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We study the transverse target spin dependence of the cross section for inclusive electron-nucleon
scattering with unpolarized beam. Such dependence is absent in the one-photon exchange approximation
(Christ-Lee theorem) and arises only in higher orders of the QED expansion, from the interference of one-
photon and absorptive two-photon exchange amplitudes as well as from real photon emission (brems-
strahlung). We demonstrate that the transverse spin-dependent two-photon exchange cross section is free
of QED infrared and collinear divergences. We argue that in DIS kinematics the transverse spin
dependence should be governed by a ‘‘partonlike’’ mechanism in which the two-photon exchange couples
mainly to a single quark. We calculate the normal spin asymmetry in an approximation where the
dominant contribution arises from quark-helicity flip due to interactions with nonperturbative vacuum
fields (constituent quark picture) and is proportional to the quark transversity distribution in the nucleon.
Such helicity-flip processes are not significantly Sudakov-suppressed if the infrared scale for gluon
emission in the photon-quark subprocess is of the order of the chiral symmetry breaking scale, �2

chiral �
�2

QCD. We estimate the asymmetry in the kinematics of the planned Jefferson Lab Hall A experiment to be
of the order 10�4, with different sign for proton and neutron. We also comment on the spin dependence in
the limit of soft high-energy scattering.
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I. INTRODUCTION

Transverse spin effects in deep-inelastic eN=�N scat-
tering (DIS) are presently a very active field of research,
with many interesting developments in experiment and
theory. Inclusive production with longitudinally polarized
beams and transversely polarized targets measures the spin
structure function g2, which provides access to matrix
elements of higher-twist operators describing quark-gluon
correlations in the nucleon [1]. Another class of experi-
ments measures the azimuthal distributions of identified
hadrons in semi-inclusive production. The theoretical de-
scription of these observables relies on certain extensions
of the usual collinear QCD expansion, which incorporate
quark/hadron transverse momenta and give rise to a rich
variety of distribution/fragmentation functions describing
spin-orbit interactions of quarks. In analyzing the data one
hopes to either learn about the spin-orbit interactions
themselves or to use them to extract the quark transversity
distributions in the nucleon.

A somewhat different transverse spin effect is the trans-
verse target spin dependence of the cross section of inclu-
sive DIS with unpolarized beam. Such dependence is
absent in the O��2� cross section in the one-photon ex-
change approximation, being forbidden by the combina-
tion of P and T invariance and the Hermiticity of the
electromagnetic current operator (Christ-Lee theorem)
[2]. A target spin dependence appears at O��3� due to
the interference of two-photon and one-photon exchange
amplitudes, which can be understood qualitatively as the
result of a non-Hermitian effective current induced by the
imaginary part of the two-photon exchange amplitude.

Similar two-photon exchange effects were studied as cor-
rections to the eN elastic scattering cross section [3–6],
where they partly explain the discrepancy between the
GE=GM ratio extracted using the Rosenbluth and polariza-
tion transfer methods [7,8]; they also play a role in parity-
violating electron scattering [9].

The precision reached in eN scattering experiments with
modern high-duty cycle accelerators allows one to con-
template accurate measurements of two-photon exchange
observables. A Jefferson Lab Hall A experiment [10]
plans to measure the transverse target spin asymmetry
in inclusive DIS (Ebeam � 6 GeV, x � 0:1–0:45, Q2 �
1–3:5 GeV2) at the level of a few times 10�4, improving
the sensitivity of the only previous measurement at SLAC
[11] by 2 orders of magnitude (in the SLAC experiment,
the asymmetry was found to be compatible with zero at the
level of �3:5%). It is timely to estimate the expected
asymmetry in this kinematics.

In this paper we study the transverse target spin depen-
dence in inclusive DIS with unpolarized beam and its
relation to the quark structure of the nucleon. This is a
challenging problem, combining the complexity of higher-
order QED radiative corrections with that of the QCD
treatment of transverse spin-dependent deep-inelastic pro-
cesses. We approach this problem in steps, establishing
first some important general properties of the spin-
dependent two-photon exchange cross section, then for-
mulating a scheme of approximations which respects these
general properties and allows us to estimate the expected
asymmetry in DIS kinematics. In studying the general
properties of the spin-dependent cross section we shall
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employ both general principles [such as factorization of
infrared (or IR) divergences, electromagnetic gauge invari-
ance] and specific dynamical models which illustrate cer-
tain points.

First, we demonstrate that the transverse spin-dependent
two-photon exchange cross section is free of QED IR
divergences. On general grounds, it can be shown that
the IR divergent terms take the form of a universal spin-
independent factor multiplying the one-photon exchange
cross section, which does not exhibit a transverse spin
dependence. The IR finiteness can also be seen in the
explicit expression for the two-photon exchange cross
section for scattering from a spin-1=2 point particle.
Furthermore, we show that the spin-dependent two-photon
exchange cross section is free of QED collinear divergen-
ces, which appear in intermediate stages of the calculation
for a composite target with off-shell constituents. Such
singularities cancel as a consequence of electromagnetic
gauge invariance. We illustrate this explicitly in a field-
theoretical toy model of electron scattering from a
spin-1=2 point particle dressed by a scalar field.

Second, we argue that the transverse spin-dependent
cross section in DIS kinematics can be described in a
‘‘partonlike’’ picture, in which the two-photon exchange
couples predominantly to a single quark, namely, the same
quark which is hit in the interfering one-photon exchange
process. Within this picture one then is dealing with two
distinct contributions. In one the active quark helicity is
conserved, but explicit interactions with the spectator sys-
tem are required to bring about a nonzero result; this
contribution is analogous to the twist-3 part of the spin
structure function g2. In the other, the quark helicity is
flipped by interaction with nonperturbative vacuum fields
(spontaneous breaking of chiral symmetry) and no inter-
actions with the spectators are required; this contribution is
proportional to the product of the quark transversity dis-
tribution in the nucleon and the amplitude for the quark
helicity flip, which is of the order of a typical ‘‘constituent
quark’’ mass. In DIS such processes, going through low-
virtuality quarks whose chirality can be flipped by vacuum
fields, are in principle Sudakov suppressed relative to those
involving virtualities of the order Q2. We show here that
the Sudakov suppression is not very effective if the IR scale
for gluon emission is of the order of the chiral symmetry
breaking scale, �2

chiral � �2
QCD, which appears natural

from the point of view of the phenomenology of sponta-
neous chiral symmetry breaking in QCD. A specific
realization of this scenario is the instanton vacuum
model, in which the chiral symmetry breaking scale is
given by the average instanton size �2

chiral � �
�2 �

�600 MeV�2 [12,13].
Third, in order to make a quantitative estimate we invoke

the additional approximation of a ‘‘composite’’ nucleon,
i.e., a weakly bound system of constituent quarks, in which
the dominant contribution to the spin-dependent cross

section comes from helicity flip at the quark level and
can be calculated in terms of the quark transversity distri-
bution in the nucleon. This approximation permits a fully
self-consistent treatment of the two-photon exchange cross
section, which maintains electromagnetic gauge invariance
and is manifestly free of collinear divergences. It allows us
to make a numerical estimate of the asymmetry in DIS
kinematics and discuss its dependence on the kinematic
variables.

We also comment on the behavior of the spin-dependent
interference cross section in the limit of soft high-energy
scattering (small energy and momentum transfer to the
target), where one can make contact with general theorems
about the high-energy behavior of QED amplitudes. Also,
in this limit one can use the nonrelativistic approximation
to describe the target excitation spectrum and see explicitly
why scattering from a single quark dominates at larger
momentum transfers. This provides a useful complement
to the corresponding arguments fielded in DIS kinematics.

Two-photon exchange effects were extensively studied
as corrections to the eN elastic scattering cross section [3–
6]. The two-photon exchange effect in the transverse spin
dependence investigated in this article is in many ways
simpler than those corrections to the full cross section. In
the transverse spin-dependent cross section, one is dealing
with a pure higher-order QED observable, which is exactly
zero in one-photon exchange approximation. More impor-
tantly, because the two-photon exchange in the transverse
spin-dependent cross section is IR finite, no cancellations
of IR divergences between two-photon exchange and
real photon bremsstrahlung take place as in the spin-
independent cross section. In fact, this circumstance makes
it possible to discuss two-photon exchange as an ‘‘autono-
mous’’ physical effect in the first place.

This article is organized as follows. In Sec. II we define
the transverse spin-dependent cross section and review the
Christ-Lee theorem for the one-photon exchange contribu-
tion. In Sec. III we revisit in some detail the transverse
spin-dependent cross section in the scattering from a point-
like spin-1=2 particle, which explicitly shows the IR finite-
ness and allows us to estimate the effective photon
virtualities in the two-photon exchange. In Sec. IV we
demonstrate the absence of QED IR and collinear diver-
gences in the transverse spin-dependent cross section on
general grounds. In Sec. V we consider the transverse spin
dependence in DIS in QCD. We present arguments in favor
of dominance of scattering from a single quark, discuss the
two contributions (quark helicity-conserving and quark
helicity-flip), and the absence of significant Sudakov sup-
pression of quark helicity-flip amplitudes. In Sec. VI we
formulate the composite nucleon approximation, in which
the quark helicity-flip contribution becomes dominant and
can be calculated in a relativistic constituent quark model.
In Sec. VII we present numerical results based on this
approximation. In Sec. VIII we discuss the limit of soft
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high-energy scattering. Our conclusions and perspectives
for future studies are summarized in Sec. IX.

II. TRANSVERSE TARGET SPIN IN INCLUSIVE
ELECTRON SCATTERING

We consider inclusive electron-nucleon scattering with
unpolarized beam and polarized target,

 e�l� � N�p� ! e�l0� � X: (1)

For parity-conserving interactions (strong, electromag-
netic) the only allowed dependence of the cross section
in the target rest frame on the target spin is through a term
proportional to the true scalar

 �S; l	 l0�: (2)

Here S denotes the target polarization vector, which is
normalized according to S2 � 1 for fully polarized target,
and the vector l	 l0 is normal to the electron scattering
plane. We write the differential cross section for scattering
into a phase space element with given final electron mo-
mentum l0 in the form

 d� � d�U �
�S; l	 l0�
jl	 l0j

d�N: (3)

The normal spin asymmetry of the differential cross sec-
tion is then defined as

 AN 

d�N
d�U

: (4)

It can be interpreted as the asymmetry of the differential
cross section for scattering to the ‘‘left’’ and ‘‘right’’ of a
target polarized ‘‘upward’’ in the direction normal to the
scattering plane, with otherwise identical kinematics,

 AN �
d��left� � d��right�
d��left� � d��right�

: (5)

To describe transverse spin effects in DIS kinematics it
is customary to define a coordinate system such that the
momentum transfer

 q 
 l� l0 (6)

(i.e., the momentum of the virtual photon in one-photon
exchange approximation) points in the negative
z-direction, and the initial and final electron momenta lie
in the xz-plane, with the average momentum pointing in
the positive x-direction [see Fig. 1(a)]. In this frame the
unit vector l	 l0=jl	 l0j points in the negative
y-direction, and the normal spin asymmetry coincides
with the negative polarization asymmetry with respect to
the target spin in the y-direction,

 AN �
d��Sy � �1� � d��Sy � �1�

d��Sy � �1� � d��Sy � �1�

 �Ay: (7)

It is clear that this definition applies not only to the target
rest frame but also to the virtual photon-nucleon center-of-
mass (CM) frame, in which the nucleon moves in the
positive z direction.

