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I. INTRODUCTION

The equation of state (EOS) of QCD is of special interest
to the interpretation of data from heavy-ion collision ex-
periments and to the development of nuclear theory and
cosmology. The EOS at zero chemical potential (� � 0)
has been extensively studied on the lattice. However, to
approximate most closely the conditions of heavy-ion
collision experiments (for example RHIC has ��
15 MeV [1]) or of the interior of dense stars, the inclusion
of nonzero chemical potential is necessary. Unfortunately,
as is well known, inclusion of a nonzero chemical potential
makes the fermion determinant in numerical simulations
complex and straightforward Monte Carlo simulation not
applicable. Several methods have been developed to over-
come or circumvent this problem. They include the re-
weighting techniques [2,3], simulations with an imaginary
chemical potential combined with analytical continuation
[4,5] or canonical ensemble treatment [6], and lastly, the
Taylor expansion method [7,8], which is employed here. In
this method one Taylor expands the quantities needed for
the computation of the EOS around the point � � 0 where
standard Monte Carlo simulations are possible. The expan-
sion parameter is the ratio �=T, where T is the tempera-
ture. To ensure fast convergence of the Taylor series, the
expansion parameter should be sufficiently small.

Numerical calculations show satisfactory convergence for
�=T & 1 (see reviews [9,10]).

In our simulations we use 2� 1 flavors of improved
staggered fermions. In such simulations where the number
of flavors is not equal to a multiple of four, the so-called
‘‘fourth root trick’’ is employed to reduce the number of
‘‘tastes.’’ While this trick is still somewhat controversial,
there is a growing body of numerical [11] and analytic [12]
evidence that it leads to the correct continuum limit. For
simulations at nonzero chemical potential the problems of
rooting are much more severe [13]. However, the Taylor
expansion method is not directly affected by this additional
problem with rooting since the coefficients in the Taylor
series are calculated in the theory with zero chemical
potential. The Taylor expansion method is generally con-
sidered reliable in regions where the studied physics quan-
tities are analytic.

The Taylor expansion method has been used to study the
phase structure and the EOS of two-flavor QCD [7,14–17].
Our work improves on the previous studies by the addition
of the strange quark to the sea. Our calculations are per-
formed on 2� 1 flavor ensembles generated with the R
algorithm [18] and using the asqtad quark action [19] and a
one-loop Symanzik improved gauge action [20]. These
improved actions have small discretization errors of
O��sa2; a4� and O��2

sa2; a4�, respectively. This is very
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important since we study the Nt � 4 case, where the lattice
spacing [a � 1=�TNt�] is quite large, especially at low
temperatures. Our ensembles lie along a trajectory of
constant physics for which the ratio of the heavy quark
mass and the light quark mass is mud=ms � 0:1, and the
heavy quark mass itself is tuned approximately to the
physical value of the strange quark mass. The determina-
tion of the Taylor expansion coefficients, other than the
zeroth order ones computed already previously, is neces-
sary only on the finite-temperature ensembles (for our
study Nt � 4). No zero-temperature subtractions are
needed for them. We have determined the contributions
to the energy density, pressure, and interaction measure
due to the presence of a nonzero chemical potential. We
also present results for the quark susceptibilities and den-
sities. In addition, we have calculated the isentropic EOS,
which is highly relevant for the heavy-ion collision experi-
ments, where, after thermalization, the created matter is
supposed to expand without further increase in entropy or
change in the baryon number. All the results are obtained
with the strange quark density fixed to ns � 0 regardless of
temperature, appropriate for the experimental conditions.
This requires the tuning of the strange quark chemical
potential along the trajectory of constant physics.

II. THE TAYLOR EXPANSION METHOD

In this section we give a brief description of the Taylor
expansion method for the thermodynamic quantities we
study and as applied to the asqtad fermion formulation.

A. Calculating the pressure

The asqtad quark matrix for a given flavor with nonzero
chemical potential is:
 

Ml;h � Mspatial
l;h � 1

2�0�x��U
�F�
0 �x�e

�l;h�x�0̂;y

�U�F�y0 �x� 0̂�e��l;h�x;y�0̂ �U
�L�
0 �x�e

3�l;h�x�30̂;y

�U�L�y0 �x� 30̂�e�3�l;h�x;y�30̂	; (1)

where �l � �ud and �h � �s are the quark chemical
potentials in lattice units for the light (u and d) quarks
and the heavy (strange s) quark, respectively. In the above

 Mspatial
l;h � aml;h�x;y �

X3

k�1

1

2
�k�x��U

�F�
k �x��x�k̂;y

�U�F�yk �x� k̂��x;y�k̂ �U
�L�
k �x��x�3k̂;y

�U�L�yk �x� 3k̂��x;y�3k̂	; (2)

with ml;h the light and strange quark masses. The super-
scripts F and L on the links U� denote the type of links,
‘‘fat’’ and ‘‘long’’; appropriate weights and factors of the
tadpole strength u0 are included in U�F�� and U�L�� . The
partition function based on the asqtad quark matrix is

 Z �
Z

DUe�nl=4� lndetMle�nh=4� lndetMhe�Sg ; (3)

where nl � 2 is the number of light quarks and nh � 1 is
the number of heavy quarks. The pressure p can be ob-
tained from the identity

 

p

T4 �
lnZ

T3V
; (4)

where T is the temperature and V the spatial volume. It can
be Taylor expanded in the following manner

 

p

T4 �
X1
n;m�0

cnm�T�
�

��l

T

�
n
�

��h

T

�
m
; (5)

where ��l;h is the nonzero chemical potential in physical
units. Because of the CP symmetry of the partition func-
tion, only the terms with n�m even are nonzero. The
expansion coefficients are defined by

 cnm�T� �
1

n!

