvature) of V�P� at hPi is related to the
plaquette susceptibility with

 

d2V

dP2
�

6Nsite

�P
: (11)

A second order phase transition point is characterized by
the slope and curvature of the effective potential. The slope
dV=dP and curvature d2V=dP2 become zero simulta-
neously at the critical point. As given in Eq. (9), �P is an
indicator of fluctuations and diverges at a second order
phase transition point in the thermodynamic limit. When
the susceptibility �P becomes large in the vicinity of a
second order phase transition point, the effect from the
second order term of V�P� becomes small in comparison to
the higher order terms, and then the distribution function
deviates from a Gaussian function. On the other hand, in
the case of a first order phase transition point, more than
one peak exist in the distribution function. This means that
there are points which give dV=dP � 0 more than once,
and the curvature of V�P� may be negative around the
mean value of P.

At the end of this section, we should also discuss the
relation between the plaquette distribution function and the
fourth order Binder cumulant,

 B4 	
h�P� hPi�4i

h�P� hPi�2i2
; (12)

which often is used to identify the nature of a phase
transition [25]. The value of the Binder cumulant at a
second order critical point depends on the universality
class. In the case of a first order phase transition, assuming
the plaquette distribution is a double peaked function, the
Binder cumulant is estimated as

 B4 �

R
�P� hPi�4w�P�dP

�
R
�P� hPi�2w�P�dP�2

�
�4

��2�2
� 1; (13)

where the distance between two peaks is 2� and is wider
than the width of each peak. On the other hand, when the
distribution function can be modeled by a Gaussian func-
tion for a crossover transition or at a normal point, the
Binder cumulant is given by

 B4 �

���������
x=�

p R
�P� hPi�4e�x�P�hPi�

2
dP

�
���������
x=�

p R
�P� hPi�2e�x�P�hPi�

2
dP�2

�

� ����
x
�

r
d2

���������
�=x

p
dx2

���
�

����
x
�

r
d
���������
�=x

p
dx

�
2
� 3: (14)

In a region where a first order phase transition changes to a
crossover, the Binder cumulant changes rapidly from one
to three. We expect to find such a region for full QCD at
high temperature and density.

In addition, the method of Lee-Yang zeros has been used
to identify the nature of the phase transition. The relation
between the plaquette distribution function and the scaling
analysis of the Lee-Yang zero has been discussed in
Ref. [13]. The scaling behavior of the Lee-Yang zero can
be also explained by the plaquette distribution function.
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Hence, the distribution function of the plaquette plays an
important role in the investigation of the nature of a phase
transition.

III. LATTICE QCD AT FINITE DENSITY

The most difficult problem for lattice studies at finite
baryon density is that the Boltzmann weight is complex
when the chemical potential is nonzero. In this case, the
Monte Carlo method is not applicable directly, since con-
figurations cannot be generated with a complex probability.
A popular approach to avoid this problem is the reweight-
ing method. We perform simulations at �q � 0, and in-
corporate the remaining part of the correct Boltzmann
weight for finite �q in the calculation of expectation
values. Expectation values hOi at ��;�q� are thus com-
puted by a simulation at ��0; 0� using the following iden-
tity:

 hOi��;�q�
�
hOeNf �ln detM��q��ln detM�0��e6����0�NsitePi��0;0�

heNf �ln detM��q��ln detM�0��e6����0�NsitePi��0;0�

:

(15)

This is the basic formula of the reweighting method.
However, because ln detM��q� is complex, the calcula-
tions of the numerator and denominator in Eq. (15) be-
comes in practice increasingly more difficult for larger �q.
We define the phase of the quark determinant � by the
imaginary part of Nf ln detM��q�. If the typical value of �
becomes larger than �=2, the real part of ei� ( � cos�)
changes its sign frequently. Eventually both the numerator
and denominator of Eq. (15) become smaller than their
statistical errors and Eq. (15) can no longer be evaluated.
We call it the ‘‘sign problem.’’ The sign problem becomes
more serious when the volume is large and the quark mass
is small [23,24].

A. Reweighting method for finite �q=T

Let us discuss the reweighting method for finite �q

using the plaquette distribution function. Originally, the
reweighting method was proposed using the distribution
function (histogram) in Ref. [21], and applications to the
finite density QCD in this style have been discussed in
Refs. [20,26–28].

Here and hereafter, we restrict ourselves to discuss only
the case when the quark matrix does not depend on �
explicitly, e.g. the standard Wilson and staggered quark
actions, the p4-improved staggered quark action, etc., for
simplicity. The partition function can be rewritten as

 Z ��;�q� �
Z
R�P;�q�w�P;��dP; (16)

wherew�P;�� is defined in Eq. (6) at�q � 0 and R�P;�q�

is the reweighting factor for finite �q defined by

 R�P0; �q� 	

R
DU��P0 � P��detM��q��

NfR
DU��P0 � P��detM�0��Nf

: (17)

This R�P;�q� is independent of �, and R�P;�q� can be
measured at any � using the following identity:

 R�P0; �q� �

R
DU��P0 � P��detM��q��

Nfe6�NsitePR
DU��P0 � P��detM�0��Nfe6�NsiteP

�
h��P0 � P��detM��q�= detM�0��Nf i��;�q�0�

h��P0 � P�i��;�q�0�
;

(18)

where h� � �i��;�q�0� means the expectation value at�q � 0.
In this method, all simulations are performed at �q � 0
and the effect of finite�q is introduced though the operator
detM��q�= detM�0� measured on the configurations gen-
erated by the simulations at�q � 0. The expectation value
of O�P� is given by

 hO�P�i��;�q�
�

R
O�P�R�P;�q�w�P;��dPR
R�P;�q�w�P;��dP

: (19)

Moreover, the weight factor for nonzero �q is
R�P;�q�w�P;��, and thus the effective potential is defined
by

 V�P;�;�q� 	 � ln�R�P;�q�w�P;���

� � lnR�P;�q�  V�P;�; 0�: (20)

The shape of the effective potential can then also be
investigated at nonzero �q once R�P;�q� is obtained.