The cross section for inclusive eN scattering with un-
polarized beam is independent of the transverse target spin
if the electromagnetic interaction is treated in one-photon
exchange approximation (Christ-Lee theorem) [2]. In this
approximation the cross section can be expressed in the
well-known form [14]

 d� �
e4

4�lp�Q4 L
��W��

d3l0

�2��32l00
; (8)

where e is the elementary charge and

 Q2 
 �q2 � ��l0 � l�2 (9)

the invariant momentum transfer. The leptonic tensor, L��,
is symmetric for an unpolarized beam, L�� � L��, and the
contraction in Eq. (8) projects out the symmetric part of the
hadronic tensor,

 W�� �
Z
d4x ei�qx�hpSjJ��x�J��0�jpSi: (10)

Using P and T invariance as well as the Hermiticity of the
current operator, it can be shown that the symmetric part of
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(a) (b)

FIG. 1 (color online). (a) The coordinate system for describing the transverse spin dependence of inclusive DIS in the target rest
frame. (b) Transverse target spin asymmetry in the scattering of an electron (charge �e) from a classical pointlike magnetic dipole.
The asymmetry results from the Lorentz force, F, experienced by the charge moving in the magnetic field of the dipole, B.
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the hadronic tensor remains unchanged under reversal of
the target’s transverse polarization, and the asymmetry (7)
is zero. We shall see an explicit example of this general
theorem in the cross section for a pointlike target in
Sec. III.

Target spin dependence in P- and T-invariant inclusive
scattering can arise only from higher-order electromag-
netic interactions. At the order �3, one can identify two
distinct contributions to the cross section which give rise to
a target spin dependence, see Fig. 2. One is the interference
of one-photon and two-photon exchange amplitudes in the
ep! e0X cross section [Fig. 2(a)]. This mechanism can, in
a sense, be regarded as a non-Hermitian contribution to the
current operator in the leading-order expression, arising
from the imaginary part of the two-photon exchange con-
tribution to the ep! e0X amplitude. The other contribu-
tion results from the interference of real photon radiation
(bremsstrahlung) emitted by the electron and the interact-
ing hadronic system [Fig. 2(b)]. An important point is that
the two-photon exchange contribution to the spin-
dependent cross section, Fig. 2(a), is free of QED IR
divergences, as will be discussed in detail in Sec. IV. In
the cross section spin difference and the asymmetry (7)
two-photon exchange and real photon emission can thus be
regarded as physically distinct contributions from the QED
point of view and be discussed separately. This is in con-
trast to the two-photon exchange contributions to the cross
section itself for given target spin (or the sum over target
spins), where the IR divergences cancel only when two-
photon exchange and real photon emission are added.

A nonzero target spin dependence of inclusive eN scat-
tering could in principle arise if T invariance were violated
explicitly in electroweak interactions. In fact, the SLAC
experiment [11] measured the spin asymmetry with the

aim of testing T invariance of the ep interaction and found
the asymmetry be consistent with zero at the level of 3.5%.
Present understanding of the limits on the violation of
fundamental symmetries suggests that P-conserving,
T-violating effects in the standard model, which come as
weak interaction corrections to P-violating effects, should
lead to corrections to the DIS cross section of the order of
at most <10�8 [15]. These effects are significantly smaller
than the asymmetry expected from two-photon exchange,
jANj � 10�4 (see below). The T-violating effects could in
principle be separated from two-photon exchange by their
different beam charge dependence [11]. However, electro-
magnetic effects at O��4�, such as three-photon exchange
and double two-photon exchange, would have the same
spin and beam charge dependence as T-violation and ex-
ceed the latter by at least 2 orders of magnitude, making it
practically impossible to probe explicit T-violation in this
way.

III. TRANSVERSE SPIN DEPENDENCE FOR
POINTLIKE TARGET

We begin our investigation of the transverse spin depen-
dence by considering the scattering of an electron (charge
�e) from a Dirac point particle of charge�e, referred to as
‘‘pointlike proton’’ in the following. While several calcu-
lations of the asymmetry in this model were performed
long ago [16,17], it is worthwhile to revisit this problem for
several reasons. First, the point particle calculation explic-
itly demonstrates the IR finiteness of the two-photon ex-
change contribution to the spin-dependent cross section,
and allows us to investigate numerically the distribution of
photon virtualities in the two-photon exchange graph.
Second, the point particle result provides a crude—but
manifestly self-consistent—estimate of the asymmetry,
including real photon emission (which turns out not to
contribute to the asymmetry in this case), and will serve
as a reference point for more elaborate models including
hadron structure. Third, we need the point particle result as
an ingredient for the composite nucleon approximation in
Sec. VI.

For a pointlike proton, the hadronic final state in inclu-
sive ep scattering contains just the proton itself. Likewise,
there are no excited hadronic intermediate states in higher-
order processes. The Feynman diagrams contributing to the
amplitude for inclusive ep scattering to order �2 are shown
in Fig. 3. Consider first the elastic scattering channel,

 e�l� � p�p� ! e�l0� � p�p0�; (11)

the amplitude of which is given by the sum of
diagrams (a)–(c). In this channel the sum over hadronic
final states reduces to the sum over the final-state proton
polarization states. The cross section for scattering from a
transversely polarized proton is proportional to the squared
modulus of the invariant amplitude, averaged (summed)
over the initial (final) electron polarization, and summed

X

X(b)

(a)

FIG. 2. QED processes contributing to the transverse target
spin dependence of the inclusive eN cross section at O��3�.
(a) Interference of one-photon and two-photon exchange.
(b) Interference of real photon emission (bremsstrahlung) by
the electron and the hadronic system.
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over the final proton polarization. On general grounds, the
dependence of this quantity on the polarization of the
initial proton must be of the form (average/sum over
electron and final proton polarizations is implied)

 jMep!e0pj
2 � XU �

�SN������������
�N2
p XN; (12)

where S is the polarization 4-vector of the initial proton
state,

 N� � �4����	l�l
0
�p	 (13)

the normal 4-vector characterizing the scattering process
[18], and XU and XN are independent of the initial proton
polarization. Noting that in the target rest frame S� �
�0;S�, and N� � �0;N� with N � 4Ml	 l0 normal to
the scattering plane, we have

 �
�SN������������
�N2
p �

�S; l	 l0�
jl	 l0j

; (14)

and the transverse target spin asymmetry (7) is given by

 AN �
XN
XU

: (15)

This representation allows us to calculate the asymmetry
directly from the invariant amplitudes, without reference to
a particular frame. We note that in the frame of Fig. 1(a),
choosing the proton polarization to be along the y axis, the
coefficients in Eq. (12) are given by

 XU �
1
2�jM�y��j

2 � jM�y��j2�; (16)

 XN �
1
2�jM�y��j

2 � jM�y��j2�; (17)

where M�y
� 
Mep!e0p�y
� denotes the amplitude for
scattering from a proton state with Sy � 
1, and the
average/sum over the other polarizations is implicit. In
this case expression (15) for the asymmetry reproduces
the negative y spin asymmetry, Eq. (7). It is instructive to
express the coefficients XU and XN also in terms of the
amplitudes for scattering from a proton of given helicity. In
a frame where the proton moves in the positive z direction,
the helicity eigenstates j
i coincide with the eigenstates of
Sz and are related to the Sy eigenstates by

 jy
i �
j�i 
 ij�i���

2
p ; (18)

and one obtains

 XU �
1
2�jM���j

2 � jM���j2�; (19)

 XN � Im�M����M����: (20)

In the helicity basis the transverse spin dependence is
related to the interference of helicity-flip and nonflip am-
plitudes in the cross section. In particular, it is seen from
Eq. (20) that a spin dependence appears only if the helicity
amplitudes develop an imaginary (absorptive) part.

In the approximation of zero electron mass, m! 0, the
electron helicity is conserved because of chiral invariance,
and ep elastic scattering (11) is described by 3 independent
helicity amplitudes. We parametrize the invariant ampli-
tude as

 M ep!e0p � �u0P̂u�2M �U0Uf1 � �U0L̂Uf2�

� �u0P̂	5u �U0L̂	5Uf3; (21)

where u 
 u�l�, u0 
 u�l0� and U 
 U�p�, U0 
 U�p0� are
the bispinors of the initial/final electron and proton, nor-
malized as �uu � �u0u0 � 2m, �UU � �U0U0 � 2M, M is the
proton mass,

 L 
 l� l0; (22)

 P 
 p� p0 (23)

are the sum of the initial and final electron/proton mo-
menta, and we use the notation P̂ 
 P�	�. Here f1 � f3

are scalar functions of the kinematic invariants,

 s 
 �l� p�2; (24)

 t 
 �l0 � l�2 � q2; (25)

it is convenient to introduce also the crossing-symmetric
variable

 � 
 �LP� � s� u � 2�s�M2� � t: (26)

By straightforward calculation, using the standard expres-
sions for the spin density matrices of the electron and
proton spinors [18], one obtains the coefficients of the

p1

q1 2q

l 1

(b)

l

p p’

l’

(a)

l l’

p p’

q

(c)

(d) (e)

FIG. 3. Feynman diagrams contributing to the amplitude of ep
scattering to order �2. (a), (b), (c) Elastic scattering, ep! e0p.
The two-photon box diagram (b) gives rise to an imaginary part
of the amplitude. (d), (e) Real photon emission.
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squared modulus of the invariant amplitude, Eq. (12), as
 

XU � ��2 � t�t� 4M2��f4M2��t� 4M2�jf1j
2

� ��2 � t2�jf2j
2 � 8M2�Re�f�1f2�

� ��2 � t�t� 4M2��jf3j
2g; (27)

 XN � 4M��2 � t�t� 4M2��3=2
������
�t
p

Im�f�1f2�: (28)

Again, one sees from Eq. (28) that a spin dependence of the
cross section appears only if the functions f1 and f2

develop an imaginary part.
In one-photon exchange approximation, the invariant

amplitude for elastic ep scattering is given by the diagram
of Fig. 3(a),

 M �a�
ep!e0p � �

e2

t
�u0	�u �U0	�U; (29)

where the negative sign results from the different sign of
the charges. The contribution to the functions f1 � f3 can
easily be found by expanding the vector currents in the
basis formed by the orthogonal 4-vectors L, q, N, and P�
�LP�L=L2, and using the relations between bilinear forms
following from the three-gamma identities and the Dirac
equation for the electron and proton spinors [14]. One
obtains
 

f�a�1

f�a�2

f�a�3

9>>>=>>>; �
�e2

�2 � t�t� 4M2�
	

8>><>>:
1;
�
t ;

�1:

(30)

In this approximation the functions f1 � f3 are real, and
the spin-dependent part of the squared modulus of the
invariant amplitude (28) is zero,

