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E-08028 Barcelona, Spain.

6Department of Physics, University of Washington, Seattle, Washington 98195-1560, USA
7Department of Physics, University of Maryland, College Park, Maryland 20742-4111, USA

(Received 1 August 2007; published 14 January 2008)

The I � 2 �� scattering length is calculated in fully dynamical lattice QCD with domain-wall valence
quarks on the asqtad-improved coarse MILC configurations (with fourth-rooted staggered sea quarks) at
four light-quark masses. Two- and three-flavor mixed-action chiral perturbation theory at next-to-leading
order is used to perform the chiral and continuum extrapolations. At the physical charged pion mass, we
find m�aI�2

�� � �0:043 30� 0:000 42, where the error bar combines the statistical and systematic
uncertainties in quadrature.
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I. INTRODUCTION

Pion-pion (��) scattering at low energies is the simplest
and best-understood hadron-hadron scattering process. Its
simplicity and tractability follow from the fact that the
pions are identified as the pseudo-Goldstone bosons asso-
ciated with the spontaneous breaking of the approximate
chiral symmetry of quantum chromodynamics (QCD). For
this reason, the low-momentum interactions of pions are
strongly constrained by the approximate chiral symme-
tries, more so than other hadrons. The scattering lengths
for �� scattering in the s-wave are uniquely predicted at
leading order (LO) in chiral perturbation theory (�-PT) [1]:

 m�aI�0
�� � 0:1588; m�aI�2

�� � �0:045 37; (1)

at the charged pion mass. Subleading orders in the chiral
expansion of the �� amplitude give rise to perturbatively
small deviations from the tree level, and contain both
calculable nonanalytic contributions and analytic terms
with new coefficients that are not determined by chiral
symmetry alone [2–4]. In order to have predictive power
at subleading orders, these coefficients must be obtained
from experiment or computed with lattice QCD.

Recent experimental efforts have been made to compute
the s-wave �� scattering lengths, aI�0

�� (I � 0) and aI�2
��

(I � 2): E865 [5,6] (Ke4 decays), CERN DIRAC [7] (pio-
nium lifetime) and CERN NA48/2 [8] (K� ! ���0�0).
Unfortunately, these experiments do not provide stringent
constraints on aI�2

�� . However, a theoretical determination
of s-wave �� scattering lengths which makes use of
experimental data has reached a remarkable level of pre-

cision [9,10]:

 m�a
I�0
�� � 0:220� 0:005;

m�a
I�2
�� � �0:0444� 0:0010:

(2)

These values result from the Roy equations [11–13], which
use dispersion theory to relate scattering data at high en-
ergies to the scattering amplitude near threshold. In a
striking recent result, this technology has allowed a
model-independent determination of the mass and width
of the resonance with vacuum quantum numbers (the �
meson) that appears in the �� scattering amplitude [14].
Several low-energy constants of one-loop �-PT are critical
inputs to the Roy equation analysis. One can take the
values of these low-energy constants computed with lattice
QCD by the MILC collaboration [15,16] as inputs to the
Roy equations, and obtain results for the scattering lengths
consistent with the analysis of Ref. [9].

A direct lattice QCD determination of threshold ��
scattering is problematic in two respects. First, the occur-
rence of disconnected diagrams in the I � 0 s-wave chan-
nel renders a determination of that amplitude very costly in
terms of computer time, given the current state of lattice
algorithms, and is thus beyond our current capabilities. As
a result, lattice QCD efforts have focused on the I � 2
channel. The second difficulty is due to the fact that lattice
QCD calculations are performed on a Euclidean lattice.
The Maiani-Testa theorem demonstrates that S-matrix el-
ements cannot be determined from lattice calculations of
n-point Green’s functions at infinite volume, except at
kinematic thresholds [17]. This difficulty was overcome
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by Lüscher, who showed that by computing the energy
levels of two-particle states in the finite-volume lattice, the
2! 2 scattering amplitude can be recovered [18–22]. The
energy levels of the two interacting particles are found to
deviate from those of two noninteracting particles by an
amount that depends on the scattering amplitude and varies
inversely with the lattice spatial volume.

The first lattice calculations of �� scattering were per-
formed in quenched QCD [23–42], and the first full-QCD
calculation of �� scattering (the scattering length and
phase shift) was carried through by the CP-PACS collabo-
ration, who exploited the finite-volume strategy to study
I � 2, s-wave scattering with two flavors (nf � 2) of
improved Wilson fermions [43], with pion masses in the
range m� ’ 0:5–1:1 GeV. The first fully dynamical calcu-
lation of the I � 2 �� scattering length with three flavors
(nf � 2� 1) of light quarks was performed by some of the
present authors using domain-wall valence quarks on
asqtad-improved staggered sea quarks at four pion masses
in the range m� ’ 0:3–0:5 GeV at a single lattice spacing,
b� 0:125 fm [44]. That work quoted a value of the scat-
tering length extrapolated to the physical point of

 m�a
I�2
�� � �0:0426� 0:0006� 0:0003� 0:0018; (3)

where the first uncertainty is statistical, the second is a
systematic due to fitting, and the third uncertainty is due to
truncation of the chiral expansion.