However, there are two problems to calculate R�P;�q�.
The first problem is that the calculation of the quark
determinant detM��q� is very expensive. With present
day computer resources, the exact calculation of
detM��q� is difficult except on small lattices. The second
problem is the sign problem. Because ln detM��q� is
complex, the calculations of the numerator of Eq. (18)
becomes in practice increasingly more difficult for larger
�q. If the complex phase factor of the quark determinant
Re�ei�� changes its sign frequently, the expectation value
of R�P;�q� becomes smaller than its statistical error and
the calculation of � lnR�P;�q� in the effective potential
becomes impossible.

B. Taylor expansion in terms of �q=T

To avoid the first problem, we perform a Taylor expan-
sion in terms of �q around �q � 0 and calculate the
expansion coefficients, as proposed in Ref. [3]. We expand
ln detM��q� in a Taylor series,

 ln
�

detM��q�

detM�0�

�
�
X1
n�1

1

n!

�
@n�ln detM�
@��q=T�n

���q

T

�
n
: (21)

The Taylor expansion coefficients are rather easy to calcu-
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late by using the stochastic noise method. Although we
must cut off this expansion at an appropriate order of �q,
this approximation is valid at low density and can be
systematically improved by increasing the number of the
terms.

Here, we discuss the effect of a truncation of the expan-
sion. To estimate the range of �q=T where the approxima-
tion is valid, an analysis of the radius of convergence is
useful. The radius of convergence for pressure p�T;�q� is
studied in Ref. [6]. When one performs a Taylor expansion
for p=T4 � lnZ=�VT3�,

 

p�T;�q�

T4
�
p�T; 0�

T4 �
X1
i�1

ci�T�
��q

T

�
i
; (22)

the radius of convergence can be defined by

 � � lim
i!1

�i; �i �

�����������������								 ci
ci2

								
s

(23)

for i � 2; 4; 6; � � � , where the odd terms are zero because
the partition function is an even function of�q. The Taylor
expansion converges in the range of �q=T < � when we
consider all order of the expansion coefficients. This radius
of convergence determines the lower bound of the critical
point. This means conversely that the upper limit of the
application range must be below the critical point if we
estimate thermodynamic quantities using the Taylor ex-
pansion coefficients of the pressure or lnZ.

However, this problem may be avoidable when we con-
sider a Taylor expansion of the reweighting factor R�P;�q�

in Eq. (16), since the weight factor itself should not be
singular even at the critical point. Therefore, we expect that
the application range is not limited by the critical point and
evaluations beyond the critical point is possible. The same
discussion of the radius of convergence is possible for the
reweighting factor lnR�P;�q�. We define the expansion
coefficients by

 lnR�P;�q� �
X1
i�1

ri�P�
��q

T

�
i
; (24)

where the odd terms should be zero again. The radius of
convergence is

 ��R�i �

�����������������								 ri
ri2

								
s

: (25)

When we neglect terms higher than O��n
q� in the calcu-

lation of ln detM, Eq. (21), the application range can be
estimated by �q=T & ��R�n . Because this approximation
does not affect calculations of ri�P� for i 
 n, the trunca-
tion error is negligible when the contribution from higher
order terms is smaller than that from the lower order terms.
In the range where �q=T < ��R�n , the (n 2)th order term
jrn2��q=T�n2j is smaller than the nth order term

jrn��q=T�
nj. Hence, the truncation error must be small in

this range.
Before discussing the radius of convergence for

lnR�P;�q� using the data obtained by Monte Carlo
simulations, we estimate the application range at large P
and small P, corresponding to large temperature and
small temperature, respectively. In the free quark gas
limit, where P is maximum, the quark determinant is
expected to be �ln detM��Nt=Ns�3 � �7�2=60�  �1=2��
��q=T�

2  �1=4�2���q=T�
4 in the continuum limit [6].

Because �4 is infinity, the convergence of the Taylor
expansion seems to be good for large P.

On the other hand, in the study of the equation of state
[7,29], the numerical results of the derivatives of pressure
with respect to �q=T at low temperature have been found
to reproduce the prediction from the hadron resonance gas
model very well. Because small plaquette values are gen-
erated in the low temperature simulation, this model may
give a suggestion of the application range for small P. The
quark chemical potential dependence of pressure in the
hadron resonance gas model is discussed in Ref. [29]. It is
suggested that

 

p��q�

T4
�
p�0�

T4 / cosh
�
3�q

T

�
; (26)

and the radius of convergence for pressure is given by

 �i �

����������������������������
�i 2��i 1�

9

s
: (27)

This �i increases as i increases, and the convergence radius
� is infinity. Although we expect that the radius of con-
vergence for lnR is larger than that for the pressure, we try
to estimate the application range from this �i. When we
neglect terms higher than O��6

q�, as it is done in this study,
the application range is suggested to be�q=T & �6 � 2:5.
This implies that the error that arises from the approxima-
tion up to O��6

q� may be sizeable for �q=T � 2:5, and
more careful arguments are required when we calculate the
reweighting factor R�P;�q� for �q=T * 2:5. We will dis-
cuss this application range in Sec. III F again. The results of
lnR�P;�q� obtained by the calculations up to O��4

q� and
O��6

q� will be compared, and we will confirm that the
truncation error is still small even at �q=T � 2:5.