 X�a�N � 0; (31)

in accordance with the Christ-Lee theorem. The spin-
independent part gives the usual expression for the squared
modulus of the invariant amplitude in unpolarized ep
elastic scattering,

 X�a�U �
e4

t2
��2 � t�t� 4M2��: (32)

A nonzero imaginary part of f1 � f3 arises at order �2

from the two-photon exchange box diagram, Fig. 3(b).
[The crossed-box diagram, Fig. 3(c), does not have an
imaginary part in the physical region for ep scattering.]
The contribution of diagram Fig. 3(b) to the invariant
amplitude is given by the Feynman integral,

 M �b�
ep!e0p � �i

Z d4�

�2��4

	
e4 �u0	�l̂1	�u �U0	��p̂1 �M�	�U

q2
1q

2
2�l

2
1 � i0��p

2
1 �M

2 � i0�
; (33)

where � represents a suitably chosen loop momentum,
e.g.,

 q1;2 � q=2
�; (34)

 l1 � L=2��; (35)

 p1 � P=2��: (36)

By projecting the numerator in Eq. (33) on the structures of
Eq. (21), using the basis vectors described above, one can
easily determine the corresponding contributions to the
functions f1 � f3. Their imaginary part is then calculated
by applying the Cutkosky rules, replacing the propagators
of the intermediate particles by delta functions. We are
interested only in the interference term, Im�f�1f2�, which
governs the cross section spin difference, Eq. (28). Because
the one-photon exchange amplitudes are real, the leading
nonzero contribution to this term is

 Im �f�1f2� � f�a�1 Im f�b�2 � f
�a�
2 Im f�b�1 : (37)

It is convenient to combine the functions in this way before
performing the loop integral. In this way, one obtains a
representation of the interference term as

 Im �f�1f2� � 2�2
Z d4�

�2��4

�l21�
�p

2
1 �M

2�
�A

q2
1q

2
2

; (38)

where the integration is restricted over positive-energy
intermediate states, �l1�0, �p1�

0 > 0, and the numerator is
given by
 

�A �
�e6

�2 � t�t� 4M2�

�
1

2t2
�q2 � q2

1 � q
2
2��q

2 � q2
1 � q

2
2�

�
1

4t
��q1 � q2�

2 � q2�

�
3��� t� � 4M2

8t��2 � t�t� 4M2��
��q1 � q2�

2 � q2�

	 ��q1 � q2�
2 � q2�

�
; (39)

where q2 � t. In simplifying Eq. (39) we have made use of
the mass shell conditions l21 � 0 and p2

1 � M2 implied by
the delta functions. Equations (38) and (39) allow us to
evaluate the spin-dependent cross section as an invariant
integral.

An important observation is that the numerator (39)
vanishes in the limits where the 4-momentum of one or
the other photon in the two-photon exchange graph tends to
zero,

 �A ! 0 for
�
q1 ! 0; q2 ! q; or
q2 ! 0; q1 ! q:

(40)

This implies that the integral representing the spin-
dependent interference cross section (38) is free of IR
divergences. We shall see in Sec. IV that this property is
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general and follows from the fact that the IR divergent
terms have the form of a universal factor multiplying the
one-photon exchange cross section, which does not exhibit
a spin dependence. Note that the cancellation of IR diver-
gences takes place only in the combination Eq. (37); the
two-photon exchange contribution to the individual func-
tions f1 and f2 (even their imaginary parts) is IR divergent.

The invariant integral in Eq. (38) can be evaluated in an
arbitrary reference frame. A convenient way is to convert it
to a phase space integral over the intermediate electron
momentum, which can be evaluated in the ep center-of-
mass (CM) frame using standard techniques. The relation
of the CM momentum, lcm, and scattering angle, �cm, to the
invariants s and t is (we assume zero electron mass)

 lcm �
s�M2

2
���
s
p ; (41)

 sin 2��cm=2� �
�st

�s�M2�2
: (42)

Evaluating the integral in this way, we obtain a simple
result for the normal spin difference of the cross section,

 Im �f�1f2� �
�e6

256�l4cms2sin2�cm

: (43)

The normal spin asymmetry for the pointlike proton is then
obtained by multiplying with the kinematic factor of
Eq. (28), and dividing the result by the spin sum of the
cross section, evaluated in one-photon exchange approxi-
mation, Eq. (32). In terms of the CM variables,

 AN � �
2�l2cmM

s3=2

sin3��cm=2� cos��cm=2�

cos2��cm=2� � �2l2cm=s�sin4��cm=2�
:

(44)

Here � � e2=�4�� � 1=137 is the fine structure constant.

This result agrees with the one obtained earlier in Ref. [16];
see also Ref. [6]. In particular, in the high-energy limit,
s� M2, one has lcm �

���
s
p
=2, and Eq. (44) simplifies to

 AN � �
�M
2
���
s
p

sin3��cm=2� cos��cm=2�

cos2��cm=2� � 1
2 sin4��cm=2�

; (45)

which has its maximum at �cm � 2:18 � 125�.
The sign of the normal spin asymmetry [Eq. (44)] is

what one expects from the simple picture of an electron
scattering from a pointlike magnetic dipole, see Fig. 1(b).
In this picture the asymmetry is caused by the Lorentz
force experienced by the charged particle moving in the
magnetic field of the dipole, which in the scattering plane
points in the direction opposite to the magnetic moment.
As can be seen from Fig. 1(b), if the proton with magnetic
moment �p � eS=�2M� is polarized upward, the electron
with charge�e is deflected to the right, leading to AN < 0,
cf. Eq. (5).

We can use the result of the pointlike proton approxi-
mation to make a rough order-of-magnitude estimate of the
asymmetry expected in DIS experiments. Figure 4 shows
the asymmetry for s � 10 and 20 GeV2, corresponding
approximately to the values reached in ep scattering at
JLab with 6 and 12 GeV beam energy. The asymmetry is
shown both as a function of the CM scattering angle, �cm,
Eq. (42), and as a function of jtj � �q2 � Q2 itself. One
sees that the asymmetry in this approximation is of the
order of several times 10�4. The maximum value of the
asymmetry, as well as its position in �cm, depend only
weakly on s. The change of the t-dependence with smostly
reflects the transformation from the kinematic variable �cm

to t.
It is interesting to study the distribution of photon vir-

tualities in the integral (38). This provides information
about the effective range of the two-photon exchange
interaction, which will be important for the calculation of
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FIG. 4. The normal spin asymmetry AN (note the minus sign on the plot axis) in electron scattering from a pointlike proton, for
s � 10 and 20 GeV2, as a function of the CM scattering angle (left), and of jtj � Q2 (right).
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the asymmetry for a composite target in Sec. VI. It turns
out that the distribution of photon virtualities in the integral
(38) is governed by the scales Q2 � �t and s and does not
involve any extraneous scales, as a result of the IR finite-
ness of the integral. One way to illustrate this is by eval-
uating the integral (38) with a nonzero ‘‘photon mass,’’
replacing the photon propagators by

 

1

q2
1;2
!

1

q2
1;2 � 


2 : (46)

The variation of the result with 
2 gives an indication of the
effective photon virtualities in the loop. Figure 5 shows the
asymmetry for s � 10 GeV2 as a function of the photon
mass, 
2, for several values of t, corresponding to large-
angle scattering (�cm not close to 0 or �). One sees that the
photon mass dependence is very smooth, confirming that
no large contributions arise from the region jq2

1j, jq
2
2j �

Q2. We observe that for 
2 * 1 GeV2 the 
 dependence is
well described by the form

 Im �f�1f2� /
1

�Q2
eff � 


2�2
; (47)

which would be the dependence if the virtualities in the
integral were ‘‘frozen’’ at �q2

1 � �q
2
2 � Q2

eff . Extracting
the value of Q2

eff from a fit to the numerical results we find
Q2

eff � �5:6; 5:8; 6:1� GeV2 for Q2 � �2; 4; 6� GeV2 in the
given kinematics. Note, however, that the effective virtual-
ity thus estimated depends strongly on the prescription;
since the integrand of Eq. (38) is not positive definite, any
definition of average is inherently ambiguous.

Another way of studying the distribution of photon
virtualities in the asymmetry is to represent the integral
(38) as an integral over one of the photon virtualities. This
can be done using the fact that in the CM frame the

virtuality q2
1 is directly related to the angle between the

initial and intermediate electron momenta, Q2
1 
 �q

2
1 �

2l2cm�1� cos��l1; l��. Integrating over the corresponding
azimuthal angle, one obtains a representation of the form

 Im �f�1f2� �
Z 2l2cm

0
dQ2

1F�Q
2
1�; (48)

where the integrand turns out to be a piecewise constant
function,

 F�Q2
1� �

�
C1 0<Q2

1 <Q2;
C2 Q2 <Q2

1 < 2l2cm;
(49)

in which C1 < 0, C2 > 0, with values depending on s and
Q2. One sees that the characteristic scales in the distribu-
tion of virtualities are Q2 and 2l2cm � s. Numerical studies
show that for large-angle scattering (�cm not close to 0 or
�) the cancellation between the low and high virtuality
regions is not precarious, and that the sign of the resulting
integral is always determined by the high-virtuality con-
tribution. This again proves that in the kinematics of large s
and Q2 the contribution from virtualities Q2

1 � Q2 does
not significantly influence the result.

To complete our discussion of the transverse spin de-
pendence of inclusive scattering from a point particle, we
need to comment also on the real photon emission (brems-
strahlung) channel, ep! e0p	, the amplitudes for which
are given by the diagrams of Figs. 3(d) and 3(e). The spin
dependence of the cross section in this channel can be
discussed along the lines of Eq. (12) et seq., the only
difference being that the sum over final states includes
the integration over the relative momenta of the three-
body final state and the sum over the photon polarizations.
An expression analogous to Eq. (20) can be derived in
terms of the helicity amplitudes; however, since
diagrams (d) and (e) do not have an absorptive part (the
intermediate particles are always off mass shell), the he-
licity amplitudes are real and no transverse spin depen-
dence is obtained. In this sense the pointlike target provides
a model for fully inclusive scattering; only the bremsstrah-
lung channel happens not to contribute to the transverse
spin dependence. Note that this is specific to scattering
from a point particle; for a target with internal excitations
the Compton amplitude has an absorptive part and a non-
zero interference cross section of the type of Fig. 2(b) can
in principle arise. This contribution is IR finite (cf. the
discussion in Sec. IV) and thus can be discussed separately
from two-photon exchange.

IV. CANCELLATION OF INFRARED AND
COLLINEAR DIVERGENCES

A new feature of two-photon exchange processes com-
pared to one-photon exchange is that divergent terms can
appear in the scattering amplitude, related to the vanishing
of the virtualities of (at least) one of the photons. However,
these divergent terms must cancel in the final result for
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FIG. 5. The normal spin asymmetry AN (note the minus sign
on the plot axis) as a function of the photon mass, cf. Eqs. (38)
and (46). The photon mass dependence gives an indication of the
average virtualities in the two-photon box graph.
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physical observables. The point particle calculation of
Sec. III shows explicitly that IR divergences are absent in
the spin-dependent part of the two-photon exchange cross
section. We now want to demonstrate that this result is
general and applies also to a target with internal structure;
it follows from the general factorization property of IR
singularities in QED. Furthermore, we analyze the col-
linear divergences which appear in the calculation of
two-photon exchange corrections in models of hadron
structure with off mass-shell constituents, and show that
they cancel due to electromagnetic gauge invariance.
These results will be used in our studies of the transverse
spin dependence of the inclusive cross section in the pres-
ence of hadron structure below.