1

m!

N3
t

N3
s

@n�m lnZ

@��lNt�
n@��hNt�

m

���������l;h�0
; (6)

with �l;h � a ��l;h and Ns and Nt the spatial and temporal
extents of the lattice. All coefficients need to be calculated
on the finite-temperature ensembles only, except for
c00�T�. The latter is the pressure divided by T4 at �l;h �
0, which needs a zero-temperature subtraction. It should be
calculated by other means, such as the integral method,
which we have already done in [21]. The cnm�T� coeffi-
cients are linear combinations of observables Anm and are
given in Appendix B. The Anm observables are obtainable
as linear combinations of various products of the operators

 Ln �
nl
4

@n lndetMl

@�n
l

; (7)

 Hm �
nh
4

@m lndetMh

@�m
h

; (8)

evaluated at �l;h � 0. For the definitions and explicit
forms of the Anm see Appendix B.

Figure 1 compares the cutoff effects due to the finite
temporal extent Nt in the free theory case for the coeffi-
cients c00, c20, c40, and c60 for three different staggered
fermion actions: the standard, the Naik (asqtad), and the p4
action. The results for the first three coefficients are nor-
malized to their respective Stefan-Boltzmann (SB) values.
The SB value for c60 is zero (and the same holds for c06). In
the SB limit, the c0n coefficients are, of course, equal to
half of the SB values of cn0 for 0< n 
 4. All other
coefficients with n, m � 0 are zero in the SB limit. In
the interacting case, the coefficients which are zero in the
SB limit can acquire nonzero values. Figure 1 shows that
the asqtad action has better scaling properties than the
standard (unimproved) staggered action at Nt � 4, but it
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is clear that a study at larger Nt is important for further
reduction of the discretization errors.

B. Calculating the interaction measure and energy
density

The interaction measure I can be Taylor expanded in a
manner similar to the pressure

 

I

T4
� �

N3
t

N3
s

d lnZ

d lna
�
X1
n;m

bnm�T�
�

��l

T

�
n
�

��h

T

�
m
; (9)

where again only terms even in n�m are nonzero and

 bnm�T� � �
1

n!m!

N3
t

N3
s

@n�m

@��lNt�n@��hNt�m

���������l;h�0

�
d lnZ

d lna

�
:

(10)

The derivative with respect to lna is taken along a trajec-
tory of constant physics. The fermionic part of d lnZ

d lna , con-
sidering the form of the asqtad action, is

 

� dSf
d lna

�
�

X
f�h;l

nf
4

�d�mfa�

d lna
trhM�1

f i

�
du0

d lna
tr
�
M�1
f

dMf

du0

��
: (11)

No volume normalization of the various traces is assumed
in the above. The gauge part, taking into account the
explicit form of the Symanzik gauge action, is

 

�
�dSg
d lna

�
� hGi �

�
6
d�
d lna

P� 12
d�rt

d lna
R� 16

d�pg

d lna
C
�
;

(12)

where P, R, and C are the appropriate sums of the pla-
quette, rectangle, and parallelogram terms, respectively
(here they are not normalized to the volume). Thus the
bnm�T� coefficients become

 

bnm�T� � �
1

n!m!

N3
t

N3
s

X
f�l;h

nf
4

�d�mfa�

d lna

���������l;h�0

� tr
@n�mhM�1

f i

@��lNt�n@��hNt�m

���������l;h�0

�
du0

d lna

���������l;h�0
tr

@n�mhM�1
f

dMf

du0
i

@��lNt�n@��hNt�m

���������l;h�0

�

�
1

n!m!

N3
t

N3
s

@n�mhGi
@��lNt�n@��hNt�m

���������l;h�0
: (13)

The explicit forms of the bnm�T� coefficients are more
complex than those for cnm�T� and we save them for
Appendix C. The SB limit of all bnm coefficients is zero.
In the presence of interactions their values can become
different from zero. For the computation of the bnm�T�
coefficients, in addition to the derivatives of the fermion
matrix and the gauge action with respect to the chemical
potentials, we have to know the derivatives of the action
parameters with respect to lna along the trajectory of
constant physics. The latter have been determined in our
previous work on the EOS at zero chemical potential [21],
along with the coefficient b00�T�, which is the interaction
measure divided by T4 in that case. The coefficients cnm�T�
can be obtained from bnm�T� by integration along the
trajectory of constant physics. This can serve as a consis-
tency check of the calculation.

