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The resummed differential thrust rate in e�e� annihilation is calculated using soft-collinear effective
theory (SCET). The resulting distribution in the two-jet region (T � 1� is found to agree with the
corresponding expression derived by the standard approach. A matching procedure to account for finite
corrections at T < 1 is then described. There are two important advantages of the SCET approach. First,
SCET manifests a dynamical seesaw scale q � p2=Q in addition to the center-of-mass energy Q and the
jet mass scale p�Q

����������������
�1� T�

p
. Thus, the resummation of logs of p=q can be cleanly distinguished from

the resummation of logs of Q=p. Second, finite parts of loop amplitudes appear in specific places in the
perturbative distribution: in the matching to the hard function, at the scale Q, in matching to the jet
function, at the scale p, and in matching to the soft function, at the scale q. This allows for a consistent
merger of fixed order corrections and resummation. In particular, the total NLO e�e� cross section is
reproduced from these finite parts without having to perform additional infrared regulation.
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I. INTRODUCTION

Quantum chromodynamics is a perturbative field theory
for �s < 1, corresponding to energies above �QCD �

500 MeV. However, setting up a good perturbation expan-
sion is more difficult than simply working order by order in
�s. The difficulty is that when computing a quantity with
more than one scale, logarithms of ratios of those scales
appear which invalidate the naive perturbation expansion.
For example, in e�e� collisions at center-of-mass energy
Q, we might look for the distribution of jets as a function of
the invariant mass p2 of the jet. Then the differential cross
section will have a correction of the form �slog2 p2

Q2 . Even

for �s < 1 these large logarithms can dominate if p2 is
sufficiently small. Luckily, these logarithms appear only in
certain combinations even at higher order, so that all the
terms of the form ��slog2 p2

Q2�
n can be (re)summed at once.

However, understanding which terms will appear, how to
resum them, and how to combine the resummed result with
fixed order results can be quite complicated. It is the goal of
this paper to show how it can be done using effective field
theory techniques.

In this paper, resummation and matching of event shapes
are studied using soft-collinear effective theory (SCET)
[1–5]. Event shapes are observables which are sensitive
to the overall distribution of final state particles, and there-
fore involve both short and long distance physics. We will
consider mainly the event shape � � 1� T where the
thrust T is defined by

 T � max
n

P
i
jpi � nj
P
i
jpij

(1)

summing over all momentum 3-vectors pi in the event and
maximizing over unit 3-vectors n. In the threshold region
near � � 0 large logarithms of the form �slog2� appear at

fixed order in perturbation theory. The resummed result
will be valid even if �slog2� is large, as long as �s and
�s log� are small.

Effective field theories provide a systematic approach to
resummation. They separate out physics at a hard under-
lying scale Q from physics associated with a scale of
interest p2 �Q2� and from even lower scales. At each
scale a separate matching calculation is done which is
independent of physics at asymptotically lower or higher
energy. Then the scale dependence is calculated using the
renormalization group. In this way, large logarithms cannot
appear because no two largely separated scales are acces-
sible to the theory at the same time. The soft-collinear
effective theory works by separating the degrees of free-
dom of QCD into soft modes and collinear modes in differ-
ent directions. The relevant scales are then associated with
the observable of interest, such as Q2�, or with the large
components of the collinear modes.

The resummation of event shapes in e�e� is not cur-
rently of extreme importance phenomenologically. It
nevertheless provides a clean arena (as compared to hadron
collisions) to explore resummation and matching. The
SCET techniques and most of the formulas we discuss
here were originally developed for B-physics, such as
resummation in b! s� decays [1,6–8]. They have also
been applied to the study of deep-inelastic-scattering near
x � 1 [9–11] and to the production of massive jets initiated
by top quark decays [12]. One convenient feature of effec-
tive field theories is factorization, which allows us to use
objects, such as soft and jet functions, calculated in one
process to study another. Thus, most of the hard work
required for calculation of the distributions we describe
here can be extracted from the literature. Nevertheless,
there are certain features, in particular, the NLO matching
step, for which event shapes are uniquely illuminating.