Consider the invariant amplitude for the two-photon
transition to a (unspecified) hadronic final state, eN !
e0X, which enters in the transverse spin-dependent part of
the inclusive eN cross section, see Fig. 6 [cf. Fig. 2(a)]. The
absorptive part, in which the intermediate electron is on
mass shell, can be represented as

 Im Mep!e0X �
Z d3l1

2E1�2��3
e4l�� ImT��

q2
1q

2
2

; (50)

where E1 is the energy of the intermediate electron, and
q1;2 are the photon 4-momenta. In the numerator,

 l�� � �u�l0�	�l̂1	�u�l� (51)

is the residue of the direct term of the electron virtual
Compton amplitude (we neglect the electron mass), and
ImT�� denotes the absorptive part of the virtual hadronic
Compton amplitude for the N ! X transition [19]. As a
consequence of electromagnetic current conservation, the
tensors satisfy the transversality conditions

 q2�l
�� � 0; l��q1� � 0; (52)

 q2�T
�� � 0; T��q1� � 0: (53)

The integral Eq. (50) can become divergent if either of
the exchanged photon virtualities, q2

1 or q2
2, tends to zero in

parts of the integration region. One distinguishes two types
of such singularities:

 q1 ! 0; q2 ! q “infrared; ”

q2
1 ! 0 with q1 � 0 “collinear; ”

and likewise for q1 $ q2. The mechanism for the cancel-
lation of these singularities in physical observables is quite
different in the two cases.

The cancellation of IR singularities is governed by the
soft-photon theorem [20], which states that photons of
wavelength 
� Rhadron ‘‘see’’ only the charge and mo-
menta of the initial and final particles in a reaction, not
their polarization or the details of the reaction mechanism.
Using the method of Refs. [21–23], the IR divergent con-
tributions of individual two-photon exchange diagrams can
be represented in the form of a divergent factor, depending
only on the charges and momenta of the initial and final
particles, multiplying the one-photon exchange amplitude
for the process. Because this factor is spin independent, the
IR divergent term in the spin-dependent cross section
difference comes in the form of an overall factor multi-
plying the spin-dependent cross section difference in one-
photon exchange approximation, which is zero on grounds
of the Christ-Lee theorem. Note that the cross section for
each individual target polarization does have IR divergent
terms; they cancel only at the level of the cross section
difference. This is exemplified by the point particle calcu-
lation of Sec. III, where one can verify that the two-photon
exchange contribution to the absorptive parts of the indi-
vidual amplitudes f1 and f2 are divergent, while the spin
difference Im�f�1f2� is divergence-free. In summary, the
reason why the cross section spin difference is IR finite is
the spin independence of soft-photon contributions.

The cancellation of collinear singularities in the two-
photon exchange contribution to inclusive eN scattering is
due to the transversality of the electron and hadron
Compton tensors (related to electromagnetic gauge invari-
ance), and happens already at the level of the amplitude for
given target spin. Physically, collinear singularities corre-
spond to the emission of a finite-energy photon along the
direction of the initial or final electron, which is assumed to
be strictly massless here (m � 0). Consider the case that
the photon with q1 is emitted along the direction of the
initial electron with 4-momentum l. The relevant integra-
tion region can be parametrized covariantly as

 l1 � zl; (54)

 q1 � l� l1 � �1� z�l; (55)

where z is the fraction of the momentum l carried by the
intermediate electron. Obviously q2

1 � �1� z�
2l2 � 0 for

massless electrons, and one encounters a divergence if
values z � 1 are kinematically allowed, as is generally
true in inelastic scattering (the case of elastic scattering
will be discussed separately below). The only way a diver-
gence can be avoided is if the numerator of the integral
vanishes in the collinear limit, Eqs. (54) and (55).

l ll 1

q1 2q

X

’

p

FIG. 6. The two-photon exchange amplitude giving rise to a
transverse spin dependence of the eN ! e0X inclusive cross
section.
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Let us inspect the numerator of Eq. (50) in the collinear
limit, Eqs. (54) and (55). Using the anticommutation rela-
tions for the gamma matrices and the Dirac equation for the
initial electron spinor, the tensor Eq. (51) can be brought
into the form

 lim
l1!zl

l�� �
2z

1� z
j��l

0; l�q1�; (56)

where

 j��l0; l� � �u�l0�	�u�l� (57)

is the matrix element of the electromagnetic current be-
tween the initial and final electron states. The contraction
with the hadronic Compton tensor then gives zero by virtue
of the transversality condition Eq. (53),

 l��T�� / j
��l0; l�T��q

�
1 � 0: (58)

A similar argument applies if the other photon momentum,
q2, becomes collinear to the final electron momentum, l0.
In both collinear regions the numerator in the integrand of
Eq. (50) tends to zero simultaneously with the denominator
and the integral becomes convergent. In summary, the
absence of collinear divergences in the two-photon contri-
bution to inelastic eN scattering is directly related to the
transversality of the hadronic Compton tensor. A similar
observation was made earlier in Ref. [24] in applications to
the single-spin asymmetry of elastic ep scattering induced
by two-photon exchange.

The case of a pointlike target considered in Sec. III is
somewhat special in the context of the above discussion.
For elastic scattering from a point particle, the only way in
which q2

1 could vanish is if the 4-vector q1 tends to zero,
i.e., the only kinematically allowed value of z in Eqs. (54)
and (55) is z � 1. In this case the collinear region is kine-
matically forbidden; the only singularities are IR divergen-
ces, which cancel by the mechanism described earlier.

The issue of collinear singularities becomes critical
when one tries to incorporate effects of hadron structure
in inelastic eN scattering with two-photon exchange.
Specifically, in models where the two-photon exchange
couples to hadronic constituents which are off mass shell,
collinear divergences appear, which are canceled only by
contributions involving explicitly the interactions between
the constituents. This is because only the combination of
off-shell and interaction effects maintains electromagnetic
gauge invariance and transversality of the hadronic tensor.
We note that a recent calculation of the transverse spin
asymmetry in inclusive DIS in the parton model [25],
which considered two-photon exchange with off-shell
quarks without accompanying interaction effects, found a
divergent result for the asymmetry [26]. The arguments
presented above indicate that the reason for the divergence
is the violation of electromagnetic gauge invariance in that
approximation, and point out what needs to be done to
obtain a meaningful finite result.

To illustrate the point, we consider the simple field-
theoretical model of an electron scattering from a pointlike
spin-1=2 particle (charge�e), coupled to a massive neutral
scalar particle with a Lagrangian density

 Lint � g ����: (59)

This extension of the point particle calculation of Sec. III
offers the simplest setting which allows one to study in-
elastic scattering with nontrivial target structure and in-
cludes both off-shell and interaction effects. We consider
the scattering amplitude for the process in which a single
scalar particle is produced in the final state. Its absorptive
part is given by the sum of the cut Feynman diagrams of
Fig. 7 [27]. It can be shown explicitly that the Compton
tensor T�� defined by this model satisfies the transversality
conditions, Eq. (53), provided that the full set of diagrams
in Fig. 7 is included. Obviously, the separate contributions
from each of the diagrams are not transverse.

Let us consider the diagram of Fig. 7(a), where both
photons couple to the spinor particle after emission of the
scalar. When taken alone, the contribution of this diagram
to the hadronic Compton tensor T�� is not transverse,
which is related to the fact that the intermediate-state
spinor particle with momentum p0 is off mass shell. The
corresponding absorptive part reads
 

ImT���g�
�p
2
1�M

2� �U�p0�	��p̂1�M�	�
p̂0�M

p2
0�M

2U�p�;

(60)

where the delta function results from the Cutkosky cut.
Since the spinor particle before the q1 photon vertex is off
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FIG. 7. The field-theoretical model for inelastic electron scat-
tering with two-photon exchange. Thin solid lines denote the
electron, thick solid lines the spinor particle (charge�e), dashed
lines the massive neutral scalar particle. The crosses indicate that
the intermediate particle is on mass-shell (Cutkosky cut).
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mass shell, p2
0 � M2, and the spinor particle after the

vertex is on mass shell, p2
1 � M2, the q1 photon may

have zero virtuality, q2
1 � 0, while carrying a nonvanishing

momentum. (For the q2 photon both spinor particles at the
vertex are on mass shell, and its virtuality can only go to
zero if q2 ! 0.) Consider now the collinear limit for the q1

photon, Eqs. (54) and (55). In this case q2
1 ! 0, and from

q2 � q� �1� z�l (where q � l� l0), one obtains q2
2 �

zq2. The fraction z is kinematically fixed to be

 z � �s0 �M
2�=�s0 � p

2
0�; (61)

where

 s0 
 �l� p0�
2 � �l0 � p0�2 (62)

is the invariant of the q1 exchange subprocess, and the off-
shell momentum p0 is reconstructed from 4-momentum
conservation, p0 � p0 � q � p0 � l� l0. Likewise, the 4-
momentum p1 is fixed as p1 � p0 � q2 � p0 � zl� l0.
Calculating then the contraction of the electron and hadron
Compton tensors in the collinear approximation, Eqs. (56)
and (60), we find that it does not vanish in the collinear
limit, and that the integral Eq. (50) is divergent. Using the
fact that the delta function reduces the momentum integral
to a two-dimensional one, the divergent part can conven-
iently be calculated by converting Eq. (50) to an angular
integral in the CM frame of the final electron and the spinor
particle (cf. Sec. III). Without the numerator, the divergent
part is

 lim
l1!zl

Z d�1

�q2
1 � 


2��q2
2 � 


2�
� �

�

q2E2
1

ln
�
4E2

1

z
2

�
; (63)

where

 E1 �
s0 �M2

2
�����
s0
p (64)

is the energy of the intermediate electron in the CM frame,
and we have introduced a ‘‘photon mass’’ 
 to regularize
the singularity. Altogether, including the numerator fac-
tors, we obtain for the contribution to the ep! e0X am-
plitude from the collinear region in Fig. 7(a),
 

ImM�a�
ep!e0X �

e4g

32�q2E1
�����
s0
p j��l0; l�

	 �U�p0�	��p̂1 �M�U�p� ln
�
4E2

1

z
2

�
; (65)

where p1 � p0 � zl� l0. This expression is divergent in
the physical limit, 
! 0. Computing the interference
cross section with the one-photon exchange amplitudes
for the same ‘‘spinor� scalar’’ final state, it is straightfor-
ward to verify that Eq. (65) leads to a divergent result for
the transverse spin-dependent cross section in this model,
similar to what was obtained in Ref. [25].