The energy density " is simply obtained from the linear
combination

 

"

T4 �
I � 3p

T4 : (14)

C. Quark number densities and susceptibilities

The Taylor expansion for the quark number densities can
be obtained from that for the pressure. For example, the
light quark number density, nud, is

 

nud
T3 �

@
@ ��l=T

�
lnZ

T3V

�
�

X1
n�1;m�0

ncnm�T�
�

��l

T

�
n�1

�
��h

T

�
m
;

(15)

FIG. 1 (color online). The expansion coefficients c00, c20, c40, and c60 for the pressure in the free theory case as a function of Nt.
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and the heavy one, ns, is

 

ns
T3 �

@
@ ��h=T

�
lnZ

T3V

�
�

X1
n�0;m�1

mcnm�T�
�

��l

T

�
n
�

��h

T

�
m�1

:

(16)

Similarly, the quark number susceptibilities are derivatives
of the quark number densities with respect to the chemical
potentials. Thus, the diagonal light-light quark susceptibil-
ity becomes

 

�uu
T2 �

@
@ ��l=T

�
nud
T3

�

�
X1

n�2;m�0

n�n� 1�cnm�T�
�

��l

T

�
n�2

�
��h

T

�
m
; (17)

and the heavy-heavy diagonal one is

 

�ss
T2 �

@
@ ��h=T

�
ns
T3

�

�
X1

n�0;m�2

m�m� 1�cnm�T�
�

��l

T

�
n
�

��h

T

�
m�2

: (18)

Lastly, the mixed quark susceptibility has the form

 

�us
T2 �

@
@ ��h=T

�
nud
T3

�

�
X1

n�1;m�1

nmcnm�T�
�

��l

T

�
n�1

�
��h

T

�
m�1

: (19)

III. SIMULATIONS

The asqtad-Symanzik gauge ensembles we use in this
study have spatial volumes of 123 or 163 and Nt � 4, and
are generated using the R algorithm. They are a subset of
the ensembles in our EOS calculation at zero chemical
potential [21]. The ensembles lie on an approximate tra-
jectory of constant physics for whichmud � 0:1ms, andms
is tuned to the physical strange quark mass within 20%.
Along the trajectory, the � to � mass ratio is m�=m� �

0:3. Table 1 in [21] contains the run parameters and tra-
jectory numbers of the ensembles used here. They are the
ones that have the gauge coupling values of � � 6:0,
6.075, 6.1, 6.125, 6.175, 6.2, 6.225, 6.25, 6.275, 6.3, 6.35,
6.6, and 7.08. The last column of that table shows the lattice
scale. For explanation of the scale setting and other simu-
lation details we refer the reader to Sec. 3 of [21]. The
observables that need to be measured along the trajectory
of constant physics in order to construct the Taylor coef-
ficients in the expansion for the pressure are Ln and Hm
defined by Eqs. (7) and (8). For the interaction measure
determination the following observables have to be calcu-
lated in addition:

 ln �
@n trM�1

l

@�n
l

; hm �
@m trM�1

h

@�m
h

; (20)

 	n �
@n tr�M�1

l
dMh
du0
�

@�n
l

; �m �
@m tr�M�1

h
dMh
du0
�

@�m
h

; (21)

and the gluonic observables P, R, andC. In Appendix C we
show how they enter in the coefficients bnm�T�. To sixth
order in the Taylor expansion, the number of fermionic
observables (Ln, Hm, ln, hm, 	n, �m) that need to be
determined is 40. We calculate them stochastically em-
ploying random Gaussian sources. In the region outside
the phase transition or crossover we use 100 sources and
double that number inside the transition/crossover region.
This ensures that we work with statistical errors dominated
by the gauge fluctuations and not by the ones coming from
the stochastic estimators.

The ensembles we are working with have been gener-
ated using the inexact R algorithm which introduces finite
step-size errors. In our previous study of these ensembles
[21] we measured the step-size error in both gluonic and
fermionic observables. The error was considerably less
than 1% in the relevant gluonic and fermionic observables,
measured on the high temperature ensembles. For the EOS
at zero chemical potential it is necessary to subtract the
high temperature and zero-temperature values. In the dif-
ference the effect of the step-size error becomes somewhat
more pronounced. The contributions to the EOS due to
nonzero chemical potential, computed here, do not require
zero-temperature subtractions. Thus, based on the obser-
vations noted above, we expect any step-size errors in these
contributions to be considerably smaller than our statistical
errors.

IV. NUMERICAL RESULTS

Figure 2 shows our results for the temperature depen-
dence of the cn0�T� and the c0m�T� coefficients. They all
show rapid changes in the phase transition region and
relatively quickly reach the Stefan-Boltzmann (SB) ideal
gas values around 1:5Tc–2Tc.

Unsurprisingly, the errors of the higher order coeffi-
cients are larger than the ones for the lowest order coef-
ficients. They are worst for the sixth order coefficients
c60�T� and c06�T�. Although the magnitude of the coeffi-
cients decreases with each order in the Taylor expansion,
for ��=T � 1 the sixth order terms contribute a great deal of
noise in the thermodynamic quantities at the present level
of statistics. Very similar conclusions can be made about
the general behavior of the rest of the pressure coefficients,
cnm�T� with both n;m � 0, shown in Fig. 3.

By comparison with the cn0�T� and c0m�T� coefficients,
they are smaller and so are their contributions to the
various thermodynamic quantities.
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Figures 4 and 5 show the coefficients in the Taylor
expansion of the interaction measure.