The breakdown of naive perturbation theory due to the
appearance of large logarithms is independent of �s blow-
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ing up and of nonperturbative effects. To emphasize this
point, and to simplify the resummed expressions, the run-
ning of �s will be simply turned off (setting � � 0) for
most of this paper. Working in the conformal limit removes
one scale (�QCD) from the problem and thus clarifies which
large logs are being resummed. It is not hard to turn � back
on, as will be shown in Sec. V. Also, we will be including
all one-loop results but no two-loop results. Thus, our
expressions will not contain a complete next-to-leading
log resummation, which should also resum the two-loop
double logs.

There are three steps involved in the calculation of event
shapes in SCET, associated with three separate scales. At
the hard scale �h �Q, QCD is matched onto SCET by
demanding parton level matrix elements in the two theories
be the same. This can be done at leading order by matching
onto an operator O2 with two collinear fields, or at next-to-
leading order by matching in addition to an operator O3

with collinear fields in three directions [13,14]. The thresh-
old resummation only involves O2 as the matrix elements
of O3 vanish near � � 0. (An alternative approach to O3

matching is described in [15].) At the scale �j �Q
���
�
p

, the
collinear fields freeze and can be removed from the theory
by integrating them out. This results in the jet function
J�p2�. Finally, even though we are interested in a distribu-
tion at the scale Q

���
�
p

, the soft degrees of freedom remain
relevant down to a scale�s � Q�, after which they too can
be integrated out of the theory. The fixed order result will
have large logarithms of �h=�j and �j=�s, but in the
resummed result all these logs are exponentiated and
innocuous.

Before we present the factorization formula and calcu-
late the thrust distribution in SCET, we will review the way
resummation of thrust is traditionally handled. There are a
number of ways to resum event shapes [16–22]. Since the
focus of this work is on comparisons to SCET, we will
confine our attention to the original approach of Catani,
Trentadue, Turnock, and Webber [16] (which will be re-
ferred to as CTTW throughout). Moreover, most of the
other approaches reduce to [16] at next-to-leading fixed
order in �s (NLO) and to leading log, so no significant loss
of generality is sustained. We will find that in the two-jet
limit SCET also agrees with CTTW to the order we are
working, although the resummed expressions are not ex-
actly the same.

A more significant difference is in the NLO matching. A
critical advantage of the effective theory approach is that
the finite parts of loop amplitudes are automatically incor-
porated into the perturbative expressions. For example, the
total NLO cross section for e�e� is reproduced by com-
bining the finite parts of the hard, jet, and soft functions and
a contribution from a finite integral over higher-order
operators in SCET. This does not necessarily entail less
work than in calculating the total cross section through the
traditional combination of real and virtual contributions.

However, due to factorization, the infrared divergent con-
tributions which are absorbed into the jet and soft functions
are universal and thus they could potentially be used for
many processes.

II. PERTURBATIVE QCD

In this section, we will review some basic results from
QCD on thrust, and the resummed expressions presented in
[16].

To begin, consider the parton model description of e�e�

annihilation. At order �0
s , the only process which contrib-

utes is e�e� ! �qq. These two jets have no structure and
hence the cross section is simply d�=d� � �0����, where
�0 is leading order total e�e� annihilation cross section.

At order �1
s , there are two e�e� ! �qqg diagrams which

contribute

 

where the photon line on the bottom is the e���e� current
coming in. The differential cross section is

 

�
1

�0

d2�
dsdt

�
parton

� ��s���t� � ��
s2 � t2 � 2u

st
(3)

where we have defined

 �� �
2�s
3�

(4)

and the reduced Mandlestam variables are s �
�pg � pq�

2=Q2 and t � �pg � p �q�
2=Q2 with s� t� u �

1.
Now, for 3-parton events the thrust variable � � 1� T

reduces to

 � � min�s; t; u�: (5)

So that
 �

1

�0

d�
d�

�
parton

� ���� � ��
�

2�3�2 � 3�� 2�

��1� ��
log

1� 2�
�

�
3�1� 3���1� ��

�

�
(6)

 � ���� � ��
�
�4 log�� 3

�

�
� ��dfin���: (7)

The second line is written to manifest the singularity
structure. The remainder dfin��� is finite as �! 0.