Following the arguments present above, the divergence
resulting from the ‘‘off-shell’’ diagram, Fig. 7(a), should be

canceled by the contribution of the ‘‘interaction’’ diagram,
Fig. 7(b), in which the spinor particle emits the scalar
between the two photon couplings. Indeed, we find that
Fig. 7(b), when calculated in the same collinear-photon
approximation, produces an expression equal to Eq. (65)
but opposite in sign, leading to exact cancellation of the
divergence in the resulting amplitude. Similarly, the diver-
gent term arising from the second exchanged photon being
collinear to the final-state electron (q2

2 � 0) cancels in the
sum of contributions from the diagrams of Figs. 7(d) and
7(c). In summary, the field-theoretical model explicitly
demonstrates that collinear divergences are absent if off-
shell and interaction effects are treated consistently and
electromagnetic gauge invariance is maintained by the
approximations. This observation serves as a basis of our
studies of the spin-dependent two-photon exchange cross
section in QCD and a constituent quark model in Secs. V
and VI.

The analysis presented here applies to collinear singu-
larities arising from exchanges in which the virtuality of
one of the photons tends to zero, while that of the other
photon remains nonzero. In general, collinear divergences
can also arise from the region in which both photon vir-
tualities tend to zero simultaneously; this case corresponds
to vanishing momentum of the intermediate electron in the
CM frame. In our field-theoretical model such exchanges
do not occur in the amplitudes for single-boson emission
into the final state (i.e., in first order of the coupling
constant), because in all diagrams of Fig. 7 at least one
of the internal spinor particles attached to a photon vertex
is on mass shell, making it impossible for that photon to
have zero virtuality. They would, however, occur in higher-
order amplitudes with multiple boson emission. Such ex-
changes would give rise to ln2-type singularities in the
individual diagrams, which again cancel in the sum of all
diagrams because of electromagnetic gauge invariance, as
outlined above.

A comment is in order concerning the role of the elec-
tron mass in collinear singularities. The above expressions
were derived for the case of zero electron mass, m � 0. If
the electron mass is not neglected, the electron polarization
vector s can have a component transverse to the direction
of the initial electron, and a new kind of transverse spin
dependence of the inclusive eN cross section appears,
through a term proportional to

 �s; l	 l0�: (66)

It corresponds to a beam spin asymmetry for electrons
polarized in the direction normal to the scattering plane,
while the target is unpolarized. For electrons polarized in
this way, the electron virtual Compton tensor in the col-
linear limit is no longer proportional to the collinear pho-
ton momentum as in Eq. (56), and collinear photon
exchange makes a nonzero contribution to the beam spin-
dependent cross section, Ref. [24]. In this case, however,
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the photon virtualities are limited by the (small) electron
mass, and collinear photon exchange does not lead to a
divergence but to a sizable finite contribution to the beam
spin-dependent cross section, which is enhanced by loga-
rithmic and double-logarithmic factors ln�Q2=m2� and
ln2�Q2=m2�, as was shown in Ref. [24] (see also
Refs. [28,29]).

V. TRANSVERSE SPIN DEPENDENCE IN
DEEP-INELASTIC SCATTERING

The arguments of Sec. IV suggest that the two-photon
exchange in the transverse spin-dependent cross section is
free of QED IR and collinear divergences even when
allowing for a nontrivial structure of the target and the
hadronic final state. Based on these findings, we now want
to discuss the transverse target spin dependence in DIS
kinematics in QCD. We are not aiming for a full calcula-
tion of the two-photon exchange contribution in the col-
linear factorization scheme. Rather, we want to discuss the
underlying assumptions and ingredients in such a calcula-
tion, and prepare the ground for a self-consistent approxi-
mate treatment of the problem.

Generally, in DIS kinematics we expect the dominant
contribution to the target spin-dependent two-photon ex-
change cross section to arise from the amplitudes in which
the two photons couple to a single quark, namely, the same
quark as is hit in the interfering one-photon exchange
amplitude, see Fig. 8(a). This follows from (a) the fact
that the partonic final state in the two-photon exchange
amplitude needs to be the same as in the interfering one-
photon exchange amplitude, (b) that no large contributions
arise from the soft regime of the two-photon exchange
because of the IR finiteness of the asymmetry. More pre-
cisely, the only way in which a two-photon exchange
coupling to different quarks could produce a final state
similar to that of one-photon exchange in DIS would be if
one of the photons were ‘‘hard’’ (with 4-momentum almost
equal to q), and the other were ‘‘soft’’ (with longitudinal
and transverse momentum in the target rest frame of the
order of the soft interaction scale, say, the inverse nucleon
radius, R�1

N ). The amplitude of such ‘‘hard-soft’’ configu-
rations in the two-photon exchange is not enhanced com-
pared to average configurations, thanks to the overall IR
finiteness of the process. On the other hand, the phase
space (integration volume) for such configurations is sup-
pressed compared to those in which the two-photon ex-
change couples to the same quark and both photons have
‘‘average’’ 4-momenta of the order q=2. Thus, the two-
photon coupling to the same quark should dominate. (A
more explicit version of this argument will be presented in
Sec. VIII for the case of soft high-energy scattering, using
closure over nonrelativistic quark model states.) While this
conclusion seems plausible, we presently have no way of
proving it more rigorously, such as by way of a formal twist

expansion as in one-photon DIS. We shall adopt it as a
working assumption in the following.

It then follows that the transverse spin-dependent cross
section can be described in a ‘‘partonlike’’ picture, in
which the reaction happens predominantly with a single
quark in the target. In this case one can easily see that one
is dealing with two distinct contributions, defined by
whether the quark helicity is conserved or flipped in the
quark subprocess, see Figs. 8(b) and 8(c). [The hadron
helicity is always flipped between the in and out state, as
required by the transverse spin asymmetry, cf. Eq. (20).]
Perturbative QCD interactions (gluon radiation) preserve
the quark helicity and thus do not ‘‘mix’’ these
contributions.

In the process of Fig. 8(b) the quark helicity is conserved
in the quark subprocess. This contribution to the transverse
spin-dependent cross section of unpolarized electron scat-
tering is similar to that giving rise to the transverse spin
structure function gT 
 g1 � g2 in longitudinally polar-
ized electron scattering with a transversely polarized tar-
get. The latter is determined by the matrix element of the
quark helicity-conserving (chirally even), transversely po-

(a)

(b)

with target
interaction

(c)

vacuum
fields

gT

h

FIG. 8 (color online). Transverse spin dependence of the DIS
cross section in QCD. (a) Assumption of dominance of two-
photon exchange with the same quark. (b) Quark helicity-
conserving process involving interactions with the target rem-
nants. (c) Quark helicity flip due to interaction with nonpertur-
bative vacuum fields.
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larized twist-3 density gT�x�, defined as (i � 1, 2 is a
transverse index)
 

SigT;f�x� �
p�

M

Z dz�

8�
eixp

�z�=2

	 hpST j � f�0�	i	5 f�z�jpSTiz?�0;z��0; (67)

where z
 
 z0 
 z3 and z? are the usual light-cone vector
components, � ,  are the quark fields, f denotes the quark
flavor, and we have omitted the gauge link in the light-ray
operator for brevity. Indeed, the QCD calculation of the
quark helicity-conserving two-photon exchange contribu-
tion would start from the ‘‘handbag graph’’ of Fig. 8(a),
with the quark density given by Eq. (67) [25]. However,
keeping only this graph is not a consistent approximation.
On one hand, evaluating it with the initial and final quark
on mass shell would give zero, as can be seen from the
results of Sec. III, which show explicitly that the spin-
dependent interference term for an on-shell point particle
is proportional to the particle mass. On the other hand,
allowing for finite virtuality of the initial and final quark
leads to the appearance of collinear divergences [26],
which are canceled only by graphs with explicit interac-
tions of the active quark in the intermediate and final state,
as was shown in detail in Sec. IV. The quark helicity-
conserving contribution of Fig. 8(b) is thus of essentially
‘‘nonpartonic’’ character, requiring interaction of the ac-
tive quark with the spectator system.

In the process of Fig. 8(c) the quark helicity is flipped in
the course of the electron-quark scattering process. In
short-distance processes such as DIS, the amplitude for
quark helicity flip is usually thought to be of the order of
the current quark mass, mf � few MeV, which is very
small compared to typical hadronic mass scales. How-
ever, it is known that at larger distances the phenomenon
of spontaneous chiral symmetry breaking sets in, and
helicity-flip amplitudes of the order of a typical ‘‘constitu-
ent quark’’ mass, Mq � 300 MeV, are generated dynami-
cally by interactions with nonperturbative vacuum fluc-
tuations. We suggest here that this phenomenon plays an
important role in the transverse spin-dependent eN cross
section even in DIS kinematics. This perhaps somewhat
surprising assertion is supported by the following
arguments.

First, in QCD significant helicity-flip amplitudes should
be present for quarks with virtualities smaller than some
characteristic scale, �2

chiral, which is determined by the
typical size of the nonperturbative field configurations
instrumental in the spontaneous breaking of chiral symme-
try. Quarks with virtualities � �2

chiral should experience
only helicity-conserving perturbative interactions. This is
explicitly seen in dynamical models of chiral symmetry
breaking in QCD, such as the instanton vacuum or Dyson-
Schwinger equations, which show a momentum-dependent
dynamical quark mass which reduces to the current quark
mass at virtualities � �2

chiral [in the instanton vacuum the

chiral symmetry breaking scale is determined by the aver-
age instanton size in the vacuum, �2

chiral � �
�2 �

�0:6 GeV�2]. Neglecting for the moment perturbative
QCD radiation, the transverse spin dependence would be
given by the imaginary part of the two-photon ‘‘box
graph,’’ in which the intermediate quark is on mass shell.
It is precisely such low-virtuality quarks which experience
large helicity-flip amplitudes due to chiral symmetry
breaking [30].