Here again we see the rapid changes/large fluctuations
around the transition region, the fast approach to the SB
limit at high temperatures and the increase in magnitude of
the errors and the decrease in magnitude of the coefficients
with each successive order. In principle, each cnm�T� co-
efficient could be obtained from bnm�T� by integrating the
latter along the trajectory of constant physics. For example,
in Fig. 6 the c20�T� coefficient obtained directly using

Eq. (5) is compared to its value calculated by integrating
b20�T�. The comparison shows that within the statistical
errors the two results are the same.

Similar calculations were done for the rest of the coef-
ficients and the consistency between the results from the
two methods was satisfactory considering the large errors
on the values obtained by integration.

Having determined the cnm�T� and bnm�T� coefficients
we can now calculate the EOS to sixth order in the chemi-
cal potentials. We also determine the quark densities and

FIG. 2 (color online). Taylor expansion coefficients cn0�T� and c0m�T� for p=T4.

FIG. 3 (color online). Taylor expansion coefficients cnm�T� with n;m � 0 for p=T4.
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various susceptibilities to fifth and fourth order, respec-
tively. Since we want to work at strange quark density ns �
0 to approximate the experimental conditions, we tuned
��h=T along the trajectory of constant physics in order to

achieve that condition within the statistical error. Figure 7
(left) shows, for several values of ��l=T, that with ��h=T �
0 a slightly negative ns is generated due to the nonzero
cn1�T� terms. After the introduction of an appropriate non-
zero ��h=T for each studied temperature and ��l=T, Fig. 7
(right) shows our approximation of the condition ns � 0.

The effect of the tuning on thermodynamic quantities,
other than ns=T3 itself, is small, because of the smallness
of the ‘‘mixed expansion coefficients’’ cnm�T� and bnm�T�
for n;m � 0. For our level of statistics the typical effect is
within the statistical errors on the studied quantities.

Figures 8 and 9 show the corrections to the pressure,
interaction measure, and energy density due to the pres-
ence of a nonzero ��l=T. The correction to the pressure, for
example, is the difference �p=T4 � p��l;h � 0�=T4 �

p��l;h � 0�=T4, which is Eq. (5) minus the zeroth order

FIG. 4 (color online). Taylor expansion coefficients bn0�T� and b0m�T� for I=T4.

FIG. 5 (color online). Taylor expansion coefficients bnm�T� with n;m � 0 for I=T4.
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term c00�T� � p��l;h � 0�=T4. Similarly for the interac-
tion measure and energy density, the corrections are
�I=T4 � I��l;h � 0�=T4 � I��l;h � 0�=T4 and �"=T4 �
"��l;h � 0�=T4 � "��l;h � 0�=T4, which means again
that the zeroth order terms are subtracted from the Taylor
expansions for these quantities. Qualitatively, our EOS
results are similar to the previous two-flavor studies [16].
The corrections to the thermodynamic quantities grow with
increasing ��l=T and so do the statistical errors. The latter
is due to the increasing contributions from higher order
terms, which are noisier than the lowest order terms.
Figures 10 and 11 show that similar observations are true

for the rest of the studied quantities: the light quark density
and the light-light, heavy-heavy, and light-heavy quark
susceptibilities. Of these, the weakest dependence on
��l=T is shown by the heavy-heavy susceptibility �ss. A

clear peak structure at the accessible ��l=T in the flavor
diagonal light-light quark susceptibility �uu would be a
sign of reaching the critical end point in the ��� T plane.
Our result does not show such a peak. Considering the
significant errors for larger values of ��l=T, it is difficult to
say whether such a structure could be revealed with higher
statistics or if the critical ��l=T has not been reached here.
In any case, reducing the statistical errors and probably
adding higher orders in the Taylor expansion would be the
way to resolve that important problem.

FIG. 7 (color online). The strange quark density ns=T3: left—results with ��h=T � 0; right—tuned results. Different line styles
denote different values of ��l=T.

FIG. 6 (color online). Comparison between two different
methods for calculating c20�T�. The direct method uses Eq. (5)
and the other method integrates b20�T� along the trajectory of
constant physics. The integral method produces significantly
larger errors than the direct one.

FIG. 8 (color online). Corrections to the pressure (left) and interaction measure (right) at several values of ��l=T. ��h=T is tuned such
that ns � 0 along the trajectory.

FIG. 9 (color online). Corrections to the energy density at
several values of ��l=T. ��h=T is tuned such that ns � 0 along
the trajectory.
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The isentropic EOS

The AGS, SPS, and RHIC experiments produce matter
which is expected to expand isentropically, i.e., the entropy
density s and baryon number nB � nud=3 both remain
unchanged during the expansion. This implies that s=nB
remains constant. For the experiments mentioned, s=nB is
approximately 30, 45, and 300 [17], respectively. In this
subsection we present our results for the EOS and other
thermodynamic quantities as calculated at nonzero chemi-
cal potential on trajectories in the ��� T space with s=nB
fixed at the values relevant to these experiments. Figure 12
shows the trajectories in the (�l,�h, T) space, obtained by
numerically solving the system

 

s
nB
��l;�h� � C; (22)

 

ns
T3 ��l;�h� � 0; (23)

with C � 30, 45, 300 for temperatures at which we have
simulations. The tuning of the parameters �l and �h is
done until the deviations from C and zero are no bigger
than the statistical errors of s=nB and ns=T3, respectively.
After mapping the isentropic trajectories we use them to
calculate the EOS, the results for which are shown in
Figs. 13 and 14. For comparison, we also include the
EOS result with s=nB � 1, which is the zero chemical

FIG. 11 (color online). Heavy-heavy (left) and heavy-light (right) susceptibilities at several values of ��l=T. ��h=T is tuned such that
ns � 0 along the trajectory.