Instead of the differential thrust distribution, it is useful
to work directly with the integrated quantity

 R��� �
Z �

0

d�
d�0

d�0: (8)
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For small �,

 Rparton��� � �2 ��log2�� 3 �� log�: (9)

Here we see explicitly the large logarithms �slog2� and
�s log� which demand resummation.

A useful theoretical trick, used in [16] and in [12], is to
employ a hemisphere mass definition. This greatly simpli-
fies the factorization formula in the two-jet limit. The
hemisphere momentum pL�pR� is defined to be the sum
of the 4-momenta of all the particles in the hemisphere of
the left (right) jet. Then thrust reduces to � � �p2

L �
p2
R�=Q

2, and we can calculate it from

 

d�
d�
�
Z d2�

dp2
Ldp

2
R

�
�
��

p2
L � p

2
R

Q2

�
; (10)

which we will see has a closed form expression.
The traditional approach to resummation which we re-

view here is due to Catani et al. [16]. The basic idea is that
terms of the form � ��log2��n come from multiple real col-
linear and soft emissions. The kinematics of multiple col-
linear emissions can be modeled by parton branchings,
with branching probabilities proportional to the Altarelli-
Parisi splitting functions

 

d2�n�1

dtdz
� d�n 	 Pqq � d�n 	 ��

1

t
1� z2

1� z
: (11)

In the two-jet limit, the corrections due to soft effects can
be modeled by imposing angular ordering. All of this
follows from the coherent-branching algorithm developed
in [23]. In fact, more general methods are available for
handling soft emissions (for example, [24]). But, to NLO
for event shapes like thrust, the methods set up in [16] are
sufficient to compare to SCET.

In the two-jet limit, the factorized expression for the
differential cross section in CTTW is

 

�
1

�0

d2�2

dp2
Ldp

2
R

�
CTTW

� JC�Q
2; p2

L�JC�Q
2; p2

R�: (12)

The subscript on �2 refers to the 2-jet contribution. JC has
a simple physical interpretation: it is the probability of
finding a final state jet with invariant mass p2. Thus, it
satisfies

 

Z 1
0
dp2JC�Q2; p2� � 1: (13)

Q is a scale associated with the hard process. We will see
later that the equivalent jet function in SCET has a different
normalization.

At leading order the jet is a massless parton and so
JC�Q2; p2� � ��p2�. At next-to-leading order, the coherent
branching algorithm allows one-angular ordered emission.
So

 

JC�Q
2; p2� � ��p2� � ��

Z Q2

0

d~q2

~q2

Z 1

0
dz

1� z2

1� z

	 ��p2 � z�1� z�~q2� � � � � : (14)

Here z is the energy fraction in the emission and ~q2 �
p2

z�1�z� 
 E2�1� cos	�. The angular ordering constraint for
the coherence of soft emissions is implicit in the restriction
~q < Q; for p2 > 0 it cuts off the infrared divergences in the
integral as z! 1. Evaluating (14) gives

 JC�Q
2; p2� � ��p2� � ��

��2 logp
2

Q2 �
3
2

p2

�
�p2;Q2�

?
� � � � :

(15)

Thus, to first order in �s,

 

�
1

�0

d�2

d�

�
CTTW

� ���� � ��
�
�4 log�� 3

�

�
��;1�

?
; (16)

which reproduces the divergent as �! 0 part of the parton
model result (7).

Here we have introduced the ? distribution (alternatively
called the R- or �-distribution), which is a generalization
of the �-distribution. It is uniquely defined by the two
conditions

 �f�x���x;a�? � f�x� for x > 0 (17)

 

Z a

0
dx�f�x���x;a�? g�x� �

Z a

0
dxf�x��g�x� � g�0�� (18)

For clarity, we have added to the notation an explicit
instance of the dependent variable x in �f��x;a�? . A useful
relation is

 �f�x���x;a�? � �f�x���x;b�? � ��x�
Z b

a
dx0f�x0�: (19)

This will be used extensively in the next section.
The leading order resummation is preformed by iterating

the angular-ordered emissions. This leads to an integro-
differential equation for JC�Q

2; p2�, similar to the evolu-
tion equation for parton-distribution functions. The equa-
tion is solved in an integrated form, and the resummed
expression for the integrated thrust in the two-jet limit is

 

�
1

�0
R2���

�
CTTW

� exp��2 ��log2�� 3 �� log��

	
e�2�E


��2
� 1�
; (20)

where

 
 � �2 �� log�: (21)

This equation is a combination of expressions in [16] taken
with � � 0. Expanding R02��� �

d�2

d� to order �s the fixed

RESUMMATION AND NLO MATCHING OF EVENT SHAPES . . . PHYSICAL REVIEW D 77, 014026 (2008)

014026-3



order result (16) is reproduced. This expression is re-
summed in the sense that R02��� ! 0 as �! 0, in contrast
to the fixed order result (16) for d� or the parton model
expression (7) which diverge as �! 0.