Second, the previous argument can be generalized to
account for the presence of perturbative QCD radiation.
Generally, QCD radiation in DIS processes leads to a broad
distribution of quark virtualities, extending up to the scale
Q2. The condition to propagate through a low-virtuality
quark line (in order to enable a helicity flip) results in a
suppression at the photon-quark vertices, measured by the
Sudakov form factor. In the usual DIS cross section, which
is given by the imaginary part of the quark Compton
amplitude, this suppression is compensated by real gluon
emissions. In the two-photon exchange process responsible
for the transverse spin asymmetry, it is likely that this
compensation happens only incompletely, and that a resid-
ual Sudakov suppression remains. To estimate the magni-
tude of this suppression, we consider the standard on-shell
Sudakov form factor,

 S�Q2� � exp
�
�
�sCF

4�
ln2 Q

2

�2

�
; (68)

where �s � 4�=�b ln�Q2=�2
QCD�� is the one-loop running

coupling constant at the scale Q2, with b � 11� �2=3�Nf
and �QCD � 0:20 GeV for Nf � 3, and CF � 4=3.
Furthermore, �2 denotes the IR cutoff for gluon emission.
In the light of the above arguments about dynamical chiral
symmetry breaking, it is natural to identify this cutoff with
the chiral symmetry breaking scale,

 �2 ��2
chiral: (69)

Gluons of virtualities k2 <�2 are regarded as part of the
nonperturbative vacuum fluctuations which lead to the
spontaneous breaking of chiral symmetry and thus ‘‘con-
tained’’ in the dynamical quark mass. Specifically, with the
instanton vacuum value �2 � ��2 � 0:36 GeV2 we ob-
tain

 S�Q2� � �0:89; 0:86; 0:83� for Q2 � �2; 3; 4� GeV2:

(70)

With this value of IR cutoff the Sudakov suppression of
low-virtuality quark lines is not very substantial [31]. We
conclude that a potentially sizable contribution to the
transverse target spin dependence in inclusive DIS should
come from the quark helicity-flip process of Fig. 8(c). If we
chose instead the IR cutoff to be of the order

 �2 ��2
QCD; (71)

TRANSVERSE TARGET SPIN ASYMMETRY IN INCLUSIVE . . . PHYSICAL REVIEW D 77, 014028 (2008)

014028-13



we would obtain a substantially larger Sudakov suppres-
sion. With �2 � �2

QCD�Nf � 3� � 0:04 GeV2 we would
find

 S�Q2� � �0:56; 0:52; 0:5� for Q2 � �2; 3; 4� GeV2:

(72)

In this case amplitudes with quark helicity-flip would be
significantly suppressed in QCD compared to the constitu-
ent quark model estimate. In the context of the present
phenomenological discussion the choice of IR cutoff
should in principle be regarded as an additional assump-
tion; while it seems natural to choose it of the order of the
chiral symmetry breaking scale, this could be rigorously
justified only in an approximation scheme which treats the
nonperturbative helicity-flipping fluctuations and perturba-
tive gluon radiation in a unified framework.

In summary, we argue that a potentially sizable contri-
bution to the transverse target spin dependence in inclusive
DIS results from the quark helicity-flip process of the type
Fig. 8(c). This contribution is of the order of a typical
‘‘constituent quark’’ mass, Mq � 300 MeV, multiplying
the twist-2 quark transversity distribution, which is defined
as (S denotes the nucleon polarization 4-vector)

 

hf�x� �
Z dz�

8�
eixp

�z�=2

	 hpSTj � f�0�	
�	5Ŝ f�z�jpSTiz?�0;z��0: (73)

For a review of the properties of this distribution and its
relation to other DIS observables, see e.g. Ref. [32].

It is interesting to compare the order-of-magnitude of
the expected helicity-conserving and helicity-flip contribu-
tions to the spin-dependent cross section. While we can
estimate the helicity-flip contribution in terms of the quark
transversity distribution in the nucleon and the spin-
dependent cross section for a pointlike constituent quark
(see Sec. VI), we cannot presently calculate the helicity-
conserving contribution in terms of gT;f and twist-3 quark-
gluon operators in the nucleon. However, we can compare
the ingredients, gT;f and hf�x�, and try to guess the relative
magnitude of the subprocess amplitudes in both contribu-
tions. Using the Wandzura-Wilczek relation for g2 [33],
which is valid in QCD up to terms proportional to twist-3
quark-gluon operators, we can express gT;f, Eq. (67), as

 gT;f�x� �
Z 1

x

dy
y
gf�y� � quark-gluon; (74)

where gf denotes the longitudinally polarized twist-2
quark density. The part given by matrix elements of
twist-3 quark-gluon operators was measured in the SLAC
E155 [34] and JLab Hall A [35] experiments and found to
be small (< 10�2), confirming theoretical predictions
from the instanton vacuum model [36]. Neglecting it, we

can calculate gT;f in terms of the twist-2 polarized parton
densities. Figure 9 shows gT�x� as estimated from Eq. (74),
using the polarized parton densities of Ref. [37]. One sees
that for x * 0:3 the gT;f�x� are smaller than gf�x� at least
by a factor of 2. A straightforward comparison between the
helicity-flip and helicity-conserving contributions, assum-
ing that the amplitudes of the quark subprocesses are
otherwise comparable, is then

 Mqhf�x� $ MgT;f�x�; (75)

where Mq is a ‘‘constituent quark’’ mass, measuring the
generic strength of the quark helicity-flip amplitude due to
nonperturbative vacuum fields. Since it is reasonable to
assume that hf�x� � gf�x�, and Mq is not small (in the
constituent quark model, Mq �M=3), we would conclude
that the helicity-conserving contribution should be of the
same order-of-magnitude as the helicity-flipping contribu-
tions. At least one can say that substantially different
values for the two contributions could result only if the
electron-quark subprocess amplitudes are very different in
the two cases.

In fact, one can argue that the comparison of the two
contributions as in Eq. (75) overestimates the helicity-
conserving contribution. Namely, the electron-quark scat-
tering amplitude for the helicity-conserving process is zero
for on-shell, collinear quarks and requires nonzero virtual-
ity. A more realistic comparison would thus be

 Mqhf�x� $
hk2
Ti

M
gT;f�x�; (76)

where hk2
Ti denotes the average transverse momentum

squared in the transverse momentum-dependent twist-3
distribution. Since one expects that hk2

Ti �
�few 100 MeV�2, the factor hk2

Ti=M
2 further reduces the

-1

 0

 1

 2

 0.2  0.4  0.6  0.8
x

u quark

d quark

g(x)

gT (x)

FIG. 9. The twist-3 transversely polarized quark distribution,
gT�x�, as estimated from Eq. (74), evaluated with the polarized
parton densities of Ref. [37].
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helicity-conserving compared to the helicity-flip
contribution.

To summarize, we expect the dominant contribution to
the transverse spin-dependent DIS cross section to come
from amplitudes in which the two-photon exchange cou-
ples to a single quark. There are two distinct contributions
to the transverse spin-dependent interference cross section
in DIS, in which the quark helicity is either conserved or
flipped in the electron-quark subprocess. Both contribu-
tions are ‘‘higher twist’’ in the sense that they involve
dynamical effects not present in the leading-twist approxi-
mation (explicit spectator interactions or quark masses).
We have argued that the quark helicity-flip contribution in
QCD should be sizable if Sudakov suppression starts only
at the chiral symmetry breaking scale, �2

chiral � �2
QCD.

Our order-of-magnitude estimates show that the quark
helicity-conserving contribution is unlikely to dominate
over the helicity-flip one.

VI. CONSTITUENT QUARK MODEL OF
COMPOSITE NUCLEON

We now want to make a quantitative estimate of the
transverse spin asymmetry of the DIS cross section which
reflects the qualitative findings of our analysis of Sec. V. To
this end, we employ a relativistic constituent quark model
in the light-front formulation. This framework offers
proper relativistic kinematics, while nevertheless maintain-
ing close correspondence to the nonrelativistic description
of bound states in the rest frame. The model describes DIS
as elastic scattering from pointlike constituent quarks; it
has a partonic limit, and the parton densities can be ex-
pressed as the longitudinal momentum densities of the
light-front wave functions (from the QCD point of view
these correspond to the parton densities at a low normal-
ization point). Most importantly, through the constituent
quark mass this model also generates nonzero quark
helicity-flip amplitudes, which play an important role in
the transverse spin asymmetry (see Sec. V); this aspect of
constituent quark models was explored previously in rela-
tion to the high-Q2 behavior of the proton form factor ratio
QF2=F1 [38].

To arrive at a fully self-consistent scheme of approxi-
mations, we endow the constituent quark model with the
additional dynamical assumption that the nucleon be a
weakly bound state (composite). That is, we suppose that
the quark transverse momenta, which are of the order of the
inverse transverse size of the bound state, are parametri-
cally small compared to the constituent quark mass,

 hk2
Ti � R

�2
N � M2

q: (77)

This assumption permits several simplifications in the
calculation of the transverse spin-dependent cross section
from two-photon exchange. First, it suppresses two-photon
exchange with different quarks (and other interference
contributions involving different quarks) beyond the ge-

neric suppression discussed in Sec. V (see also Sec. VIII),
and leaves the ‘‘partonlike’’ processes as the dominant
ones. Second, among the ‘‘partonlike’’ processes it sup-
presses the quark helicity-conserving contribution of
Fig. 8(b) (which is proportional to hk2

Ti) and leaves the
quark helicity-flip contribution of Fig. 8(c) (which is pro-
portional to Mq) as the dominant one. Third, it allows us to
consistently evaluate the latter in a relativistic impulse
approximation with on-shell quarks, which exactly pre-
serves electromagnetic gauge invariance and is free of
collinear divergences.

The compositeness assumption (77) is not intended as a
reflection of actual nucleon structure (in reality jkT j �
few 100 MeV in the constituent quark model), but as a
theoretical idealization which allows us to calculate the
two-photon exchange cross section in a self-consistent
scheme. Compared to the usual one-photon exchange ap-
proximation for form factors and structure functions, in
two-photon exchange processes one is dealing with several
new effects (collinear divergences, exchanges with differ-
ent constituents) which can qualitatively distort the results
if not treated consistently. One therefore has to be prepared
to make stronger assumptions about the structure of the
bound state.

The technical implementation of the above ideas takes
the form of a relativistic impulse approximation, in which
the electron scatters elastically from a massive, on-shell
constituent quark, see Fig. 10 [39]. In this approximation
the squared modulus of the invariant amplitude, summed
over all hadronic final states (corresponding to the cross
section for inclusive eN scattering), is given by

 X
X

jMeN!e0Xj
2 �

X
f

Z 1

0

d�
�

Z d2kT
�2��2

	 tr��f��; kT jp��f�k; l; l0��; (78)

where k is the 4-momentum of the active quark, with light-
cone 3-momentum components k� 
 k0 � k3 � �p� and
kT , and energy k� � �k2

T �M
2
q�=k�, corresponding to

k2 � M2
q (for simplicity we assume the constituent quark

p

l l’

p

l’ l

kk

ρ

FIG. 10. Transverse spin-dependent two-photon exchange
cross section in the constituent quark model with the composite
nucleon approximation, Eq. (78).
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mass Mq to be the same for both light quark flavors f � u,
d). The matrix �f represents the squared modulus of the
invariant amplitude for elastic scattering of the electron
from the on-shell quark with 4-momentum k,

 jMeq!e0qj
2 � �Uf�k��f�k; l; l

0�Uf�k�; (79)

where Uf denotes the initial quark spinor, and the depen-
dence on the initial quark helicity is contained in the
spinors [the final quark helicity is summed over, and the
initial/final electron helicities are averaged/summed over,
as in Eq. (12)]. Furthermore, in Eq. (78) �f denotes the
density matrix of the active quark in the nucleon, depend-
ing on the quark momentum variables � and kT , as well as
on the nucleon polarization. On grounds of Lorentz invari-
ance, parity invariance, and the constraints imposed by the
Dirac equation for the quark spinors, we can parametrize
the density matrix for a quark in a transversely polarized
nucleon as

 �f �
k̂�Mq

2
�ff��; kT� � 	5âhf��; kT��; (80)

where

 a 
 S�
�Sk�k

k2 ; �ak� � 0 (81)

is the component of the nucleon polarization vector or-
thogonal to the quark 4-momentum. The functions
ff��; kT� and hf��; kT� in this parametrization are related
to the quark unpolarized and transversity parton densities
in this model by