FIG. 10 (color online). Light quark density (left) and the light-light susceptibility (right) at several values of ��l=T. ��h=T is tuned
such that ns � 0 along the trajectory.

FIG. 12 (color online). The isentropic trajectories for different s=nB.
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potential case (�l � �h � 0). From the EOS results we
conclude that in the studied range of s=nB the differences
between the isentropic trajectories are not very large, with
the interaction measure least affected by the change in
s=nB. Our results are again qualitatively very similar to
the two-flavor isentropic EOS study from [17]. The isen-
tropic results for nud, �uu, �us, and �ss are shown in
Figs. 15 and 16.

It is interesting to note that �uu does not develop a peak
structure on any of the isentropic trajectories. This means
that all of the experiments work in the ranges of s=nB far
from the critical end point, if such an end point exists at all
for physical quark masses [22]. The light quark density nud
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FIG. 14 (color online). Isentropic versions of the energy den-
sity dependence on temperature.
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different finite values s=bB as described in the text. The case of zero chemical potential (s=nB � 1) is also shown. These are the full
results for the quantities, not only the correction due to the nonzero chemical potential.
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FIG. 15 (color online). Light quark density (left) and light-light susceptibility (right) for different s=nB.
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FIG. 16 (color online). Light-heavy (left) and heavy-heavy (right) susceptibilities for different s=nB.
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looks most affected by the value of s=nB, and �ss is practi-
cally independent of it.

V. CONCLUSIONS

We have calculated the QCD equation of state for 2� 1
flavors along a trajectory of constant physics and at non-
zero chemical potential using the Taylor expansion method
to sixth order in the chemical potential. The Taylor expan-
sion coefficients for the pressure and the interaction mea-
sure were determined directly by measuring a set of
fermionic and gluonic observables on the finite-
temperature ensembles along the trajectory. We used
Gaussian random sources in the calculation of the 40
fermionic observables. The higher the order of the coef-
ficients the noisier they proved to be. Although the higher
order coefficients have smaller magnitudes, for increasing
values of the chemical potential they contribute signifi-
cantly to the statistical errors. We tuned the heavy quark
chemical potential at each temperature studied in order to
keep a vanishing strange quark density and have deter-
mined a number of thermodynamic quantities at different
values of the light quark chemical potential for which the
ratio ��l=T & 1. Our corrections to the EOS due to the
nonzero chemical potential grow with the increasing val-
ues of ��l=T. However, not all thermodynamic quantities
are equally affected by the addition of a chemical potential.
Indeed, the heavy-heavy quark susceptibility is practically
independent of it.

We also have determined the isentropic versions of the
EOS, the light quark densities, and quark number suscep-
tibilities, which are supposedly most relevant for the cur-
rent heavy-ion collision experiments. We found that the
EOS is not strongly affected by changes in the ratio s=nB,
which is in agreement with previous two-flavor results
[17].
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APPENDIX A: PROPERTIES OF THE QUARK
MATRIX DERIVATIVES

We use the following identities for the fermion matrix
and its derivatives:

 My��� � 
5M����
5; and

@nMy

@�n ��� � ��1�n
5
@nM
@�n ����
5:

(A1)

Then, at � � 0

 tr
�
M�1 @

n1M
@�n1

M�1 @
n2M
@�n2

M�1 � � �

�


� ��1�n1�n2���� tr
�
M�1 @

n1M
@�n1

M�1 @
n2M
@�n2

M�1 � � �

�
:

(A2)

Because the terms in the nth derivative satisfy n1 � n2 �
� � � � n, we obtain

 

�
@n lndetM
@�n

�

� ��1�n

@n lndetM
@�n ; (A3)

 

�
@n trM�1

@�n

�


� ��1�n
@n trM�1

@�n ; (A4)

 

�@n trM�1 dM
du0

@�n

�

� ��1�n

@n trM�1 dM
du0

@�n ; (A5)

i.e. all even derivatives are real and all odd ones are purely
imaginary. This means, for example, that

 Re hL2L1L1i � �hRe�L2� Im�L1� Im�L1�i; (A6)

and the real part of any observable containing odd number
of odd derivatives is zero.

Explicitly the derivatives of the asqtad fermion matrix
are
 

@nM
@�n �

1

2
�0�x��U

�F�
0 �x�e

��x�0̂;y

� ��1�nU�F�y0 �x� 0̂�e���x;y�0̂

� �3�nU�L�0 �x�e
3��x�30̂;y

� ��3�nU�L�y0 �x� 30̂�e�3��x;y�30̂	: (A7)

APPENDIX B: ALGEBRAIC TECHNIQUES FOR
THE PRESSURE

The nonvanishing cnm�T� coefficients from second
through sixth order are
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1

2

@2�p=T4�

@��l=T�2

���������l�0
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1

2
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N3
s
A20

c40 �
1

4!