C. Avoidance of the sign problem at finite density

We discuss here how to avoid the sign problem in our
reweighting approach. In the framework of the Taylor
expansion, we can easily separate ln detM��q� into real
and imaginary parts because the even derivatives of
ln detM��q� are real and the odd derivatives are purely
imaginary [3]. The absolute values of the quark determi-
nant and the complex phases � are thus given by
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 Nf lnj detMj � Nf Re�ln�detM��

� Nf

X1
n�0

1

�2n�!
Re
@2n�ln detM�

@��q=T�2n

��q

T

�
2n
;

(28)

 � � Nf Im�ln�detM��

� Nf

X1
n�0

1

�2n 1�!
Im
@2n1�ln detM�

@��q=T�
2n1

��q

T

�
2n1

; (29)

where one must replace Nf in these equations toNf=4 when
one uses a staggered type quark action. Here, it is worth
noting that � corresponds to the complex phase of the
quark determinant; however, by definition this quantity is
not restricted to the range from �� to � because there is
no reason that the imaginary part of ln detM in Eq. (29)
must be in the finite range. In fact, this quantity becomes
larger as the volume increases.

We show histograms of � at the pseudocritical tempera-
ture (� � 3:65) for �q=T � 1:0 and 2.0 in Fig. 1, where �
is calculated using the data of the Taylor expansion coef-
ficients up to O��5

q� obtained with two flavors of p4-
improved staggered quarks in Ref. [7]. These histograms
seem to be almost Gaussian functions. We fit these data by
Gaussian functions,� exp��x�2�, where the overall factor
and x are the fit parameters. The dashed lines in Fig. 1 are
the fit results. It is found that the histogram of � is well
represented by a Gaussian function.

Similar to the discussion of the Gaussian distribution
function for the plaquette in Sec. II, we may argue that the
histogram of � is a Gaussian function. Because there is no
critical point in two-flavor QCD with finite quark mass at

�q � 0, the spatial correlation length between the quark
fields is not expected to be long. The Taylor expansion
coefficients in Eq. (29) are given by combinations of traces
of products of @nM=@��q=T�

n and M�1 (see appendix of
Ref. [7]). Therefore, the expansion coefficients are ob-
tained by the sum of the diagonal elements of such matri-
ces. When the correlation among the diagonal elements is
small and the volume is sufficiently large, the distribution
functions of the expansion coefficients and � should be of
Gaussian type due to the central limit theorem. For ex-
ample, the diagonal elements of the first coefficient,
Im�@�ln detM�=@��q=T�� � Im�tr�M�1�@M=@��q=T����,
is the imaginary part of the local number density operator
at �q � 0. If the spatial density correlation is not very
strong, the Gaussian distribution is expected. Figure 1 is
consistent with this argument.

We note that, once we assume a Gaussian distribution
for �, the problem of complex weights can be avoided. A
variety of distribution functions with respect to various
quantities are discussed in the density of state method
[20,21,26–28]. We introduce the probability distribution
�w as a function of the plaquette P, the absolute value of
�detM��q�= detM�0��Nf 	 F, and the complex phase � 	
Im�lnF��q��,

 

�w�P0; jFj0; �0� 	
Z

DU��P0 � P���jFj0 � jFj�

� ���0 � ���detM�0��Nfe6�NsiteP: (30)

The distribution function itself is defined as an expectation
value at �q � 0, i.e. �w�P0; jFj0; �0� / h��P0 � P���jFj0 �
jFj����0 � ��i�T;�q�0�; however jFj and � are functions of
�q=T obtained by the Taylor expansion at �q � 0. The
expectation value of O�P; jFj; �� at �q � 0 is given by

 

hO�P; jFj; ��i�T;�q�0� �
1

Z��q � 0�

Z
dP

Z
djFj

�
Z
d�O�P; jFj; �� �w�P; jFj; ��:

(31)

Since the partition function is real even at nonzero
density, the distribution function has the symmetry under
the change from � to ��. Therefore, the distribution
function is a function of �2, e.g., �w��� � exp���a2�

2 
a4�

4  a6�
6  � � ���. Moreover, as we discussed, when the

system size is sufficiently large in comparison to the cor-
relation length, the distribution function should be well
approximated by a Gaussian function:

 �w�P; jFj; �� �

��������������������
a2�P; jFj�

�

s
�w0�P; jFj� exp��a2�P; jFj��2�:

(32)
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θ=(Nf /4)Im[ln(det M)]
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FIG. 1 (color online). The histogram of the complex phase for
�q=T � 1:0 and 2.0 at � � 3:65 (T=Tc � 1:00) on a 163 � 4
lattice. The dashed lines are the fit results by Gaussian functions.
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We assume this distribution function in terms of � when P
and jFj are fixed.