 

Z d2kT
�2��2

ff��; kT� � ff���; (82)

 

Z d2kT
�2��2

hf��; kT� � hf���: (83)

By explicit calculation, one can verify that the transversity
parton density thus obtained coincides with the one defined
in terms of matrix elements of the quark light-ray opera-
tors, Eq. (73), if the quark fields there are identified with
the massive constituent quarks of this model. As already
mentioned, in the context of QCD these parton densities
would correspond to a low normalization point of �2 �
R�2
N .
When calculating DIS observables in the model defined

by Eq. (78) et seq., we work in a frame where the initial
proton momentum and the momentum transfer are col-
linear and have components along the 3-direction: qT ,
pT � 0, with p� > 0. The mass-shell condition for the
final-state quark, �k� q�2 � M2

q, then fixes the plus mo-
mentum fraction of the initial quark to be

 � � x
1�

���������������������������
1� 4M2

q=Q2
q

1�
��������������������������������
1� 4x2M2=Q2

p ; (84)

where

 x 

Q2

2�pq�
(85)

is the usual Bjorken variable of the DIS process. Following
the composite nucleon assumption, we neglect corrections
of the order k2

T=s in the quark momentum fraction but
retain corrections due to the finite proton and quark
masses. In this approximation the 4-momentum of the
active quark can be expressed covariantly as

 k � Ap� Bq� k?; (86)

where �pk?�, �qk?� � 0 and the scalars A and B are given
by

 A �
���Q2 � 2M2

q�

�Q2 �M2
q � �

2M2 ; (87)

 B �
��M2

q � �
2M2�

�Q2 �M2
q � �2M2 ; (88)

with

 � 

1

2

�
1�

�������������������
1�

4M2
q

Q2

s �
: (89)

The invariant of the electron-quark subprocess is then
obtained as

 ssub 
 2�lk� � A�s�M2� � BQ2 �M2
q; (90)

up to terms proportional to the quark transverse momentum
which give corrections of the order hk2

Ti.
The scheme of approximation defined by Eqs. (84)–(90)

has several interesting properties. First, in the limit Q2 !
1 we recover � � x and ssub � xs, as in the parton model.
Second, in the limit of zero binding, if we consider the
nucleon as an assembly of free quarks of mass Mq and
neglect the binding forces between them, each quark
should carry a fractionMq=M of the nucleon’s momentum.
Indeed, for x � Mq=M Eq. (84) gives � � x � Mq=M,
and from Eqs. (87) and (88) one obtains A � x and B �
0, showing that our approximations respect this limit.
Third, our approximations are consistent with the overall
kinematic boundaries of inclusive eN scattering. For a
given eN CM energy (s � 2EbeamM�M

2 for fixed-target
experiments) the minimum value of x attainable is

 xmin �
Q2

s�M2 �Q2M2=�s�M2�
; (91)

corresponding to the maximum allowed energy loss of the
electron, or a laboratory scattering angle of �lab � �.

A. AFANASEV, M. STRIKMAN, AND C. WEISS PHYSICAL REVIEW D 77, 014028 (2008)

014028-16



Conversely, for given x the maximum attainable value of
Q2 is

 Q2
max �

x�s�M2�

1� xM2=�s�M2�
: (92)

With our choice of kinematic variables for the electron-
quark subprocess, Eqs. (84)–(90), this overall kinematic
boundary corresponds exactly to the maximum value of the
CM scattering angle of the electron-quark subprocess,
�cm�electron� quark� � �, as one can show by explicit
calculation. The reason for this coincidence is that the
overall kinematic boundary corresponds to perfectly col-
linear kinematics (in the laboratory frame the electron
bounces back with zero transverse momentum), which is
correctly described in our approximation where transverse
momenta are neglected.

The calculation of the normal spin asymmetry of the ep
cross section in the composite nucleon approximation
defined above is straightforward, and essentially amounts
to evaluating the asymmetry for the pointlike target in the
kinematics of the quark subprocess. The matrix �f repre-
senting the squared amplitude of the quark-level subpro-
cess, Eq. (79), is given by

 �f �
1

2Mq

�
XU;f �

N̂sub	5�������������
�N2

sub

q XN;f

�
; (93)

where N�
sub 
 �4����	l�l0�k	 is the normal 4-vector of

the electron-quark subprocess [cf. Eqs. (13) and (86)], and
the functions XU;f and XN;f correspond to the results of
Sec. III with s! ssub [cf. Eq. (90)], M ! Mq, and target
charge e! efe, where ef are the fractional quark charges.
In our scheme of approximation, where the quark trans-
verse momenta are neglected in kinematic factors, one has

�SNsub�=
�������������
�N2

sub

q
� �SN�=

�����������
�N2
p

. The result for the trans-
verse spin asymmetry in inclusive DIS in the composite
nucleon approximation can then be expressed as

 AN�s;Q
2; x�comp � R���AN�ssub; Q

2�M�Mq
; (94)

where � and ssub are given by Eqs. (84) and (90), and AN on
the right-hand side is the asymmetry for a pointlike con-
stituent quark of charge �e and mass Mq [i.e., Eq. (44)
with the mass M replaced by Mq], evaluated at the sub-
process invariants ssub and Q2. The information about the
quark structure of the target is contained in the structure
factor

 R��� 


P
f
e3
fhf���P

f
e2
fff���

; (95)

which is the ratio of the sums of quark transversity and
unpolarized parton densities, weighted with the quark
charges corresponding to the two-photon–one-photon in-

terference cross section (numerator) and the one-photon
cross section (denominator). This ratio depends on the
spin/flavor wave function of the quark bound state, as
well as on the momentum distribution of the quarks. We
shall discuss specific models for this ratio in Sec. VII.

Equation (94) was derived in the approximation of weak
binding between the constituents, where the quark momen-
tum distributions are concentrated around ��Mq=M�
1=3. It therefore should be applied only in the region
around x� 0:3. In particular, for x! 1 correlations be-
tween constituents in the wave function become important,
and the picture of the composite nucleon is no longer
applicable.

A cautionary remark is in order concerning the model
dependence of the results presented here. The transverse
spin-dependent DIS cross section involves not only the
‘‘good’’ (� ) light-cone component of the current opera-
tor. This is seen e.g. in the study of the high-energy
behavior of the asymmetry (see Sec. VIII), where it is
noted that the leading high-energy contribution to the cross
section, resulting from the� current components only, has
no transverse spin dependence. Generally, in light-front
quantization observables involving other than the good
current component are more model dependent than those
involving only the good component. In Ref. [40] this
problem was addressed by eliminating the ‘‘bad’’ (� )
component using gauge invariance, and applying a trick
to the transverse component. The extension of this tech-
nique to the case of two-photon exchange processes is an
interesting problem but beyond the scope of the present
paper.

VII. NUMERICAL ESTIMATES

For a numerical estimate of the asymmetry we need to
specify the spin/flavor wave function of the nucleon. Since
Eq. (94) was derived for the idealized case of a composite
nucleon (weak binding), the spin-flavor wave function
needs to be modeled consistently with this approximation.
We consider two simple models which meet this require-
ment.

(a) SU�6� spin/flavor wave function.—The simplest
choice of wave function consistent with the com-
posite nucleon assumption is the wave function of
the nonrelativistic quark model. In this model, the
probabilities Pf� for finding a quark in the proton
wave function with flavor f � u, d and spin projec-
tion � � �, � along the direction of the transverse
proton spin, are
 

Pu� �
5
9; Pu� �

1
9;

Pd� �
1
9; Pd� �

2
9;

(96)

with
P
f�Pf� � 1, see Ref. [41] and references

therein. The probabilities for the neutron are ob-
tained by interchanging u$ d. Neglecting the ef-
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fect of spin on the quark momentum distributions,
we obtain

 R �
e3
u�Pu� � Pu�� � e

3
d�Pd� � Pd��

e2
u�Pu� � Pu�� � e2

d�Pd� � Pd��
(97)

 

�

8<:
11
27 � 0:41 �proton�;

�2
9 � �0:22 �neutron�:

(98)

The ratio of the neutron to the proton structure
factors, and thus of the corresponding asymmetries,
in this model is

 

Rn

Rp
� �

6

11
� �0:55: (99)

(b) Transversity�helicity distributions.—For a weakly
bound nucleon we can neglect sea quarks and as-
sume the valence quark transversity to be equal to
the helicity distributions. It then becomes possible to
evaluate the ratio (95) using phenomenological pa-
rametrizations for the unpolarized and helicity par-
ton densities. With the parametrizations of
Refs. [37,42] we find that for Q2 � few GeV2 the
ratio is practically independent of Q2, and approxi-
mately constant in the region 0:2< x< 0:5, with
values
 

R�x� �

8<
: 0:35 �proton�;

�0:25 �neutron�:
(100)

These values are close to the ones obtained with the
SU�6� wave function, Eq. (98).

It is interesting to note that with both models (a) and (b) the
ratio of the proton and neutron asymmetries in the com-
posite nucleon approximation is numerically not far from
the ratio of the proton and neutron magnetic moments,

 

�p

�n � �1:46: (101)

This is what one would expect from the simple classical
picture of the normal spin asymmetry as being due to the
scattering from the magnetic field generated by the target
[see Fig. 1(b)].

For a numerical estimate of the asymmetry in the
composite nucleon approximation, Eq. (94), we use a
constituent quark mass Mq � M=3. Figure 11 shows the
asymmetry for an electron-proton CM energy of s �
10 GeV2 (corresponding approximately to the planned
Jefferson Lab Hall A experiment [10] with 6 GeV beam
energy), forQ2 � 2 GeV2, as a function of x. Note that for
given s and Q2, the minimum value of x which is kine-
matically attainable is given by Eq. (91). Comparison of
Fig. 11 with Fig. 4 shows that the magnitude of the asym-

metry for the composite proton is reduced by a factor of�4
compared to the pointlike proton approximation. This
change results from a combination of various factors: the
quark charges and polarizations in the structure factor
Eq. (95), the change of the target mass M ! Mq, and the
change of the effective CM energy s! ssub [the latter
effect partly compensates the change in the target mass,
because the pointlike asymmetry Eq. (45) is proportional to
M=

���
s
p

]. Figure 11 shows the results obtained with assump-
tions (a) and (b) about the spin-flavor wave function of the
target. One sees that the two models give comparable
values of the asymmetry for both proton and neutron.
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FIG. 11. The normal target spin asymmetry AN in DIS kine-
matics in the composite nucleon approximation, Eq. (94), for
both proton and neutron target, with different assumptions about
the spin-flavor wave function: (a) SU�6� symmetry,
(b) transversity � helicity distributions. Note the different signs
for proton and neutron. Shown is the asymmetry as a function of
x, for s � 10 GeV2 and Q2 � 2 GeV2. The values of x are
kinematically restricted to x > xmin, Eq. (91).
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Of interest is also the deuteron target. Because of its
isoscalar character, the structure factor (95) for the deu-
teron is

 Rd��� �
e3
u � e

3
d

e2
u � e

2
d

hd���

fd���
�

7

15

hd���

fd���
; (102)

where hd 
 hdu � hdd and fd 
 fdu � fdd are the isoscalar
quark distributions in the deuteron. Approximating the
latter by the average of proton and neutron distributions,
and using isospin invariance, one has

 hd 
 �hu � hd�=2; fd 
 �fu � fd�=2; (103)

where the distributions without a superscript refer to the
proton. With the SU�6� wave functions, cf. Eq. (96), one
obtains

 

hd

fd
�
Pu� � Pu� � Pd� � Pd�
Pu� � Pu� � Pd� � Pd�

�
1

3
; (104)

and thus

 Rd � 7
45 � 0:16: (105)

The asymmetry for the deuteron has the same sign as for
the proton, but its magnitude is reduced by a factor
21=55 � 0:38. With the ‘‘transversity � helicity’’ ap-
proximation for the proton and neutron and the parametri-
zations [37,42], one obtains hd���=fd��� � 0:25 at
� � 1=3, close to the SU�6� result.