III. SOFT-COLLINEAR EFFECTIVE THEORY

Having reviewed the way the resummed thrust distribu-
tion is traditionally calculated, we now turn to the equiva-
lent calculation in SCET. We will see that there are a
number of advantages of this effective field theory treat-
ment. Instead of a classical treatment, where multiple real
emissions are summed at the level of the cross section, the
entire resummation is done in SCET through the renor-
malization group. This makes explicit the various scales in
the problem, and allows greater freedom to choose those
scales to minimize the large logarithms in the distributions
of interest.

The idea behind SCET is to separate out the quarks and
gluons of QCD into soft and collinear degrees of freedom.
A collinear field is associated with a lightlike direction n�.
The component of its momentum in that direction, p� �
�n � p, must be much larger than any of the other momen-
tum components. All the QCD degrees of freedom which
could change this momentum have been integrated out, so
p� appears as a fixed label. For example, a collinear quark
is written as �n�p� with a fixed p�. In addition to collinear
quarks and gluons, there are soft quarks and gluons. These
soft fields can only interact with each other or transfer
momentum to the soft components p� � n � p of a col-
linear field.

The Lagrangian of SCET has a separate gauge invari-
ance associated with soft gluons and gluons in each col-
linear direction. It is useful to maintain this gauge
invariance explicitly in the operators of the theory with
the use of Wilson lines. For example, a two-jet operator is

 O 2 � �� �nW �nY �n�
�YynW

y
n �n; (22)

where

 Wn�x� � P exp
�
ig
Z
ds �n � An� �ns� x�

�
(23)

 Yn�x� � P exp
�
ig
Z
dsn � As�ns� x�

�
: (24)

The collinear Wilson lines Wn maintain collinear gauge
invariance and the soft Wilson lines Yn maintain soft gauge
invariance.

The starting point in the effective theory approach to
event shapes is again factorization in the two-jet limit. In
SCET, the event-shape distributions near the endpoint
come from matrix elements of O2 [12,14,25,26]. In terms
of the hemisphere masses pL and pR defined above, facto-

rization implies [12]
 �
d2�2

dp2
Ldp

2
R

�
SCET

� jCH���j2
Z
dkLdkRJ�p2

L �QkL;��

	 J�p2
R �QkR;��S�kL; kR; ��: (25)

The hard function CH���, the jet functions J�p2; ��, and
the soft function S�k;�� will be defined below.

The form of this factorized expression (25) has a physi-
cal explanation. Each jet function J�p2; �� comes from one
of the collinear quarks. It represents, like JC, the probabil-
ity for producing a jet of invariant mass p2 from that
collinear field (the precise relation to JC is explored be-
low). Recall that the large component of the momentum of
a collinear field p� � �n � p is fixed. Since, in the two-jet
limit, the jets are back to back with center-of-mass energy
Q, we must have p� �Q. The small component p� �
n � p can vary. If there are no soft effects, then the hemi-
sphere mass is simply p2

H � p2 � p�p�. However, as the
factorization formula implies, the collinear jet can give up
some soft momentum to the soft QCD background, leading
to p� ! p� � k. The hemisphere mass is unchanged by
this emission, but now p2 � p��p� � k� � p2

H �Qk,
which explains the form of (25).