In this paper we update our fully dynamical mixed-
action calculation of the I � 2 �� scattering length. Two
recent developments motivate an update: (i) we have vastly
increased statistics at the three light-quark masses studied
in the original publication; (ii) �� scattering has been
computed with mixed-action �-PT (MA�-PT) at next-to-
leading order (NLO) [45,46] both for two and three flavors
of light quarks. Our updated result is

 m�a
I�2
�� � �0:043 30� 0:000 42; (4)

where the statistical and systematic uncertainties have been
combined in quadrature. This result is consistent with all
previous determinations within uncertainties.

This paper is organized as follows. In Sec. II details of
our mixed-action lattice QCD calculation are presented.
We refer the reader interested in a more comprehensive
treatment and discussion to our earlier papers. Discussion
of the relevant correlation functions and an outline of the
methodology and fitting procedures can also be found in
this section. The results of the lattice calculation and the
analysis with two- and three-flavor MA�-PT are presented
in Sec. III. In Sec. IV, the various sources of systematic
uncertainty are identified and quantified. In Sec. V we
conclude.

II. METHODOLOGY AND DETAILS OF THE
LATTICE CALCULATION

The computation in this paper uses the mixed-action
lattice QCD scheme developed by LHPC [47,48].
Domain-wall fermion propagators were generated from a
smeared source on nf � 2� 1 asqtad-improved [49,50]
coarse configurations generated with rooted staggered sea
quarks [51]. Hypercubic-smeared (HYP-smeared) [52–55]
gauge links were used in the domain-wall fermion action to
improve chiral symmetry (further details about the mixed-
action scheme can be found in Refs. [56,57]). The mixed-
action calculations we have performed involved computing
the valence-quark propagators using the domain-wall for-
mulation of lattice fermions, on each gauge-field configu-
ration of an ensemble of the coarse MILC lattices that are
generated using the staggered formulation of lattice fermi-
ons [58–62] and taking the fourth root of the fermion
determinant, i.e. domain-wall valence quarks on a rooted
staggered sea. In the continuum limit the nf � 2 staggered
action has an SU�8�L � SU�8�R �U�1�V chiral symmetry
due to the four-fold taste degeneracy of each flavor, and
each pion has 15 degenerate additional partners. At finite
lattice spacing this symmetry is broken and the taste mul-
tiplets are no longer degenerate, but have splittings that are
O��2b2�. While there is no proof, there are arguments to
suggest that taking the fourth root of the fermion determi-
nant recovers the contribution from a single Dirac fer-
mion.1 The results of this paper assume that the fourth-
root trick recovers the correct continuum limit of QCD.

When determining the mass of the valence quarks there
is an ambiguity due to the nondegeneracy of the 16 stag-
gered bosons associated with each pion. One could choose
to match to the taste-singlet meson or to any of the mesons
that become degenerate in the continuum limit. Given that
the effective field theory exists to describe such calcula-
tions at finite lattice spacing, the effects of matching can be
described, and removed, by effective field theory calcula-
tions appropriate to the choice of matching.

A summary of the lattice parameters and resources used
in this work is given in Table I. In order to generate large
statistics on the existing MILC configurations, multiple
propagators from sources displaced both temporally and
spatially on the lattice were computed. The correlators
were blocked so that one average correlator per configura-
tion was used in the subsequent Jackknife statistical analy-
sis (that will be described later).

The � correlation function, C��t�, and the �� correla-
tion function C���p; t� were computed, where the number
of time slices between the hadronic sink and the hadronic
source is denoted by t, and p denotes the magnitude of the

1For a nice introduction to staggered fermions and the fourth-
root trick, see Ref. [63]. For the most recent discussions regard-
ing the continuum limit of staggered fermions with the fourth-
root trick, see Refs. [64–71].
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(equal and opposite) momentum of each pion. The
single-�� correlation function is

 C���t� �
X

x
h���t;x����0; 0�i; (5)

where the summation over x corresponds to summing over
all the spatial lattice sites, thereby projecting onto the
momentum p � 0 state. A���� (I � 2) correlation func-
tion that projects onto the s-wave state in the continuum
limit is
 

C�����p; t� �
X
jpj�p

X
x;y
eip	�x�y�h���t;x����t; y�


 ���0; 0����0; 0�i; (6)

where, in Eqs. (5) and (6), ���t;x� � �u�t;x��5d�t;x� is an
interpolating field (Gaussian-smeared) for the ��. In the
relatively large lattice volumes that we are using, the
energy difference between the interacting and noninteract-
ing two-meson states is a small fraction of the total energy,
which is dominated by the masses of the mesons. In order
to extract this energy difference we formed the ratio of
correlation functions, G�����p; t�, where

 G�����p; t� �
C�����p; t�
C���t�C���t�

!
X1
n�0

Ane��Ent; (7)

and the arrow denotes the large-time behavior of G���� in
the absence of boundaries on the lattice and becomes an
equality in the limit of an infinite number of gauge con-
figurations. In G���� , some of the fluctuations that con-
tribute to both the one- and two-meson correlation
functions cancel, thereby improving the quality of the
extraction of the energy difference beyond what we are
able to achieve from an analysis of the individual correla-
tion functions.