The coefficient a2�P; jFj� is given by

 

1

2a2�P0; jFj0�
�
Z
d��2 �w�P0; jFj0; ��=

Z
d� �w�P0; jFj0; ��

�
h�2��P0 � P���jFj0 � jFj�i�T;�q�0�

h��P0 � P���jFj0 � jFj�i�T;�q�0�
;

(33)

using
�����������
a2=�

p R
�2 exp��a2�2�d� � 1=�2a2�.

When the volume is sufficiently large, this assumption
will be valid except at a critical point. For the case of two-
flavor QCD at finite quark mass, this assumption should be
valid because there is no critical point for�q � 0 except in
the chiral limit, and is suggested by Fig. 1, though the
values of P and jFj are not fixed in the calculation of Fig. 1.
Then, the integration over � can be carried out easily and
we obtain the numerator of Eq. (18) for the calculation of
R�P;�q�,

 hF��q���P0 � P�i�T;�q�0� �
1

Z

Z
dP

Z
djFj

Z
d�

�����
a2

�

r
�w0�P; jFj�e�a2�2

ei�jFj��P0 � P�

�
1

Z

Z
dP

Z
djFj �w0�P; jFj�e�1=�4a2�jFj��P0 � P�

�
1

Z

Z
DUe�1=�4a2�P;jFj��jF��q�j��P0 � P��detM�0��Nfe�Sg

� he�1=�4a2�P;jFj��jF��q�j��P0 � P�i�T;�q�0�: (34)

Since � is roughly proportional to the size of the quark
matrix M, the value of 1=a2 becomes larger as the volume
increases. Therefore, the phase factor in R�P;�a� de-
creases exponentially as a function of the volume.
However, the most important point in this approach is
that the operator in Eq. (34) is always real and positive
for each configuration in this framework, hence the expec-
tation value of R�P;�q� is always larger than its statistical
error, i.e. the contribution lnR�P;�q� to the effective po-
tential V�P;�;�q� is always well defined. Therefore, the
sign problem is completely avoided if we can assume the
Gaussian distribution of �.

We calculate � using the stochastic noise method. Then,
the value of � contains an error due to the finite number of
noise vectors (Nn). As discussed in Ref. [3,24], a careful
treatment is required to reduce this error for the calculation

of
���������
h�2i

p
, i.e. width of the distribution of �. Since the noise

sets for the calculation of the two � in the product must be
independent, we subtract the contributions from using the
same noise vector for each factor. By using this method, we

can make the Nn dependence of
���������
h�2i

p
much smaller than

that by the naive calculation from rather small Nn, hence it
may be closer to the Nn � 1 limit. We took Nn � 50 or
100 in this calculation, so that the Nn dependence is
negligible. On the other hand, as Nn increases, the result

of
���������
h�2i

p
obtained by the naive calculation without the

subtraction becomes smaller and approaches the result
with the subtraction. For the case at � � 3:65, �q=T �
2:0 withNn � 100 in Fig. 1, the difference between them is
about 13%. Since the width of the distribution function

shown in Fig. 1 corresponds to
���������
h�2i

p
without the subtrac-

tion, the width in Fig. 1 is slightly larger than that in the
Nn � 1 limit.

For more quantitative arguments of the Gaussian distri-
bution function, we also compute the fourth order Binder
cumulant of the complex phase for �q=T � 1:0 and 2.0,
using the data obtained in a simulation of two-flavor QCD
with p4-improved staggered quarks, Ref. [7]. The Binder
cumulant is defined by

 B�4 	
h�4i

h�2i2
: (35)

As discussed in Sec. II, this quantity is a good indicator to
check whether the distribution is of Gaussian or not. To
confirm the validity of the assumption, Eq. (32), we should
compute B�4 as a function of P and jFj. However, because
the width of the plaquette distribution function w�P;�� for
each � is narrow in our simulation (see the results in
Sec. III D), we calculate B�4 for each � without separating
the configurations in terms of P. The circle and square
symbols in Fig. 2 are the results for �q=T � 1:0 and 2.0,
respectively. We use the stochastic noise method for the
calculation of the products of �. The results plotted by
filled symbols are obtained when the contributions from
using the same noise vector are subtracted. The open
symbols are the results without the subtraction. Because
the complex phase vanishes in the large � limit, h�2i
becomes smaller as � increases. We omitted results having
large statistical errors due to the small h�2i at large �. We
find from this figure that the results of B�4 are almost
consistent with three. As we discussed in Sec. II, if the
distribution is of Gaussian, the Binder cumulant is three.
Hence, this figure suggests the Gaussian distribution. The
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results around � � 3:66 are slightly larger than 3, but the
difference would be within the systematic error due to
finite statistics because usually the Binder cumulant be-
comes smaller than 3 when the correlation length is long.

To estimate the effect when the distribution is slightly
different from Gaussian, we consider a distribution func-
tion with small a4, i.e. �w��� � exp��a2�2 � a4�4�. In this
case, the phase factor changes from exp��1=�4a2�� to
exp��1=�4a2�  3a4=�4a

3
2� � a4=�16a4

2�  � � ��, and also
the expectation value of �2 for fixed P and jFj becomes
h�2i � 1=�2a2� � 3a4=�2a

3
2�  � � � . Since the term of

3a4=�4a3
2� is absorbed into h�2i=2, the leading contribution

from a4 in the phase factor is exp��a4=�16a4
2��. Because

1=a2 �O��
2
q�, this effect becomes larger as �q increases.