It is interesting to study the dependence on the kinematic
variables of the asymmetry obtained in the composite
nucleon, Eq. (94). Figure 12 (left panel) shows the asym-
metry as a function of x, for various fixed values ofQ2, and
fixed s. One sees that the maximum value of the asymme-
try decreases with increasing Q2. This is because the
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FIG. 12. The normal target spin asymmetry AN (note the minus sign on the plot axis) for the proton in the composite nucleon
approximation, Eq. (94), as a function of x and Q2. Shown are the results for the SU�6� spin/flavor wave function, with s � 10 GeV2.
Left: x-dependence for several values of Q2 (indicated above the curves). The values of x are kinematically restricted to x > xmin,
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max, Eq. (92).
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FIG. 13. The normal target spin asymmetry AN (note the minus
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approximation, as a function of the squared electron-proton CM
energy, s, for x � 0:3 and various values of Q2 (indicated above
the curves). The asymptotic behavior at large s is AN � s�2, with
the coefficient proportional to Q3, cf. Eqs. (108) and (111).
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magnitude of the asymmetry is inversely proportional to
the invariant CM energy of the quark subprocess, s1=2

sub
[cf. Eq. (45) with s! ssub], and ssub is numerically close
to Q2 at the large subprocess scattering angle correspond-
ing to the maximum value of the asymmetry. Figure 12
(right panel) shows the asymmetry as a function of Q2, for
various fixed values of x. For fixed s and x, the Q2 range is
kinematically restricted to values lower than Eq. (92).

Figure 13 shows the dependence of the asymmetry on
the squared electron-nucleon CM energy, s, for fixed x and
Q2. This dependence could in principle be tested by com-
paring measurements at different beam energies, similar to
the L=T separation of electroproduction cross sections.
General considerations suggest that at large s the asymme-
try vanishes as s�2, cf. Eq. (108) in Sec. VIII. The asym-
metry obtained in the composite nucleon approximation
exhibits this behavior, see Fig. 13.

VIII. TRANSVERSE SPIN DEPENDENCE IN SOFT
HIGH-ENERGY SCATTERING

In addition to DIS it is interesting to consider the trans-
verse spin dependence in soft high-energy scattering, i.e.,
the limit of large scattering energy, but small energy and
momentum transfer to the target,

 s� �2; Q2;M2
X ��

2; (106)

where� denotes a typical hadronic mass scale. In this limit
one can analyze the two-photon exchange interference
cross section with general methods for studying the high-
energy behavior of QED amplitudes. Also in this limit, one
can use closure over nonrelativistic quark model states to
describe the inclusive final state and obtain a new perspec-
tive on the dominance of single-quark scattering at larger
momentum transfers.

It is well known that in QED the large-s behavior of
scattering amplitudes having the form of two blocks con-
nected by t-channel photon exchange is determined only
by the number of the exchanged photons and their polar-
ization states [43]. The internal structure of the blocks,
which themselves do not contain any large invariants, is
important only insofar as it determines which polarization
states can contribute. One can easily see that for an electron
scattering from a pointlike target the so-called ‘‘nonsense’’
polarization, which gives the dominant contribution to the
cross section, does not give rise to a transverse spin de-
pendence. Indeed, the high-energy behavior of the asym-
metry for the pointlike target, as follows from expanding
Eq. (45) in the region of small CM angle, �cm � 2Q=

���
s
p

, is

 AN �
�MQ3

2s2 �s� Q2;M2�; (107)

i.e., the asymmetry vanishes in the high-energy limit.
Assuming the polarization structure of the blocks in the
pointlike target case to be representative of the general
case, we conclude that the s-dependence of the inclusive

asymmetry should be the same as in the point particle case,

 AN � s�2 �s� �2;Q2;M2
X ��

2�: (108)

A general proof of this statement, adapting the methods of
Ref. [43], we leave up to future work.

TheQ2 dependence of the asymmetry in the high-energy
limit (106) can be studied using general arguments for
soft scattering from a composite system based on the
mean-field approximation of nuclear physics, see e.g.
Refs. [44,45]. In the target rest frame, we consider the
nucleon as a generic nonrelativistic bound state of massive
quarks. For sufficiently small excitation energies, one can
use closure over the nonrelativistic quark states to calculate
the inclusive cross section. In this approach the electro-
magnetic coupling of the quark (with label i) is described
by the operator ei exp��i�qri��, where q is the photon
momentum and ei and ri the charge and position of the
quark. Consider now the two contributions to the spin-
dependent inclusive cross section shown in Fig. 14, where
the momenta in the two-photon exchange amplitude are
denoted by q�� and �. In the mean-field approximation,
they are proportional, respectively, to

 f�a���� /
X
i

e3
i ; (109)

 f�b���� /
X
i�j

e2
i ejF

2�	�2�; (110)

where F denotes the elastic form factor of the ground state
in mean-field approximation, and 	 is a coefficient of order
unity which results from the calculation of the recoil of the

− ∆q

(b)

∆ q

− ∆q

(a)

∆ q

FIG. 14. Interference of one-photon and two-photon exchange
in electron scattering from a bound state. (a) Two-photon ex-
change with the same constituent. (b) Two-photon exchange with
different constituents.
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spectator system [45]. Note that the form factor appears
only in the contribution (b), where the two photons couple
to different quarks, because here the momentum � has to
be routed through the nucleon wave function. To get the
cross sections, the functions f�a� and f�b� are to be inte-
grated over �, together with the photon propagators and
the numerator factors accounting for the kinematic mo-
mentum dependence of the asymmetry. The IR finiteness
of the spin-dependent cross section now guarantees that no
large contributions arise from momenta j�j & R�1

N (RN is
the size of the bound state), because of the vanishing of the
numerators. Thus, in the region of moderately large mo-
mentum transfers, s� Q2 � R�2

N , the relative magnitude
of contributions (a) and (b) is essentially determined by the
phase space available for the �-integral. In case (a) the
integral extends up to j�j2 �Q2, while in case (b) it is
limited to j�j2 & R�2

N by the form factors. We conclude
that in the region s� Q2 � R�2

N the dominant contribu-
tion to the spin-dependent cross section comes from the
coupling of the photons to the same quark; the contribution
in which the two photons couple to different quarks is
suppressed by a high power of 1=�R2

NQ
2�, which depends

on the detailed behavior of the bound-state form factor.
Similar arguments apply to the other possible contributions
to the interference cross section (not shown in Fig. 14) in
which not all photons couple to the same quark.

The spin-independent cross section in one-photon ex-
change approximation is likewise dominated by the scat-
tering of the two photons from the same quark; interference
contributions are suppressed by the bound-state form fac-
tor. In this case the above reasoning just reproduces stan-
dard arguments for the approach to scaling in the
nonrelativistic quark model. Combining the statements
about the spin-dependent and spin-independent cross sec-
tions for a composite target, we conclude that the asym-
metry (i.e., the ratio) should exhibit the same
Q2-dependence as the asymmetry for a point particle,
Eq. (107),

 AN �Q3 �s� Q2 � R�2
N �: (111)

In summary, our arguments based on the mean-field ap-
proximation imply that the Q2-dependence of the asym-
metry at moderately large Q2 is the minimal dependence
dictated by kinematics (i.e., by the need to have transverse
momentum transfer) but is not subject to any dynamical
form factor suppression. We note that the asymmetry cal-
culated in the constituent quark model with the composite
nucleon approximation (see Sec. VI) shows the behavior
described by Eqs. (108) and (111).

IX. SUMMARY AND OUTLOOK

The transverse spin dependence of the cross section of
inclusive eN scattering, in spite of being a ‘‘simple’’ ob-
servable, is seen to give rise to many interesting questions

of electrodynamics and strong interaction physics. Our
treatment of these problems in large parts has been of
exploratory nature. In the following we summarize our
main conclusions and describe several problems deserving
further study.

Concerning the electrodynamics aspects, we have
pointed out that the transverse spin-dependent cross sec-
tion due to two-photon exchange is free of IR divergences.
No cancellation of IR divergences between two-photon
exchange and real photon emission is required (as in the
two-photon corrections to the spin-independent cross sec-
tion), making the transverse spin-dependent cross section a
clean two-photon exchange observable. However, real pho-
ton emission can still make a finite contribution to the spin
dependence of ep! e0X, which in practice cannot be
separated from purely hadronic final states. To estimate
this contribution is an interesting problem for further study.

Concerning the strong interaction aspects, we have ar-
gued that in DIS kinematics a sizable contribution to the
transverse spin-dependent cross section results from quark
helicity-flip processes made possible by the nonperturba-
tive vacuum structure of QCD structure (chiral symmetry
breaking). The key point is that such processes are not
significantly Sudakov suppressed if the IR cutoff for gluon
emission is of the order of the chiral symmetry breaking
scale �2

chiral � �2
QCD. While this seems natural in the

context of the phenomenology of chiral symmetry break-
ing, we presently cannot offer rigorous arguments for the
correctness of this choice.

We have presented qualitative arguments why the quark
helicity-conserving contribution to the transverse spin-
dependent cross section, related to gT;f, is unlikely to
dominate. A complete QCD calculation of this contribu-
tion in the collinear factorization approach, which main-
tains electromagnetic gauge invariance by including quark-
gluon operators and avoids unphysical collinear divergen-
ces, is clearly an outstanding problem. The crucial question
is whether the complete result will involve the Wandzura-
Wilczek contribution to gT;f (which is given in terms of
matrix elements of twist-2 operators), or whether only the
twist-3 quark-gluon correlations will survive. In the former
case the helicity-conserving contribution could be esti-
mated in a model-independent way. In the latter case, it
is likely to be very small, and the dominant contribution to
the transverse spin-dependent cross section would most
likely come from the quark helicity-flip process governed
by the transversity distribution.

Our numerical estimates based on the constituent quark
model suggest that the asymmetry in the kinematics of the
planned Jefferson Lab Hall A experiment [10] is of the
order a few times 10�4, with different sign for proton and
neutron. The predicted asymmetry for the proton is larger
than for the neutron, suggesting that measurements with a
transversely polarized proton target would be a useful
complement to the planned measurements with 3He.
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