The energy eigenvalue En and its deviation from the sum
of the rest masses of the particle, �En, are related to the
center-of-mass momentum pn by

 �En � En � 2m� � 2
�������������������
p2
n �m2

�

q
� 2m�: (8)

In the absence of interactions between the particles,
jp cot�j � 1, and the energy levels occur at momenta p �
2�j=L, corresponding to single-particle modes in a cubic

volume. In the interacting theory, once the energy shift has
been computed, the real part of the inverse scattering
amplitude is determined via the Lüscher formula [18–
21]. To obtain p cot��p�, where ��p� is the phase shift,
the magnitude of the center-of-mass momentum, p, is
extracted from the energy shift, given in Eq. (8), and
inserted into [18–22]:

 p cot��p� �
1

�L
S
�
pL
2�

�
; (9)

which is valid below the inelastic threshold. The regulated
three-dimensional sum is [22]

 S ��� �
Xjjj<�

j

1

jjj2 � �2 � 4��; (10)

where the summation is over all triplets of integers j such
that jjj<� and the limit �! 1 is implicit. The approxi-
mate formula [18–21] that can be used for L� jaj is

 �E0 � �
4�a

m�L
3

�
1� c1

a
L
� c2

�
a
L

�
2
�
�O

�
1

L6

�
; (11)

which relates the ground-state energy shift to the phase
shift, with

 c1 �
1

�

Xjjj<�

j�0

1

jjj2
� 4� � �2:837 297;

c2 � c2
1 �

1

�2

X
j�0

1

jjj4
� 6:375 183;

(12)

and a is the scattering length, defined by

 a � lim
p!0

tan��p�
p

: (13)

For the I � 2 �� scattering length that we compute here,
the difference between the exact solution and the approxi-
mate solution in Eq. (11) is & 1%. For the volumes we
consider (with L ’ 2:5 fm), the center-of-mass momentum
is obviously nonzero and therefore one should keep in
mind the effective-range expansion:

 p cot��p� �
1

a
�

1

2
rp2 �O�p4�; (14)

TABLE I. The parameters of the MILC gauge configurations and domain-wall propagators used in this work. The subscript l denotes
light quark (up and down), and s denotes the strange quark. The superscript dwf denotes the bare-quark mass for the domain-wall
fermion propagator calculation. The last column is the number of configurations times the number of sources per configuration.

Ensemble bml bms bmdwf
l bmdwf

s 103 
 bmres
a # of propagators

2064f21b676m007m050 0.007 0.050 0.0081 0.081 1:604� 0:038 468
 16
2064f21b676m010m050 0.010 0.050 0.0138 0.081 1:552� 0:027 658
 20
2064f21b679m020m050 0.020 0.050 0.0313 0.081 1:239� 0:028 486
 24
2064f21b681m030m050 0.030 0.050 0.0478 0.081 0:982� 0:030 564
 8

aComputed by the LHP Collaboration.
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where r is the effective range, which appears at O�1=L6� in
Eq. (11), and include the truncation of Eq. (14) as a source
of systematic uncertainty.

III. DATA ANALYSIS AND CHIRAL AND
CONTINUUM EXTRAPOLATION

A. Results of the lattice calculation

It is convenient to present the results of our lattice
calculation in ‘‘effective scattering length’’ plots, simple
variants of effective-mass plots. The effective energy split-
ting is formed from the ratio of correlation functions

 �E�����t� � log
�

G�����0; t�
G�����0; t� 1�

�
; (15)

which in the limit of an infinite number of gauge configu-
rations would become a constant at large times that is equal
to the lowest energy of the interacting ��’s in the volume.
At each time-slice, �E�����t� is inserted into Eq. (9) [or
Eq. (11)], to give a scattering length at each time slice,

a�����t�. It is customary to consider the dimensionless
quantity given by the pion mass times the scattering length,
m�a���� , where m��t� is the pion effective mass, in order
to remove scale-setting uncertainties. For each of the
MILC ensembles that we analyze, the effective scattering
lengths are shown in Fig. 1. The statistical uncertainty at
each time slice has been generated with the jackknife
procedure. The values of the pion masses, decay constants
and �� energy-shifts that we have calculated are shown in
Table II.

B. Two-flavor mixed-action �-PT at one loop

The mixed-action corrections for the I � 2 �� scatter-
ing length have been determined in Ref. [45]. It was
demonstrated that when the extrapolation formulas for
this system are expressed in terms of the lattice-physical
parameters2 as computed on the lattice, m�, and f�, there
are no lattice-spacing-dependent counterterms at O�b2�,
O�b4�, or O�m2

�b2� �O�b4�. This was explained to be a
general feature of the two-meson systems at this order,
including the nonzero momentum states [46]. There are
additional lattice-spacing corrections due to the hairpin
interactions present in mixed-action theories, but for our
scheme of domain-wall valence propagators calculated in
the background of the asqtad-improved MILC gauge con-
figurations, these contributions are completely calculable
without additional counterterms at NLO, as they depend
only upon valence meson masses and the staggered taste-
identity meson mass splitting [45,46] which has been
computed [15]. This allows us to precisely determine the
predicted mixed-action corrections for the scattering
lengths at the various pion masses used in this work. In
two-flavor MA�-PT (i.e. including finite lattice-spacing
corrections) the chiral expansion of the scattering length
at NLO takes the form [46]
 

m�aI�2
�� �b � 0� � �

m2
�

8�f2
�

�
1�

m2
�

16�2f2
�

�
3 log

�
m2
�

�2

�

� 1� lI�2
�� ��� �

~�4
ju

6m4
�

��
; (16)

where it is understood that m� and f� are the lattice-
physical parameters [46] and

 

~� 2
ju � ~m2

jj �m
2
uu � 2B0�mj �mu� � b

2�I � . . . ; (17)

where u denotes a valence quark and j denotes a sea-quark,
and we are using isospin-symmetric sea and valence
quarks. ~mjj (muu) is the mass of a meson composed of
two sea (valence) quarks of mass mj (mu) and the dots
denote higher-order corrections to the meson masses.