The function CH is a hard function, which comes from
integrating out hard modes of QCD in matching to SCET.
Demanding

 h �q��qi � CHh�n��� �ni (26)

for states with two external quarks lets us calculate CH
order by order in perturbation theory. The computation
entails taking the difference between QCD and SCET
graphs, such as

 

where the  refers to an insertion of O2, and the right
diagram is only a representative contribution (for details,
see [13]). The difference is finite because the infrared
divergences in QCD and SCET are the same and the UV
divergences are removed with counterterms. At one-loop
the matching gives [9,13]

 CH��� � 1� cH �
�H
2

log2 �
2

Q2 � �H log
�2

Q2 ; (28)

with cH � ����4� 7�2

12 �
3�
2 i�, �H � � ��, and �H �

3
2 ��.

The anomalous dimension and renormalization group
evolution of CH��� can be found from the UV divergences
of the same 1-loop graphs. The RG equation is

 

dCH���
d log�

�

�
�2�H log

Q2

�2 � 2�H

�
CH���; (29)
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with solution

 CH��� � CH��h� exp
�

�H
2

log2 �
2

�2
h

� �H log
�2

�2
h

�

	

�
Q2

�2
h

�
��H log��2=�2

h�
: (30)

To first order in �s, the �h dependence drops out and (28)
is reproduced. The natural matching scale �h � Q is
manifest in this expression.

The jet function J�p2; �� is the imaginary part of the
propagator of a collinear quark. It is defined by [12,27]

 

J�p2; �� � �
1

�� �n � p�

	 Im
�Z

d4xe�ipxhTf� �� �nW
y
�n ��0�

�n6 �Wn�n��x�gi
�
:

(31)

It can be thought of as the spectral density for a jet of
collimated particles interacting with a soft QCD back-
ground. The jet function can be calculated order-by-order
in perturbation theory through the discontinuity of conven-
tional Feynman diagrams, such as

 

Some of the infrared divergences in these graphs are cut off
because the collinear quark is taken to have invariant mass
p2. These calculations have been done in the context of
b! s� [6,7] and for deep-inelastic scattering [9,11] and
the jet function is known to two loops [27]. Because of
factorization, the same jet function applies in these pro-
cesses and in e�e� annihilation. To first order in �s, the
result is

 J�p2; �� � ��p2��1� cJ� �
��J logp

2

�2 � �J

p2

�
�p2;�2�

?
;

(33)

with cJ � ���72�
�2

2 �, �J � 2 ��, and �J � �
3
2 ��.

The renormalization group evolution of the jet function,
in contrast to that of the hard function, is nonlocal in p2

 

dJ�p2; ��
d log�

�

�
�2�J log

p2

�2 � 2�J

�
J�p2; ��

� 2�J
Z p2

0
dq2 J�p

2; �� � J�q2; ��

p2 � q2 : (34)

This is similar to the Altarelli-Parisi equation for the
evolution of the parton distribution functions (pdfs). In
contrast to pdfs, however, the jet function J�p2; �� is
perturbative as long as p2 >�QCD. Simplification is
achieved through use of the Laplace transform [11],

 

~j��� �
Z
dp2e��p

2
J�p2; ��; (35)

whereby the evolution becomes local in �

 

d~j��;��
d log�

�

�
�2�J log

1

�2�e�E
� 2�J

�
~j��;��: (36)

Now the RGE can be solved like that of CH:

 

~j��;�� � exp
�

�J
2

log2 �
2

�2
j

� �J log
�2

�2
j

�

	��e�E�2
j �
�
j~j��;�j� (37)

with

 
j � ��J log
�2

�2
j

: (38)

Finally, the inverse Laplace transform produces [11]
 

J�p2; �� � exp
�

�J
2

log2 �
2

�2
j

� �J log
�2

�2
j

�
~j�@
j�

	

�
1

p2

�
p2

�2
j

�

j
�
�p2;�2

j �

?

e��E
j

��
j�
; (39)

where

 

~j�@
j� � 1� cJ � �J
�2

12
�

�J
2
@2

j � �J@
j : (40)

The functional dependence on @
j in ~j�@
j� comes from a

functional dependence on logp
2

�2 in the fixed order expres-

sion for the jet function (33) at the matching scale� � �j.
Finally, we have to calculate the soft function

S�kL; kR; ��. It is defined through matrix elements of soft
Wilson lines [12,28]

 S�kL; kR; �� �
X
X

h0jY?�n YnjXihXjY
y
n Y
y?
�n j0i: (41)

Unlike the jet function, the soft function is often evaluated
at scales k��QCD, where it is nonperturbative. It can, in
principle, be measured experimentally and then be evolved
perturbatively, like the pdfs. Or it can be modeled
[12,29,30]. However, in our case, since we are taking �s
to be small and fixed, it can be calculated in perturbation
theory. Even if S is nonperturbative, the perturbative cal-
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culation is useful because the UV divergences dictate the
anomalous dimensions and hence the evolution equation.