Therefore, for the case of a4 � 0 (B�4 � 3), the estimation
of the range of �q in which the non-Gaussian contribution
is small may be important as well as the application range
of the Taylor expansion in �q discussed in the previous
section.

D. Reweighting method for � direction

We consider the reweighting method for the � direction
at �q � 0. This is the case of R�P; 0� � 1. Using the
plaquette distribution function (plaquette histogram)
w�P;�0� at the simulation point �0, the expectation value
of an operator given by the plaquette is evaluated by

 hO�P�i��� �

R
O�P�e6����0�NsitePw�P;�0�dPR
e6����0�NsitePw�P;�0�dP

; (36)

where we discuss only the case when the quark matrix does
not depend on � explicitly for simplicity, otherwise
Eq. (36) is no longer correct.

From Eq. (36), under the parameter change from �0 to
�, the weight w�P;�� becomes

 w�P;�� � e6����0�NsitePw�P;�0�: (37)

If we rewrite e�6�0NsitePw�P;�0� 	 w�P�, we obtain Eq. (1)
from Eq. (16). The effective potential becomes

 V�P;�� � � lnw�P;�� � V�P;�0� � 6��� �0�NsiteP:

(38)

When � is increased, the slope of V�P� becomes smaller,
whereas the curvature of V�P� does not change. This
implies that the curvature of V�P� is independent of �.
For the case of d2V=dP2 > 0, the value of P which gives
the minimum of V�P� becomes larger as � increases.

Here, we want to explain the � dependence of the
effective potential using the data from Ref. [7]. The con-
figurations were generated with Symanzik-improved gauge
and two-flavor p4-improved staggered fermion actions.
Because the improved gauge action was used in Ref. [7],
the definition of P is

 P � �
Sg

6Nsite�

�
1

6Nsite

�
5

3

X
x;�>�

W1�1
�� �x� �

1

12

X
x;���

W1�2
�� �x�

�
; (39)

where WI�J
�� is the I � J Wilson loop for each point and

each direction. The maximum of this P is 1.5.
The probability distribution function w�P�, i.e. the his-

togram of P, and the effective potential V�P� are given in
Fig. 3. These are measured at 16 simulation points from
� � 3:52 to 4.00 for the bare quark mass ma � 0:1. The
corresponding temperature normalized by the pseudocriti-
cal temperature is in the range of T=Tc � 0:76 to 1.98, and
the pseudocritical point (T=Tc � 1) is about � � 3:65. We
show the values of � and T=Tc above these figures. The
ratio of pseudoscalar and vector meson masses is
mPS=mV � 0:7 at � � 3:65. The lattice size Nsite is 163 �
4. The number of configurations is 1000–4000 for each �.
Further details on the simulation parameters are given in
Ref. [7]. To obtain w�P� and V�P�, we grouped the con-
figurations by the value of P into blocks and counted the
number of configurations in these blocks, and the potential
V�P� is normalized by the minimum value for each
temperature.

Because the transition from the hadron phase to the
quark-gluon plasma phase is a crossover transition for
two-flavor QCD with finite quark mass, the distribution
function is always of Gaussian type, i.e. the effective
potential is always a quadratic function. The value of the
plaquette at the potential minimum increases as � in-
creases in accordance with the above argument.

3.5 3.6 3.7 3.8 3.9 4

β
0

1

2

3

4

5

6

µ /T=1 (no sub.)
µ /T=2 (no sub.)
µ /T=1
µ /T=2

B
4

θ

FIG. 2 (color online). The fourth order Binder cumulant of the
complex phase for �q=T � 1:0 (circle) and 2.0 (square). The
filled symbols are the results obtained when the contributions
from using the same noise vector are subtracted in the products
of �. The open symbols are the results without the subtraction.
The dashed line is the value of Gaussian distribution.
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Figure 4 shows the curvature of the effective potential at
�q � 0, d2V=dP2�P� � �d2�lnw�=dP2, as a function of
P. We estimate this quantity from the relation between the
plaquette susceptibility �P and the curvature of the poten-
tial at �q � 0, Eq. (11). Here, it should be emphasized
again that the slope of the potential changes as Eq. (38)
when � is changed, but the curvature of the potential never
changes. This means that the curvature is independent of �
and is determined by the measure DU and the quark
determinant detM. As we discussed in Sec. II, the curvature
of the effective potential V�P� at P for the potential mini-
mum is important to categorize the nature of phase tran-
sition, e.g. the curvature must be zero at a second order
phase transition point. The property of the curvature being

independent of�will make our analysis simpler in the next
section.

E. Numerical calculations of the reweighting factor

We calculate the probability distribution function at
nonzero �q using the data of the Taylor expansion coef-
ficients up to O��6

q� computed in Ref. [7] with the p4-
improved staggered quark action. Since the simulations are
performed in the region where no critical points exist, the
assumption of the Gaussian function is valid. The coeffi-
cient a2�P; jFj� in the distribution function of � is mea-
sured using Eq. (33). However, because the values P and
jFj � j detM��q�= detM�0�jNf on each configuration are
strongly correlated [24], we may assume that jFj is ap-
proximately given as a function of P for each configuration
so that a2�P; jFj� is given by a function of P only. In this
approximation, the contribution from the complex phase in
R�P0; �q� can be simplified,

 R�P0; �q� � e�1=�4a2�P0��
hjF��q�j��P0 � P�i�T;�q�0�

h��P0 � P�i�T;�q�0�
:

(40)

Although the correlation between jFj and a2 is neglected in
this equation, the main contribution to the variation of
R�P;�q� comes from jFj, and the contribution from the
phase factor is not very large, as we will see in Fig. 5.
Therefore, the correlation of these two factors is negligible
in the following argument. For the calculation of R�P;�q�,
we use the delta function approximated by a Gaussian
function, ��x� � 1=��

����
�
p
� exp���x=��2�, where � �

0:0025 is adopted.
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FIG. 4. The curvature of the effective potential at �q � 0.
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FIG. 5 (color online). The reweighting factor R�P;�q� for
�q=T � 0:5–2:5 obtained by the Taylor expansion up to
O��6

q�. The dashed lines are the cases when the effect of the
complex phase is omitted, �R�P;�q�.
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FIG. 3 (color online). The plaquette histogram and the effec-
tive potential at �q � 0 as a function of the plaquette for the
two-flavor p4-improved staggered action obtained in Ref. [7].
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Because R�P;�q� is independent of �, we mix all data
obtained at different �. This mixture can be justified
by extending Eq. (18) for multi-�, e.g.
R�P0; �q� � �N1h��P

0 � P�Fi�1
 N2h��P

0 � P�Fi�2
�=

�N1h��P0 � P�i�1
 N2h��P0 � P�i�2

� for the data at �1

and �2 with the number of configurations N1 and N2. The
results for lnR�P;�q� are shown by solid lines in Fig. 5 for
�q=T � 0:5, 1.0, 1.5, 2.0 and 2.5. We find a rapid change in
lnR around P� 0:83, and the variation becomes larger as
�a=T increases.

The dashed lines in Fig. 5 are the results that we ob-
tained when the effect of the complex phase, i.e.
exp��1=�4a2��, is omitted. We define this quantity as

 

�R�P0; �q� 	
hjF��q�j��P0 � P�i�T;�q�0�

h��P0 � P�i�T;�q�0�
: (41)

We discuss in Sec. III G that these dashed lines correspond
to the reweighting factor with nonzero isospin chemical
potential �I and zero quark chemical potential �q, i.e.
�R�P;�q� � R�P;�I�: The variation of lnR in terms of P

becomes milder when the effect of the complex phase is
omitted.

The effective potential V�P;�;�q� is obtained from
Eq. (20) substituting the data in Figs. 3 and 5. To study
the existence of a second order phase transition, the curva-
ture of the potential is important. The minimum of the
potential can be changed by shifting � but the curvature
can be controlled only by lnR�P;�q�. The result of the
curvature at �q � 0, �d2�lnw�=dP2, as a function of P is
shown in Fig. 4. Because �d2�lnw�=dP2 is positive, a
region where d2�lnR�=dP2 > 0 is necessary for the exis-
tence of a critical point. The curvature of lnR is positive for
P & 0:83.

In order to analyze the sign of d2V=dP2�P;�q�, we
fitted the data around P by a quadratic function,
lnR�P0; �q� � x0  x1�P0 � P�  x2�P0 � P�2, where x0,
x1, and x2 are the fit parameters, and calculate the first
and second derivatives of lnR�P;�q� at each P. The result
of the slope, d�lnR�=dP�P;�q� � x1, is shown in Fig. 6 for
each �q=T. We adopt the result obtained by fitting in the
range between P� 0:015 and P 0:015 for each P as the
final result. In the region around P� 0:83, d�lnR�=dP
becomes larger as �q=T increases and lnR�P;�q� changes
sharply in this region. The result of the curvature,
d2�lnR�=dP2�P;�q� � 2x2, is plotted as solid line in
Fig. 7. The magnitude of the curvature of lnR also becomes
larger as �q=T increases. The dashed line in Fig. 7 is the
data of �d2�lnw�=dP2�P� in Fig. 4. This figure indicates
that the maximum value of d2�lnR�=dP2�P;�q� at P �
0:80 becomes larger than �d2�lnw�=dP2 for �q=T * 2:5.
This suggests that the curvature of the effective potential,
d2V=dP2 � �d2�lnw�=dP2 � d2�lnR�=dP2, vanishes at

�q=T � 2:5 and a region of P where the curvature is
negative appears for large �q=T.

Next, we estimate the value of � which gives the poten-
tial minimum at P � 0:8 for �q=T � 2:5 by solving the
equation:

 

dV
dP
�P;�;�q� � �

d�lnR�
dP

�P;�q� �
d�lnw�
dP

�P;�0�

� 6��� �0�Nsite � 0: (42)

This equation can be solved without changing �q=T and
tells us the location of the critical point in the ��;�q=T�
plane. Since a simulation with � � 3:56 gives
d�lnw�=dP � 0 at P � 0:8, we adopt �0 � 3:56.
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FIG. 6 (color online). The slope of lnR�P;�q� as functions of
the plaquette.
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FIG. 7 (color online). The curvature of lnR�P;�q� as functions
of the plaquette. The dashed line is the curvature of � lnw.
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Substituting d�lnR�=dP � 4000 at �P;�q=T� � �0:8; 2:5�
in Fig. 6 and Nsite � 163 � 4, we obtain � � 3:52. This �
corresponds to T=Tc � 0:76, where Tc is the pseudocritical
temperature at �q � 0. Therefore, it is found that the
potential is flat up to second order in P around P � 0:80
with �T=Tc;�q=T� � �0:76; 2:5�, suggesting the existence
of a critical point around this value.