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
t (l.u.)

-0.22

-0.20

-0.18

-0.16

-0.14

-0.12

-0.10

(
m

π 
a π+

π+
 )

E
F

F

bm
l
 = 0.007

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
t (l.u.)

-0.24

-0.22

-0.20

-0.18

-0.16

(
m

π 
a π+

π+
 )

E
F

F

bm
l
 = 0.010

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
t (l.u.)

-0.40

-0.38

-0.36

-0.34

-0.32

-0.30

(
m

π 
a π+

π+
 )

E
F

F

bm
l
 = 0.020

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
t (l.u.)

-0.54

-0.52

-0.50

-0.48

-0.46

-0.44

-0.42

-0.40

(
m

π 
a π+

π+
 )

E
F

F

bm
l
 = 0.030

FIG. 1 (color online). The effective ���� scattering length
times the effective mass as a function of time slice arising from
smeared sinks. The solid black lines and shaded regions are fits
with 1� � statistical uncertainties tabulated in Table II. The
dashed lines are estimates of the systematic uncertainty (added
in quadrature to the statistical error) due to fitting, also given in
Table II.

2We denote quantities that are computed directly from the
correlation functions, such as m�, as lattice-physical quantities.
These are not extrapolated to the continuum, to infinite volume
or to the physical point.
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Clearly Eq. (16), which contains all O�m2
�b2� and O�b4�

lattice artifacts, reduces to the continuum expression for
the scattering length [2] in the QCD limit where ~�2

ju ! 0.3

It is worth noting that Eq. (16), and the subsequent ex-
pression for the three-flavor theory, become the partially
quenched formulas in the continuum limit. Therefore, they
are the correct extrapolation formulas to use in the case of
nondegenerate valence- and sea-quark masses, as is im-
plied by Eqs. (16) and (17). This modification of the
partially quenched formulas can be understood on more
general grounds, as mixed-action theories with chirally
symmetric valence fermions exhibit many universal fea-
tures [72].

With domain-wall fermion masses tuned to match the
staggered Goldstone pion [47,48], one finds (in lattice
units) ~�2

ju � b2�I � 0:0769�22� [15] on the coarse
MILC lattices with b� 0:125 fm (and L� 2:5 fm). The
various fit parameters relevant to the two-flavor extrapola-
tion are presented in Table II. For each ensemble we
determine m�a

I�2
�� , and then use the chiral extrapolation

formula to extract a value of the counterterm lI�2
�� �� �

f��, with a statistical uncertainty determined with the
jackknife procedure. The systematic uncertainties are
propagated through in quadrature. The results of the two-
flavor extrapolation to the continuum are shown in
Table III.

Fitting to lattice data at the lightest accessible values of
the quark masses will optimize the convergence of the
chiral expansion. While we only have four different quark
masses in our data set, with pion masses, m� � 290 MeV,
350 MeV, 490 MeV, and 590 MeV, fitting all four data sets
and then ‘‘pruning’’ the heaviest data set and refitting
provides a useful measure of the convergence of the chiral
expansion. Hence, in ‘‘fit A’’, we fit the lI�2

�� �� � f��’s
extracted from all four lattice ensembles (m007, m010,
m020, and m030) to a constant, while in ‘‘fit B,’’ we fit
the lI�2

�� �� � f��’s from the lightest three lattice ensem-
bles (m007, m010, and m020). In ‘‘fit C,’’ we fit the
lI�2
�� �� � f��’s from the lightest two lattice ensembles

(m007 and m010). Results are given in Table IV.
Taking the range of parameters spanned by fits A–C one

finds
 

lI�2
�� �� � f�� � 5:4� 1:4

m�a
I�2
�� � �0:043 41� 0:000 46:

(18)

TABLE II. The summary table of raw fit quantities required for the two-flavor analysis. The first uncertainties are statistical, the
second uncertainties are systematic uncertainties due to fitting, and the third uncertainty, when present, is a comprehensive systematic
uncertainty, as discussed in the text (b � 0 indicates quantities that have been extracted from fits to the lattice data but have not been
extrapolated to the continuum).