The soft function, being completely defined in terms of
Wilson lines, can be calculated in QCD through diagrams
such as

 

where the kinked lines are Wilson lines in the n and �n
directions. To order �s, S�kL; kR� can be written as a
product

 S�kL; kR; �� � S�kL;��S�kR;�� (43)

where [28]

 S�k;�� � ��k��1� cS� �
��S log k�� �S

k

�
�k;��

?
; (44)

with cS � ���2

12 , �S � �4 ��, and �S � 0.
The evolution of the soft function involves the same kind

of nonlocal equation as for the jet function. This can be
seen from examining its anomalous dimension directly, or
from RG invariance of the convolution appearing in the
factorization formula (25). The solution is therefore simi-
lar. Explicitly,

 

S�k;�� � exp
�

�S
2

log2 �
�s
� �S log

�
�s

�
~s�@
s�

	

�
1

k

�
k
�s

�

s
�
�k;�s�

?

e��E
s

��
s�
; (45)

where

 ~s�@
s� � 1� cS � �S
�2

12
�

�S
2
@2

s � �S@
s (46)

and

 
s � ��S log
�
�s
: (47)

Expanding to first order in �s reproduces (44).
Now we have all the ingredients appearing in the facto-

rization formula (25). At order �s, the result is

 

�
1

�0

d2�2

dp2
Ldp

2
R

�
SCET

� ��p2
L���p

2
R�

�
1� ��

�
�1�

�2

3

��

� ����p2
R�

�2 logQ
2

p2
L
� 3

2

p2
L

�
�p2

L;Q
2�

?

� ����p2
L�

�2 logQ
2

p2
R
� 3

2

p2
R

�
�p2

R;Q
2�

?
:

(48)

Note that the dependence on all the scales �, �h, �j, and
�s has completely canceled. This is a nontrivial result
which requires three relations among the six anomalous
dimensions:

 �J �
�S
2
� �H � �J �

�S
4
� �H � �J �

�S
2
� 0 (49)

and is a strong consistency check on the entire formalism.1

Already SCET can be compared to CTTW. The differ-
ential distribution in SCET, Eq. (48), matches the distribu-
tion in CTTW, Eq. (12), when the jet functions are
expanded to first order using Eq. (15). The SCET expres-
sion has an additional finite piece (the �1� �2

3 term)
which comes from loop graphs which do not enter into
the traditional formulation.

Still working at leading order in �s, SCET produces a
simple form for the thrust distribution near � � 0:

 

�
1

�0

d�2

d�

�
SCET

� ����
�

1� ��
�
�1�

�2

3

��

� ��
�
�4 log�� 3

�

�
��;1�

?
: (50)

This reproduces the leading behavior for small � of the
both the parton model expression, Eq. (7), and the re-
summed expression with the functions JC expanded to first
order, Eq. (16).

To get the resummed thrust distribution from SCET, we
need to calculate a couple of convolution integrals. First,
the soft and jet functions must be combined into

 K�p2; �� �
Z
dkJ�p2 � kQ;��S�k;��: (51)

Second, the K functions must be integrated against the
event shape. For thrust, we need

 R2��� � jCH���j
2
Z
K�p2

L;��K�p
2
R;��	

�
��

p2
L � p

2
R

Q2

�
:

(52)

Both of these convolutions can be evaluated by performing
the Laplace transform.

1The relations among the �s can be understood on more
general grounds by relating the �s to a universal cusp anomalous
dimension [31].
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Note that the function names can be misleading. Here,
CH���K�p

2; �� [and not just the SCET jet function
J�p2; ��] is playing the role of JC�p2� from the CTTW
formulation. Thus, the CTTW jet function is a combination
of the soft and jet functions in SCET, as expected because
the coherent branching algorithm used to derive it incor-
porates both soft and collinear effects.