@4�p=T4�

@��l=T�
4

���������l�0
�

1

4!

1

N3
sNt
�A40 � 3A2

20�

c60 �
1

6!

@6�p=T4�

@��l=T�
6

���������l�0
�

1

6!

1

N3
sN

3
t
�A60 � 15A40A20 � 30A3

20�
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@2�p=T4�

@��h=T�2
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N3
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A02
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@��h=T�
4
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�

1
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1

N3
sNt
�A04 � 3A2
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1
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@6�p=T4�

@��h=T�
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�

1
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1

N3
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3
t
�A06 � 15A04A02 � 30A3

02�
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s
A11
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1
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1

N3
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�A13 � 3A02A11�
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1
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�

1
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1
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sNt
�A22 �A20A02 � 2A2

11�;
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1
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1
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1
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3
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2
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2
20�
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2
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2
02�
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1
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@5��l=T�@1��h=T�
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�A51 � 10A31A20 � 5A40A11 � 30A11A

2
20�
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�A15 � 10A13A02 � 5A04A11 � 30A11A

2
02�

c33 �
1
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@6�p=T4�

@3��l=T�@3��h=T�
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1

3!3!

1

N3
sN3

t
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To generate the above expressions for cnm we follow
closely the technique given in [16]. Let

 

@ lnZ

@�l
�A01 � hL1i; (B1)

 

@ lnZ

@�h
�A01 � hH1i: (B2)

It can be shown that

 

@Anm

@�l
�An�1;m �A10Anm; (B3)
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@Anm

@�h
�An;m�1 �A01Anm; (B4)

where

 A nm �

�
e�L0 e�H0

@neL0

@�n
l

@meH0

@�m
h

�
: (B5)

Higher order derivatives of lnZ at �h;l � 0 are zero if n�
m is odd, which can be shown to mean that, in this case,
Anm � 0. An example for getting a higher order deriva-
tive using either Eq. (B1) or Eq. (B2):

 

@2 lnZ

@�l@�h
�
@A01

@�l
�
@A10

@�h
� �A11 �A10A01�j�h;l�0

�A11: (B6)

Once an expression for cnm is obtained it is easy to get cmn
by just interchanging n and m in the former. The observ-
ables Anm in terms of the operators

 Ln �
nl
4

@n lndetMl

@�n
l

and Hm �
nh
4

@m lndetMh

@�m
h

; (B7)

are

 A 20 � hL2i � hL
2
1i; A40 � hL4i � 4hL3L1i � 3hL2

2i � 6hL2L
2
1i � hL

4
1i;

A60 � hL6i � 6hL5L1i � 15hL4L2i � 10hL2
3i � 15hL4L2

1i � 60hL3L2L1i � 15hL3
2i � 20hL3L3

1i � 45hL2
2L

2
1i � 15hL2L4

1i

� hL6
1i;

A02 � hH2i � hH
2
1i; A04 � hH4i � 4hH3H1i � 3hH2

2i � 6hH2H
2
1i � hH

4
1i;

A06 � hH6i � 6hH5H1i � 15hH4H2i � 10hH2
3i � 15hH4H2

1i � 60hH3H2H1i � 15hH3
2i � 20hH3H

3
1i � 45hH2

2H
2
1i

� 15hH2H
4
1i � hH

6
1i;

A11 � hL1H1i; A22 � hL2H2i � hL2H2
1i � hL

2
1H2i � hL2

1H
2
1i; A31 � hL3H1i � 3hL2L1H1i � hL

3
1H1i;

A13 � hH3L1i � 3hH2H1L1i � hH
3
1L1i;

A42 � hL4H2i � 4hL3L1H2i � 3hL2
2H2i � 6hL2L

2
1H2i � hL

4
1H2i � hL4H

2
1i � 4hL3L1H

2
1i � 3hL2

2H
2
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2
1H

2
1i

� hL4
1H

2
1i;

A24 � hH4L2i � 4hH3H1L2i � 3hH2
2L2i � 6hH2H

2
1L2i � hH

4
1L2i � hH4L

2
1i � 4hH3H1L

2
1i � 3hH2

2L
2
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2
1L

2
1i

� hH4
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2
1i;

A51 � hL5H1i � 5hL4L1H1i � 10hL3L2H1i � 10hL3L
2
1H1i � 15hL2

2L1H1i � 10hL2L
3
1H1i � hL

5
1H1i;

A15 � hH5L1i � 5hH4H1L1i � 10hH3H2L1i � 10hH3H2
1L1i � 15hH2

2H1L1i � 10hH2H3
1L1i � hH5

1L1i;

A33 � h�L3� 3L2L1� L
3
1��H3� 3H2H1�H

3
1�i:

The observables Ln and Hm include the quark matrix M��
Ml;h� derivatives with respect to ��� �l;h� which have the
following form:

 

@ lndetM
@�

� tr
�
M�1 @M

@�
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; (B8)
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APPRENDIX C: ALGEBRAIC TECHNIQUES FOR
THE INTERACTION MEASURE

Equation (13) for the coefficients bnm�T� contains three
types of derivatives of the fermion matrix with respect to
the chemical potentials. We tackle them separately in the
following.