Quantity ml � 0:007 ml � 0:010 ml � 0:020 ml � 0:030

Fit range 8–12 8–13 7–13 9–12

m� (l.u.) 0.184 54(58)(51) 0.222 94(31)(09) 0.311 32(28)(21) 0.374 07(49)(12)
f� (l.u.) 0.092 73(29)(42) 0.095 97(16)(10) 0.101 79(12)(28) 0.107 59(28)(17)
m�=f� 1.990(11)(14) 2.3230(57)(30) 3.0585(49)(95) 3.4758(98)(60)

Fit range 11–15 9–15 10–15 12–17

�E�� (l.u.) 0.007 79(47)(14) 0.007 45(20)(07) 0.006 78(18)(20) 0.006 27(23)(10)
m�a

I�2
�� (b � 0) �0:1458�78��25��14� �0:2061�49��17��20� �0:3540�68��89��35� �0:465�14��06��05�

lI�2
�� (b � 0) 6.1(1.9)(0.7)(0.4) 5.23(68)(24)(28) 6.53(32)(42)(16 6.90(40)(18)(13)

��b � 0� �degrees� �1:71�14��04� �2:181�81��28� �3:01�09��12� �3:46�17��07�
jpj=m� 0.2032(60)(18) 0.1836(25)(09) 0.1480(17)(23) 0.1298(24)(10)

TABLE III. Summary table for fit quantities extrapolated to the continuum with two-flavor MA�PT. The first row corresponds to the
overall mixed-action correction to the scattering length [the piece proportional to ~�4

ju in Eq. (16)]. The uncertainties are discussed in
detail in Sec. IV. The second and third rows are the continuum limit scattering length and low-energy constant. The first uncertainties
are statistical and the second uncertainties are comprehensive systematic uncertainties (b! 0 indicates quantities that have been
extrapolated to the continuum using MA�PT).

Quantity ml � 0:007 ml � 0:010 ml � 0:020 ml � 0:030

��m�a
I�2
�� � 0.0033(02)(02)(32)(55) 0.0030(02)(04)(35)(22) 0.0023(01)(10)(36)(03) 0.0018(01)(16)(32)(01)

m�a
I�2
�� (b! 0) �0:1491�78��32� �0:2091�49��34� �0:356�07��11� �0:467�14��09�

lI�2
�� (b! 0) 5.3(1.9)(1.8) 4.83(68)(73) 6.42(32)(51) 6.85(40)(27)

3The counterterm lI�2
�� ��� is, of course, the same counterterm

that appears in continuum �-PT.
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In Fig. 2 we show the results of our calculation, along
with the lowest mass nf � 2 point from CP-PACS (not
included in our fit). We also show the tree-level prediction
and the results of our two-flavor fit described in this
section. The experimental point shown in Fig. 2 is not
included in the fit and extrapolation. It is interesting that
the lattice data indicates little deviation from the tree level
�PT curve. The significant deviation of the extrapolated
scattering length from the tree-level result is entirely a
consequence of fitting to MA�PT at the one-loop level.

C. Three-flavor mixed-action �-PT at one loop

An important check of the systematic uncertainties in-
volved in the chiral extrapolation is to perform the same
analysis using three-flavor MA�-PT [45,46] as both the
real world and our lattice calculation have three active light
flavors. In addition to the computations presented in
Table II, it is necessary to determine masses and decay
constants for the kaon and the �. We use the Gell-Mann-

Okubo mass relation among the mesons to determine the �
mass, which we do not compute in this lattice calculation
due the enormous computer resources (beyond what is
available to us) required to compute the disconnected
contributions. This procedure is consistent to the order in
the chiral expansion to which we are working.

The chiral expansion of the ���� scattering length in
three-flavor mixed-action �PT takes the form [46]:
 

m�a
I�2
�� �b � 0� � �

m2
�

8�f2
�

�
1�

m2
�

16�2f2
�

�
3 log

�
m2
�

�2

�

� 32�4��2LI�2
�� ��� �

1

9
log

�
~m2
X

�2

�

�
8

9
�

~�4
ju

6m4
�
�
X4

n�1

�~�2
ju

m2
�

�
n
F n

�
m2
�

~m2
X

���
;

(19)

where ~m2
X � m2

� � b
2�I, and

 

F 1�y� � �
2y

9�1� y�2

5�1� y� � �3� 2y� ln�y��;

F 2�y� �
2y

3�1� y�3

�1� y��1� 3y� � y�3� y� ln�y��;

F 3�y� �
y

9�1� y�4

�1� y��1� 7y� 12y2�

� 2y2�7� 2y� ln�y��;

F 4�y� � �
y2

54�1� y�5

�1� y��1� 8y� 17y2�

� 6y2�3� y� ln�y��:

(20)

In addition, it is useful to define the quantities:

 � � �
2�m4

�

�4�f��4

�
�

~�4
ju

6m4
�
�
X4

n�1

�~�2
ju

m2
�

�
n
F n

�
m2
�

~m2
X

��
(21)

and

 � � �
m2
�

8�f2
�

m2
�

16�2f2
�

1

9
log

�
~m2
X

f2
�

�
; (22)

whose numerical values for the various ensembles are
given in Table V.

For the three-flavor analysis, we follow the same proce-
dure of pruning the data as in the two-flavor analysis,
giving the results shown in Table VI. Taking the range of

TABLE IV. Results of the fits in two-flavor mixed-action �-PT. The values of m�a
I�2
��

correspond to the extrapolated values at the physical point. The first uncertainty is statistical
and the second is a comprehensive systematic uncertainty.