Further studies are, of course, needed for the precise
determination of the critical point in the �T;�q� plane,
increasing the number of terms in the Taylor expansion
of ln detM and decreasing the quark mass in the simula-
tion. The quark mass is still heavier than the physical quark
mass. However, the arguments given above indicate the
existence of a first order phase transition line at large�q=T
because the magnitude of the curvature of R�P;�q� in-
creases monotonically and eventually the curvature of the
potential becomes negative at large �q=T, corresponding
to a double-well potential of a first order phase transition.

F. Application range of this analysis

Next, we discuss the reliability of our analysis in view of
the truncation of the Taylor expansion used here. Because
the dominant contribution in lnR is given by the reweight-
ing factor without the phase effect, ln �R, we consider the
radius of convergence for ln �R. The expansion is defined by

 ln �R�P;�q� �
X1
n�1

�rn�P�
��q

T

�
n
; (43)

 

�r2 � hd2iP; �r4 � hd4iP 
1
2�hd

2
2iP � hd2i

2
P�;

�r6 � hd6iP  hd2d4iP � hd2iPhd4iP 
1
6�hd

3
2iP

� 3hd2iPhd2
2iP  2hd2i

3
P�; (44)

where dn � �Nf=n!�@n�ln detM�=@��q=T�
n, h� � �iP0 �

h� � ���P0 � P�i=h��P0 � P�i, and the odd terms are
zero. The radius of convergence is obtained by analyzing
the asymptotic behavior of �n �

�������������������
j �rn= �rn2j

p
for n �

2; 4; 6; � � � ;1.
In this analysis, we calculated ln detM using the data of

dn up to O��6
q�. This approximation does not affect the

calculations of �r2, �r4, and �r6, but there is a missing term,
i.e. hd8iP, in the calculation of �r8. If the 8th order term of
lnR is larger than the 6th order term, the effect of the
truncation may be sizeable. Because j�r6��q=T�6j>
j �r8��q=T�

8j for �q=T < �6, the application range for our
current analysis should be �q=T & �6. We calculate �2

and �4. These results are shown in Fig. 8. The dashed line
is �2 in the free gas limit, and �4 is infinity in the free gas
limit. The results of �r2 and �r4 are positive for all P we
investigated, but �r6 changes its sign at P � 0:84. �r6 is
negative for P � 0:84. We find that �4 (square) is larger
than �2 (circle), and the values of �2 and �4 are larger than
the hadron resonance gas model values, �2 � 1:15 and

�4 � 1:83. For our analysis, where we omitted the calcu-
lation of dn higher than the 6th order in lnR, the application
range given by �6 would be larger than the hadron reso-
nance gas model prediction, �6 � 2:49, and the parameter
range we investigated thus seems to be within the applica-
tion range.

We moreover estimate the effect from higher order terms
in the Taylor expansion by changing the number of terms in
the Taylor expansion. Figure 9 shows the difference be-
tween the results up to O��4

q� and O��6
q� for �q=T � 0:5,

1.0, 1.5, and 2.5. The dashed lines are the same as the solid
lines in Fig. 5 and the solid lines are the results obtained
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FIG. 8 (color online). The radius of convergence, �2, �4, for
the Taylor expansion of �R�P;�q�.
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FIG. 9 (color online). The reweighting factor R�P;�q� com-
puted by the Taylor expansion up to O��4

q� (solid lines) and
O��6

q� (dashed lines).
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when the highest order term and the next highest order
term, d6�lnM�=d��q=T�

6 and d5�lnM�=d��q=T�
5, are

omitted in Eq. (21). It is found from this figure that the
difference becomes visible at �q=T � 2:5, but the trunca-
tion error of the Taylor expansion does not affect the
qualitative argument of the effective potential at finite
density in the range we have discussed. For more quanti-
tative investigation of the critical point in the �T;�q� plane,
more accurate calculations including higher order terms in
the Taylor expansion of �q may be important.

G. QCD with an isospin chemical potential

Finally, it is worth discussing the difference between
QCD with a quark (baryon) chemical potential and an
isospin chemical potential. The isospin chemical potential
is defined by�I � ��u ��d�=2, where�u and�d are the
chemical potential for u and d quarks, respectively. For the
case with nonzero isospin and zero quark chemical poten-
tials, �q � ��u �d�=2 � 0, i.e. �u � ��d � �I, the
quark determinant is real and positive because

 detM��u� detM��d� � detM��I� detM���I�

� detM��I��detM��I��
�

� j detM��I�j
2 (45)

where we used an identity at finite �q, 	5M��q�	5 �

M���q�
y. Therefore, Monte Carlo simulations are

possible for this case [30], and the simulations with the
isospin chemical potential have been performed in
Refs. [18,19,28,31,32]. It may be important toward the
understanding of QCD at finite density to consider the
difference between the phase diagram with nonzero baryon
chemical and that with nonzero isospin chemical potential.

The reweighting factor �R, i.e. the dashed line in Fig. 5,
corresponds to the reweighting factor of the isospin chemi-
cal potential R�P;�I� for each �I=T because the quark
determinant is j detM��q�j

2. It is found from Fig. 5 that the
slope and the curvature of lnR around P� 0:82 for the
isospin chemical potential are smaller than those for the
quark chemical potential. This means that the value of
�I=T where the second order phase transition appears by
canceling the curvatures of lnw�P;�� and lnR�P;�I� is
larger than the critical point of �q=T. It is suggested in
Ref. [19] that there is no first order phase transition region
in the low density regime of QCD with nonzero �I=T.
Although more quantitative estimations of the reweighting
factor are needed to confirm the existence of the first order
transition line, our argument may be related to their result.