Solving the K function with the Laplace transform
techniques gives
 

K�p2; �� � exp
�

�J
2

log2 �
2

�2
j

� �J log
�2

�2
j

�

	 exp
�

�S
2

log2 �
�s
� �S log

�
�s

��
Q�s

�2
j

�
�
s

(53)

 

	

�
�S
2

log2 Q�s

�2
j

� �S log
Q�s

�2
j

@
k �
~k�@
k�

�

	

�
1

p2

�
p2

�2
j

�

k
�
�p2;�2

j �

?

e��E
k

��
k�
; (54)

where

 

~k�@
k� � 1� cJ � cS �
�2

12
��J � �S� �

�
�J � �S

2

�
@2

k

� ��J � �S�@
k (55)

and

 
k � 
s � 
j � 2 �� log
�2
j

�2
s
: (56)

Note the residual logarithms ofQ�s=�
2
j in line (54) which

are not resummed. These imply that we cannot choose
�j � �s. Instead, the natural scales (those which remove
the large logs) should satisfy �s � �2

j=Q. Then, we can
evolve either the jet function from �j down to �s or the
soft function from�s up to�j but there is not a single scale
which can minimize all the large logs.

Finally, to evaluate the convolution for the thrust inte-
gral, we use the Laplace transform of the 	-function

 

Z 1
0
dp2	�p2�e��p

2
�

1

�
: (57)

Combining this with the expression forK�p2; �� above, the
SCET prediction for thrust in the 2-jet limit is

 �
1

�0
R2���

�
SCET

� jCH��h�j
2 exp

�
2 ��log2 �

2
h

�2
j

� 3 �� log
�2
h

�2
j

� ��log2 �
2
h

�2
s

��
Q�s

�2
j

�
�4 �� log��2

h=�
2
s �

	

�
�2 ��log2 Q�s

�2
j

� 4 �� log
Q�s

�2
j

@2
k �
~k�@2
k�

�
2
�
Q2�

�2
j

�
2
k e�2�E
k

��2
k � 1�
: (58)

Note that this expression is explicitly independent of �.
Now, choosing the natural scales �h � Q, �j � Q

���
�
p

,
and �s � �2

j=Q � Q� to remove the large logs, the thrust
distribution becomes

 

�
1

�0
R2���

�
SCET

� exp��2 ��log2�� 3 �� log��~r�@
�

	
e�2�E


��2
� 1�
(59)

with

 

~r�@
� � 1�
�
�1�

�2

3

�
���

�2

3
���

1

2
��@2


 �
3

2
��@


(60)

and 
 � �2 �� log� as in Eq. (21).
This expression would be identical to the CTTW ex-

pression, Eq. (20), if ~r � 1. Recall that the function ~r
comes from 1-loop matching in SCET, which turns into
boundary conditions for the renormalization group evolu-
tion. In the approach of CTTW the boundary condition is
simply that JC�p2� � ��p2�. Nevertheless, the effect of
~r � 1 to order �s is only to provide a finite constant, as

can been seen from comparing Eqs. (16) and (50). That is,
there is no contribution of order 
 in the difference, only of
order 
2 and higher. Beyond order �s, the @
 does change
the 
 dependence. But since 
� �s log� these terms are
subleading to the dominant �slog2� and can get correc-
tions from higher-loop effects. For example, at two-loops,
a term of the form �2

s log2� is generated. Thus, SCET and
CTTW agree to first order in �s and for the resummation of
the leading large logarithms, which is the order to we have
been working.

IV. MATCHING TO HARD EMISSIONS

Now let us look at how fixed order results and resum-
mation are combined. There are two elements to this:
(1) matching to hard emissions to get the differential
distribution correct away from the two-jet region (i.e.
away from � � 0); and (2) including finite parts of loops
to reproduce fixed order inclusive results.