Fit lI�2
�� �� � f�� m�a

I�2
�� (extrapolated) �2=dof

A 6:43� 0:23� 0:26 �0:043 068� 0:000 076� 0:000 085 1.17
B 5:97� 0:29� 0:42 �0:043 218� 0:000 09� 0:000 14 0.965
C 4:89� 0:64� 0:68 �0:043 57� 0:000 21� 0:000 22 0.054

1 2 3 4

mπ / fπ

-0.5

-0.4

-0.3

-0.2

-0.1

0

m
π 

a ππI=
2

MA χ - PT  (One Loop)

 χ - PT  (Tree Level)

CP-PACS (2004)  (nf = 2)

E 865 (2003)

NPLQCD 

FIG. 2 (color online). m�a
I�2
�� vs m�=f� (ovals) with statisti-

cal (dark bars) and systematic (light bars) uncertainties. Also
shown are the experimental value from Ref. [6] (diamond) and
the lowest quark-mass result of the nf � 2 dynamical calcula-
tion of CP-PACS [43] (square). The shaded band corresponds to
a weighted fit to the lightest three data points (fit B) using the
one-loop MA�-PT formula in Eq. (16) (the shaded region
corresponds only to the statistical uncertainty). The solid line
is the tree-level �-PT result. The experimental data is not used in
the chiral extrapolation fits.
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parameters spanned by fits D–F one finds
 

32�4��LI�2
�� �� � f�� � 6:2� 1:2;

m�a
I�2
�� � �0:043 30� 0:000 42:

(23)

IV. SYSTEMATIC UNCERTAINTIES

This section describes the sources of systematic uncer-
tainty that need to be quantified.

A. Higher-order effects in mixed-action �-PT

We rely on the power counting associated with the chiral
expansion of the mixed-action �PT to estimate the size of
the lattice-spacing artifacts arising at O�m4

�b
2�. To be

conservative, we have estimated these corrections to be
of the general size

 O �m4
�b

2� �
2�m4

�

�4�f��4
b2�I

�4�f��2
: (24)

We treat these estimates as uncertainties in the predicted
NLO MA�PT corrections which can be determined from
Eqs. (16) and (19). We provide these predicted corrections
and their uncertainties in the form

 �MA�m�a
I�2
�� � � m�a

I�2
�� jMA �m�a

I�2
�� j�PT: (25)

The values of these corrections are shown in Tables VII and
VIII. The first uncertainty in these corrections is statistical
and is associated with the meson masses, decay constants,

TABLE VII. Corrections and uncertainties in m�aI�2
�� for nf � 2.

Quantity ml � 0:007 ml � 0:010 ml � 0:020 ml � 0:030

�MA�m�a
I�2
�� � 0.0033(02)(02) 0.0030(02)(04) 0.0023(01)(10) 0.0018(01)(16)

�FV�m�a
I�2
�� � �0:0055 �0:0022 �0:0003 �0:0001

�mres
�m�aI�2

�� � �0:0032 �0:0035 �0:0036 �0:0032

TABLE VI. Results of the NLO fits in three-flavor mixed-action �-PT. The values of m�a
I�2
�� correspond to the extrapolated values

at the physical point. The first uncertainty is statistical and the second is a comprehensive systematic uncertainty.

Fit 32�4��LI�2
�� �� � f�� m�aI�2

�� (extrapolated) �2=dof

D 7:09� 0:23� 0:23 �0:042 992� 0:000 076� 0:000 077 0.969
E 6:69� 0:29� 0:39 �0:043 12� 0:000 09� 0:000 13 0.803
F 5:75� 0:63� 0:64 �0:043 43� 0:000 21� 0:000 21 0.073

TABLE V. The summary table of quantities required for the three-flavor analysis. A ‘‘ * ’’ denotes that the Gell-Mann-Okubo mass
relation among the mesons has been used to determine this quantity. The first uncertainties are statistical and the second are systematic
(that are discussed in the text).

Quantity ml � 0:007 ml � 0:010 ml � 0:020 ml � 0:030

Fit range 8–14 9–14 9–13 9–13

mK (l.u.) 0.368 39(40)(29) 0.377 97(30)(03) 0.405 40(31)(32) 0.4297 6(41)(20)
m� (l.u.)* 0.411 82(43)(36) 0.417 03(32)(04) 0.432 24(33)(46) 0.446 88(38)(26)
m�=f�* 4.447(19)(20) 4.3517(96)(43) 4.246(06)(12) 4.154(11)(05)
~mX=f�* 5.408(23)(24) 5.271(11)(05) 5.087(07)(14) 4.927(13)(06)

�* �0:0015�01� �0:0027�00� �0:0079�01� �0:0130�03�
�* 0.0011(01) 0.0003(01) �0:0012�01� �0:0018�01�

m�a
I�2
�� (b! 0)* �0:1470�78��70� �0:2065�49��50� �0:353�07��10� �0:462�14��08�

32�4��2LI�2
�� * 6.4(1.9)(1.7) 5.66(67)(68) 7.07(32)(48) 7.44(40)(21)

TABLE VIII. Corrections and uncertainties in m�a
I�2
�� for nf � 2� 1.

Quantity ml � 0:007 ml � 0:010 ml � 0:020 ml � 0:030

�MA�m�a
I�2
�� � 0.0012(01)(02) 0.0004(01)(04) �0:0015�03��10� �0:0027�05��16�

�FV�m�a
I�2
�� � �0:0024 �0:0005 �0:0001 �0:000 06

�mres
�m�a

I�2
�� � �0:0032 �0:0035 �0:0036 �0:0032
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and the taste-identity mass splitting, b2�I. The second
uncertainty is the power counting estimate of the higher-
order corrections of O�m4

�b2� as estimated in Eq. (24). The
calculable corrections to m�aI�2

�� at O�m2
�b2; b4� are 2.3%,

1.5%, 0.65%, and 0.39% effects for the 007, 010, 020, and
030 ensembles, respectively, from which we conclude that
the O�m4

�b
2� contributions are significantly less than

�1%.