1. First type of derivative

Here we give the method [16] for calculating the deriva-
tive

 

@n�mhM�1
f i

@��lNt�
n@��hNt�

m

���������l;h�0
: (C1)

A convenient place to start in this case is by defining the
observables

 B nm �

�
e�L0e�H0

@n�trM�1
l eL0�

@�n
l

@meH0

@�m
h

�
; (C2)

 B 0
nm �
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@neL0

@�n
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h eH0�

@�m
h

�
: (C3)

The above means

 B 00 � htrM�1
l i; (C4)

 B 0
00 � htrM

�1
h i: (C5)

It follows that

 

@Bnm
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Using the above and then applying �l;h � 0 we get
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Replacing B with B0 in the above we get the expressions for the derivatives of htrM�1
h i. Let
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then explicitly we have

 B 00 � hl0i � htrM�1
l i; B10 � hl1i � hl0L1i; B20 � hl2i � 2hl1L1i � hl0L2i � hl0L2

1i;

B30 � hl3i � 3hl2L1i � 3hl1L2i � hl0L3i � 3hl1L
2
1i � 3hl0L1L2i � hl0L

3
1i;

B40 � hl4i � 4hl3L1i � 6hl2L2i � 4hl1L3i � hl0L4i � 6hl2L2
1i � 12hl1L1L2i � 3hl0L2

2i � 4hl0L1L3i � 4hl1L3
1i

� 6hl0L2
1L2i � hl0L4

1i;

B50 � hl5i � 30hl2L1L2i � 30hl1L
2
1L2i � 20hl1L1L3i � 10hl0L

3
1L2i � hl0L5i � 5hl1L

4
1i � 10hl2L3i � 5hl4L1i

� 10hl3L2i � 10hl3L2
1i � 5hl1L4i � 15hl1L2

2i � 10hl2L
3
1i � hl0L

5
1i � 10hl0L2L3i � 5hl0L1L4i � 15hl0L1L2

2i

� 10hl0L
2
1L3i;

B60 � hl6i � 60hl1L2L3i � 15hl0L4
1L2i � 20hl0L

3
1L3i � 90hl2L2

1L2i � 90hl1L1L2
2i � hl0L6i � 6hl1L

5
1i � 45hl2L2

2i

� 15hl2L
4
1i � 20hl3L3i � 15hl2L4i � 6hl5L1i � 15hl4L2i � 15hl4L

2
1i � 20hl3L

3
1i � 10hl0L

2
3i � 15hl0L

3
2i

� 6hl1L5i � 60hl3L1L2i � 60hl2L1L3i � 60hl1L2
1L3i � 30hl1L1L4i � 60hl1L3

1L2i � 45hl0L2
1L

2
2i � 15hl0L2L4i

� 6hl0L1L5i � 15hl0L2
1L4i � 60hl0L1L2L3i � hl0L

6
1i;

B02 � hl0H2i � hl0H
2
1i;

B04 � hl0H4i � 4hl0H3H1i � 3hl0H2
2i � 6hl0H2H2

1i � hl0H
4
1i;

B06 � hl0H6i � 6hl0H5H1i � 15hl0H4H2i � 10hl0H
2
3i � 15hl0H4H

2
1i � 60hl0H3H2H1i � 15hl0H

3
2i � 20hl0H3H

3
1i

� 45hl0H2
2H

2
1i � 15hl0H2H4

1i � hl0H
6
1i;

B11 � hl1H1i � hl0L1H1i;

B22 � h�l2 � 2l1L1 � l0L2 � l0L
2
1��H2 �H

2
1�i;

B31 � hl3H1i � 3hl2L1H1i � 3hl1L2H1i � hl0L3H1i � 3hl1L2
1H1i � 3hl0L1L2H1i � hl0L

3
1H1i;

B13 � h�l1 � l0L1��H3 � 3H2H1 �H
3
1�i;

B42 � h�l4 � 4l3L1 � 6l2L2 � 4l1L3 � l0L4 � 6l2L2
1 � 12l1L1L2 � 3l0L2

2 � 4l0L1L3 � 4l1L
3
1 � 6l0L2

1L2 � l0L4
1��H2

�H2
1�i;

B24 � h�l2 � 2l1L1 � l0L2 � l0L
2
1��H4 � 4H3H1 � 3H2

2 � 6H2H
2
1 �H

4
1�i;

B51 � hl5H1i � 30hl2L1L2H1i � 30hl1L2
1L2H1i � 20hl1L1L3H1i � 10hl0L

3
1L2H1i � hl0L5H1i � 5hl1L4

1H1i

� 10hl2L3H1i � 5hl4L1H1i � 10hl3L2H1i � 10hl3L
2
1H1i � 5hl1L4H1i � 15hl1L

2
2H1i � 10hl2L

3
1H1i � hl0L

5
1H1i

� 10hl0L2L3H1i � 5hl0L1L4H1i � 15hl0L1L2
2H1i � 10hl0L2

1L3H1i;