Furthermore, in the case of the approximation up to
O��2

q;I�, R�P;�q� and R�P;�I� have a close relation to
the quark number susceptibility �q and isospin suscepti-
bility �I at �q;I � 0. Using the Eqs. (28), (29), and (33),

 

lnR�P;�q� � ln



exp
�
1

2
Nf Re

@2�ln detM�

@��q=T�2

��q

T

�
2
��

P

�
1

2


�
Nf Im

@�ln detM�
@��q=T�

�q

T

�
2
�
P

�
1

2

�

Nf
@2�ln detM�

@��q=T�
2 

�
Nf
@�ln detM�
@��q=T�

�
2
�
P

�

�

��q

T

�
2

(46)

in this approximation, and when the effect from � is
omitted, we find

 lnR�P;�I� � ln �R�P;�q� �
1

2



Nf
@2�ln detM�

@��q=T�2

�
P

��q

T

�
2
;

(47)

where h� � �iP0 � h� � ���P0 � P�i=h��P0 � P�i. These are
related to �q=T2 and �I=T2 as functions of � (tempera-
ture) by the following equations:
 

�q
T2 �T;�q;I � 0� �

N3
t

N3
s

1

Z

Z 

Nf
@2�ln detM�

@��q=T�2



�
Nf
@�ln detM�
@��q=T�

�
2
�
P
w�P;��dP;

(48)

 

�I
T2 �T;�q;I � 0� �

N3
t

N3
s

1

Z

Z 

Nf
@2�ln detM�

@��q=T�2

�
P
w�P;��dP:

(49)

From these equations, the similarity between the figures for
R�P;�q;I� and those of the quark number and isospin
susceptibilities can be easily understood in the regime
where the Taylor expansion is valid. As shown in Fig. 3,
w�P;�� is a Gaussian function having a sharp peak.
Therefore, Fig. 5 is quite similar to Fig. 1 in Ref. [7] if
we replace the horizontal axis P by T=Tc���. As we have
discussed, the positive curvature in the P dependence of
lnR�P;�q� is required for the appearance of the critical
endpoint. It is found that the positive curvature is related
closely to the rapid increase of the quark number suscep-
tibility near the pseudocritical temperature at �q � 0.

Here, it should be noted that �I=T2 is always larger than
�q=T

2 at �q � 0 because @�ln detM�=@��q=T� is purely
imaginary, and thus �@�ln detM�=@��q=T��2 is negative.
Moreover, both susceptibilities approach the same value in
the high temperature limit. Hence, the variation of �I=T2

around the transition point would be milder than that
of �q=T2, corresponding to the behavior of R�P;�q� and
R�P;�I�. This may explain the difference between the
phase diagrams with finite �q and finite �I.
Furthermore, in the framework of the hadron resonance
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gas model at low temperature, the isospin susceptibility
corresponds to fluctuations of pions, and the pion mass is
more sensitive to the quark mass than baryon masses.
Therefore, when the quark mass is decreased, the pion
mass becomes smaller and the fluctuation becomes larger
at low temperature. This suggests the change of �I=T2

around Tc may be milder at small quark mass, i.e. the
difference between lnR�P;�q� and lnR�P;�I� becomes
large at small quark mass.

For more precise arguments on the phase structure, more
accurate evaluations of R�P;�q� and R�P;�I� are required
increasing the number of terms in the Taylor expansion of
ln detM. However, the qualitative property that the critical
value of �q=T in the �T;�q� plane is smaller than the
critical �I=T in the �T;�I� plane can be understood by
the well-known properties of the quark (baryon) number
and isospin susceptibilities combined with the argument of
the effective potential.

IV. CONCLUSIONS

We have discussed the phase structure of lattice QCD at
nonzero density. The probability distribution as a function
of the plaquette was estimated at nonzero temperature and
chemical potential using the data obtained with two-flavors
of p4-improved staggered quarks in Ref. [7]. In this analy-
sis, we have adopted two approximations. One is that we
estimate ln detM from the data of a Taylor expansion up to
O��6

q�. Terms of higher order than �6
q are omitted. We

have estimated the range where this approximation is valid
and studied in the reliability range. The second approxi-
mation is an assumption on the probability distribution for

the complex phase. We have assumed the distribution
function to be a Gaussian function. This assumption will
be valid for sufficiently large volume and we have checked
that the distribution is well approximated by a Gaussian
function for the data used in this analysis.

In spite of the use of these approximations, it is found
that the shape of the effective potential which is of
Gaussian type at �q � 0 changes to a double-well type
at large �q=T. This property is related closely to a well-
known behavior of the quark number susceptibility at
�q � 0, i.e. the rapid increase near the phase transition
point. For the quantitative estimation of the endpoint of the
first order phase transition, further investigation is needed.
However, this argument strongly suggests the existence of
the first order phase transition line in the �T;�q� plane.

We also discussed the difference between QCD with a
quark chemical potential and QCD with an isospin chemi-
cal potential, and found that the critical value of the quark
chemical potential seems to be smaller than that of the
isospin chemical potential.
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