B. Finite-volume effects in mixed-action �-PT

The universal relation between the two-particle energy
levels in a finite volume and their infinite-volume scatter-
ing parameters receives nonuniversal corrections which are
exponentially suppressed by the lattice size and dominated
by the lightest particle in the spectrum. These scale generi-
cally as e�m�L [73,74]. In Ref. [75], the leading exponen-
tial volume corrections to p cot��p� were determined in
the I � 2�� scattering channel in �PT. However, in order
to determine the leading finite-volume corrections to this
mixed-action calculation, hairpin diagrams present in the
mixed-action theory must also be included. For the I � 2
�� system, there are additional hairpin diagrams present
in the t and u channel scattering diagrams [45]. The finite-
volume corrections from these diagrams are larger than
those in continuum �PT, but are opposite in sign and
therefore the overall magnitude of the correction is similar
to that given in Ref. [75]. We note that as these con-
tributions vanish in the continuum limit, they are actually
finite-volume finite-lattice-spacing corrections, and not
just finite-volume corrections, and hence scale as
b2 exp��m�L� at small lattice spacing.

As with the mixed-action lattice-spacing corrections, we
denote these finite-volume modifications as

 �FV�m�a
I�2
�� � � m�a

I�2
�� jFV �m�a

I�2
�� j1V; (26)

and they are shown in Tables VII and VIII. However, one
should take note that the effective-range contribution to
p cot��p�, which behaves as a power law in the lattice size
(and therefore is parametrically enhanced over the expo-
nential corrections) is not included in the extraction of the
scattering lengths. While the exponential modifications are
numerically larger than our estimate of the effective-range
contributions at the light pion masses (see below), the
values of �FV�m�a

I�2
�� � shown in Tables VII and VIII are

used as estimates of the uncertainties due to higher-order
finite-volume effects.

C. Residual chiral symmetry breaking

The mixed-action formulas describing �� scattering
determined in Refs. [45,46] have assumed that the valence
fermions have exact chiral symmetry, up to the quark-mass
corrections. The domain-wall propagators used in this
work have a finite fifth-dimensional extent and therefore
residual chiral symmetry breaking arising from the overlap
of the left- and right-handed quark fields bound to the

opposite domain walls. Because of the nature of this resid-
ual chiral symmetry breaking in the domain-wall action,
the leading contributions can be parameterized as an addi-
tive shift to the valence-quark masses [60,62],

 mdwf
l ! mdwf

l �mres: (27)

A full treatment of these effects involves three new spurion
fields in the effective field theory [76] but this is not
necessary for estimating the size of these contributions to
the �� scattering lengths. By expressing the calculated
scattering lengths and extrapolation formulas in terms of
the lattice-physical meson masses and decay constants, the
dominant contributions from residual chiral symmetry
breaking are included, leaving corrections at higher orders
in the chiral expansion. There will be new operators similar
to the Gasser-Leutwyler operators [77] in the chiral
Lagrangian, for example
 

�L � 2B0
�L4 str�@��@��y� str�mres�

y ��myres�

� 8B2
0

�L6 str�mq�y ��myq � str�mres�
y ��myres�

� . . . (28)

Naive dimensional analysis [78] can be used to estimate
the size of the corrections due to these new operators,
which in the case of the I � 2 �� system are given by

 �mres
�m�a

I�2
�� � �

8�m4
�

�4�f��4
mres

ml
: (29)

There will be additional operators with two insertions of
mres in the place of mq, but these are & 20% of the
uncertainty already estimated for the residual chiral sym-
metry breaking. These uncertainties are denoted by

 �mres
�m�a

I�2
�� � � m�a

I�2
�� jmres

�m�a
I�2
�� jmres�0; (30)

and are shown in Tables VII and VIII.

D. Two loops effects

The two-loop expression for the scattering length [4,9] is
given, in the continuum limit of QCD, by
 

m�a
I�2
�� ��

m2
�

8�f2
�

�
1�

m2
�

16�2f2
�

�
3 log

m2
�

�2 � 1� lI�2
�� ���

�

�
m4
�

64�4f4
�

�
31

6

�
log
m2
�

�2

�
2
� l�2������ log

m2
�

�2

� l�3������
��
; (31)

where l�2��� and l�3��� are linear combinations of undeter-
mined constants that appear in the O�p4� and O�p6� chiral
Lagrangians [2,4]. Fitting all four data points allows for an
extraction of the three counterterms with �2=dof � 0:26.
From the 68% confidence-interval error ellipsoid we find
an extrapolated value of
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 m�aI�2
�� � �0:0442� 0:0030: (32)

While it is gratifying to have a determination of the scat-
tering length at two-loop level that is consistent with the
one-loop result, there are several caveats: (i) the two-loop
expression in MA�-PT does not yet exist and therefore the
determination in Eq. (31) contains lattice-spacing artifacts
at lower orders in the chiral expansion than in the one-loop
result; (ii) This value is clearly strongly dependent on the
heaviest quark mass, which is, at best, at the boundary of
the range of validity of the chiral expansion. A reliable
two-loop determination will have to await further lattice
data at quark masses closer to the chiral limit than we
currently possess.