B15 � h�l1 � l0L1��H5 � 5H4H1 � 10H3H2 � 10H3H
2
1 � 15H2

2H1 � 10H2H
3
1 �H

5
1�i;

B33 � h�l3 � 3l2L1 � 3l1L2 � l0L3 � 3l1L2
1 � 3l0L1L2 � l0L3

1��H3 � 3H2H1 �H3
1�i:

From the above expressions it is easy to get the B0 expressions by substitutions

 B 0
mn � Bnm�1! h; L$ H�: (C12)

Explicitly ln and hn are the derivatives below with M � Ml;h and � � �l;h.
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@�
� �tr

�
M�1 @M

@�
M�1

�
; (C13)

 

@2 trM�1

@�2
� �tr

�
M�1 @

2M

@�2 M
�1

�
� 2 tr

�
M�1 @M

@�
M�1 @M

@�
M�1

�
; (C14)
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@�3
� �tr

�
M�1 @

3M

@�3 M
�1

�
� 3 tr

�
M�1 @

2M

@�2 M
�1 @M
@�

M�1

�
� 3 tr

�
M�1 @M

@�
M�1 @

2M

@�2 M
�1

�

� 6 tr
�
M�1 @M

@�
M�1 @M

@�
M�1 @M

@�
M�1

�
; (C15)
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@�4
� �tr

�
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�1

�
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M�1

�
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@�
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2M

@�2 M
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@�

M�1

�
� 12 tr

�
M�1 @M

@�
M�1 @M

@�
M�1 @

2M

@�2 M
�1

�

� 24 tr
�
M�1 @M

@�
M�1 @M

@�
M�1 @M

@�
M�1 @M

@�
M�1

�
; (C16)
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3M
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2M
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2M
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�1

�
� 20 tr

�
M�1 @M

@�
M�1 @M

@�
M�1 @

3M
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�
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3M
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�
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2M
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�
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2M
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�1

�
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�
; (C17)
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2. Second type of derivative

The next term we are concerned with is the derivative

 

@n�mhM�1
f

dMf

du0
i

@��lNt�
n@��hNt�

m

���������l;h�0
: (C19)

Here we start from the definitions

 C nm �

�
e�L0 e�H0

@n�tr�M�1
l

dMl
du0
�eL0	

@�n
l

@meH0

@�m
h

�
; (C20)

 C 0nm �

�
e�L0 e�H0

@neL0

@�n
l

@m�tr�M�1
h

dMh
du0
�eH0	

@�m
h

�
: (C21)

From the above
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 C 00 �

�
tr
�
M�1
l
dMl

du0

��
; (C22)

 C 000 �

�
tr
�
M�1
h

dMh

du0

��
: (C23)

The following can be proven true:

 

@Cnm
@�l

� Cn�1;m �A10Cnm; (C24)

 

@Cnm
@�h

� Cn;m�1 �A01Cnm; (C25)

 

@C0nm
@�l

� C0n�1;m �A10C
0
nm; (C26)

 

@C0nm
@�h

� C0n;m�1 �A01C
0
nm: (C27)

The derivatives

 

@nhtr�M�1
l;h

dMl;h

du0
�i

@�n
l;h

(C28)

have the form of the derivatives of htr�M�1
l;h �i in the pre-

vious section with the substitutions Bnm ! Cnm and
B0nm ! C0nm. The explicit forms of Cnm and C0nm are the
same as for Bnm and B0nm with the substitutions ln ! 	n
and hn ! �n, where

 	n �
@ntr�M�1

l
dMh
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�

@�n
l

; (C29)

 �n �
@n tr�M�1
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�

@�n
h

: (C30)

These derivatives have the form below with M � Ml;h

and � � �l;h:
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:

In the above the derivatives of M�1 can be taken from the
previous subsection. The derivative of M with respect both
to the chemical potential and the tadpole factor for the
asqtad action, is
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�
: (C31)

3. Third type of derivative

The third type is the gauge derivative
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: (C32)

In this case let

 Gnm �

�
Ge�L0 e�H0

@neL0

@�n
l

@meH0

@�m
h

�
; (C33)

and similarly as before

 

@Gnm

@�l
� Gn�1;m �A10Gnm; (C34)
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@Gnm

@�h
� Gn;m�1 �A01Gnm; (C35)

with

 G00 � hGi: (C36)

This means that the necessary derivatives
@n�mhGi

@��lNt�n@��hNt�m
j�l;h�0 have the same form as the derivatives

@n�m trhM�1
f i

@��lNt�n@��hNt�m
j�l;h�0 with Bnm ! Gnm. The Gnm observ-

ables have very similar form to the Anm observables, but
with an additional multiplication by G inside the ensemble
average brackets of each term in them. For example,
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l

���������l;h�0
� G20 �A20G00 (C37)

and

 G20 � hGL2i � hGL2
1i; (C38)

etc.

For example, combining the three types of terms for
each flavor, one of the simplest of the Taylor coefficients
in the interaction measure expansion, b20, becomes

 

b20 � �
1

2!

Nt
N3
s

�
1

2

d�mla�
d lna

���������l;h�0
�B20 �A20B00�

�
1

2

du0

d lna

���������l;h�0
�C20 �A20C00�

�
1

4
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00�
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00�
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�
: (C39)
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