E. Range corrections

It is straightforward to show that the range corrections
enter at O�L�6� in Eq. (11). Assuming that the effective
range is of order the scattering length (the scattering length
is of natural size), we expect a fractional uncertainty of
�m�a�2p2=2m2

� due to the omission of range corrections.
For the ensembles that we consider, this translates into an
0.5% uncertainty in m�a

I�2
�� . Allowing for the effective

range to exceed its natural value by a factor of 2, we assign
a 1% systematic uncertainty tom�a

I�2
�� determined on each

ensemble.

F. Isospin violation

The calculation we have performed assumes exact iso-
spin symmetry, as do the extrapolation formulas we have
used to analyze the results. The conventional discussion
of the scattering length is in the unphysical theory with
e � 0 and mu � md � m, with m� � m�� �
139:570 18� 0:000 35 MeV and f� � f�� � 130:7�
0:14� 0:37 MeV. Hence m��=f�� � 1:0679� 0:0032,
where the statistical and systematic uncertainties have
been combined in quadrature. We extrapolate the results
of our lattice calculations to this value.

The leading contribution to isospin breaking in ��
scattering is due to the electromagnetic interaction, and
this has been studied extensively.4 Such contributions must
be removed from the experimentally determined scattering
amplitude in order to make a comparison with the strong-
interaction calculations. Isospin breaking due to the differ-
ence in mass of the light quarks occurs at next-to-leading
order in the chiral expansion, and is expected to be small,
as is its contribution to m2

�� �m
2
�0 .

Isospin violation does not provide a limitation on the
utility of present-day lattice QCD calculations of ��
scattering lengths. Therefore, it is worth investing the

effort and computational resources necessary to further
reduce the systematic and statistical uncertainties in such
calculations. Further, isospin breaking from both the
quark-mass differences and from electromagnetic interac-
tions may be incorporated into lattice QCD calculations at
some point in the future.

V. DISCUSSION

We have presented results of a lattice QCD calculation
of the I � 2 �� scattering length performed with domain-
wall valence quarks on asqtad-improved MILC configura-
tions with 2� 1 dynamical staggered quarks. The calcu-
lations were performed at a single lattice spacing of
b� 0:125 fm and at a single lattice spatial size of L�
2:5 fm with four values of the light-quark masses, corre-
sponding to pion masses of m� � 290, 350, 490, and
590 MeV. High statistics were generated by computing
up to 24 propagators per MILC configuration at spatially
and temporally displaced sources. We used one-loop
MA�-PT with two and three flavors of light quarks to
perform the chiral and continuum extrapolations. Our pre-
diction for the physical value of the I � 2 �� scattering
length is m�aI�2

�� � �0:043 30� 0:000 42, which agrees
within uncertainties with the (nonlattice) determination of
CGL [9], but we emphasize once again that our result rests
on the assumption that the fourth-root trick recovers the
correct continuum limit of QCD. In Table IX and Fig. 3 we
offer a comparison of our prediction with other determi-
nations. What has enabled such an improvement in preci-
sion over our previous result on the coarse MILC lattices is
the recent understanding of the lattice-spacing artifacts
accomplished with mixed-action chiral perturbation
theory.

TABLE IX. A compilation of the various calculations and
predictions for the I � 2 scattering length. The prediction
made in this paper is labeled NPLQCD (2007). Also included
are the experimental value from Ref. [6] [E 865 (2003)], the
previous determination by NPLQCD [44] [NPLQCD (2005)],
two indirect lattice results from MILC [15,16] (the stars on the
MILC results indicate that these are not lattice calculations of the
I � 2 �� scattering length but rather a hybrid prediction which
uses MILC’s determination of various low-energy constants
together with the Roy equations), and the Roy equation deter-
mination of Ref. [9] [CGL (2001)].

m�aI�2
��

�PT (tree level) �0:04438
NPLQCD (2007) �0:043 30� 0:000 42
E 865 (2003) �0:0454� 0:0031� 0:0010� 0:0008
NPLQCD (2005) �0:0426� 0:0006� 0:0003� 0:0018
MILC (2006)* �0:0432� 0:0006
MILC (2004)* �0:0433� 0:0009
CGL (2001) �0:0444� 0:0010

4For discussions of the contributions of virtual photons to ��
scattering see Refs. [79–82], and for very recent work on the
electromagnetic contributions to the extraction of �� scattering
lengths from kaon decays see Refs. [83,84].
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It will be quite useful to have results at another lattice
spacing and at another lattice volume in order to test the
systematic error analysis presented in this paper. One
somewhat surprising result of our analysis is that one of
the dominant sources of systematic uncertainty in our
calculation is due to residual chiral symmetry breaking in

the domain-wall valence quarks for the lattice parameters
we have chosen. Clearly this systematic can be reduced by
improving our choice of domain-wall parameters.

Lattice QCD is currently in a precision age insofar as
single-particle properties are concerned. The precise pre-
diction for the intrinsic two-particle property presented
here is a remarkable demonstration of the power of com-
bining a lattice QCD calculation with the model-
independent constraints of chiral perturbation theory.
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