Let us begin with the matching procedure described in
[16]. To match to the hard emissions at order �s we need
the parton model differential cross section from Eq. (7).
The divergent part is already contained in the two-jet
contribution, so the remainder is
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Dfin��� �
Z �

0
d�0dfin��

0�

� log��6�� 4 log�1� ��� � 2log2�1� �� � 3�1� 2�� log�1� 2�� � 4Li2

�
�

1� �

�
� 6��

9

2
�2: (61)

The final result for the matched integrated thrust distribution from [16] is

 

�
1

�0
R���

�
CTTW

� �1� �1�

�
�1� C1� exp��2 ��log2�� 3 �� log��

e�2�E


��2
� 1�
� ��Dfin���

�
; (62)

where �1 �
3
2 �� � �s

� is the NLO contribution to the total
cross section and C1 � ����

2

3 �
5
2� is chosen so that R�13� �

1� �1 (recall that � < 1
3 at order�s). In the QCD approach

the factor �1 �
�s
� must be determined by a independent

calculation of the total rate. This involves combining the
real and virtual contributions at order �s using an appro-
priate infrared regulator. As emphasized in [16] there is
arbitrariness in the matching because the hard emissions
[in Dfin���] are fixed order but the two-jet contribution is
resummed. For example, to the same accuracy D��� could
be multiplied by the exponential.

Now, let us turn to the matching in SCET. To include
thrust distributions away from the endpoint, we can either
attempt to add power corrections to SCET, or we can match
to higher order operators as described in [13,14]. Matching
is much simpler. To perform the matching, we add new
operators

 O 3 � ��n1
A�n2

���n3
� � � � ; (63)

where the � � � are the additional terms coming from Wilson
lines necessary for gauge invariance. A�n2

is a collinear
gluon in direction n2. The matching demands that

 hO2i�h
� hO3i�h

� hQCDi�h
; (64)

where the subscript means the matching is done at the hard
scale �h.

There is some arbitrariness in the definition of the matrix
elements in SCET due to reparametrization invariance. The
matrix element of a collinear quark �n�p� on a QCD quark
state jqi is only defined up to its soft momentum compo-
nent n � p. Moreover, a basis for summing over directions
n for O2 and n1, n2, and n3 for O3 must be chosen as well.
A certain convention was described in [13] for resolving
these ambiguities and others are possible. In any case,
while different conventions may shift the contributions
from O2 and O3 in (64), the sum is parametrization invari-
ant. Thus, independently of the convention we have

 �d���h
SCET � �d��parton; (65)

where �d��parton � hQCDi2 is the tree-level parton model
cross section, as shown in Eq. (3).

Now, we already know that hO2i
2 gives (50) to first order

in �s and that the parton model distribution at order �s is
(7). Thus, with obvious implicit phase space factors,

 hO2 �O3i
2
�h
� hO2i

2
�h
� dfin: (66)

So, at leading order, the contribution from the sum of hO3i
2

and the interference between O2 and O3 to the differential
cross section is unambiguous. The running of O3 could
also be included even though it does not resum any large
logs for the event shapes under consideration. With run-
ning, the matrix elements of O2 and O3 would appear with
separate renormalization kernels, and so the final differen-
tial cross section would end up depending on the conven-
tions chosen. The ambiguity could be resolved by a careful
higher order treatment, but for the purposes of comparing
to the CTTW prediction for thrust, we will simply not
renormalize the finite terms.

Then,

 

�
1

�0
R���

�
SCET

� exp��2 ��log2�� 3 �� log��~r�@
�

	
e�2�E


��1� 2
�
� ��Dfin���: (67)

With ~r�@
� and 
 as in Eq. (60) and Dfin��� in (61). The
total cross section in SCET is given
 �
R
�
1

3

��
SCET

� �0

�
1� ��

�
�1�

�2

3

�
� ��Dfin

�
1

3

��

� �0

�
1�

�s
�

�
: (68)

This is the correct total e�e� total cross section to first
order in �s!

Let us review the contributions that go into the cross
section. First, at the hard scale �h � Q, there is the finite
part of the loop matching to QCD, jcHj2 � 1� ����8�
7�2

6 � � 1� 2:3�1. Next, at the scale �2
j � p2 � Q2�

where we integrate out the collinear fields, the jet functions
give 2cJ � ���7� �2� � �1:9�1. At the seesaw scale
�s � p2=Q, the soft function gives 2cS �

�2

6 � 1:1�1,
and finally the finite part of the real emission integral,
away from � � 0 gives �3 � ���52�

�2

3 � � �0:5�1. In pro-
ducing the total cross section, only the soft and jet con-
tributions are infrared divergent. However, their
convolution, which appears in the function K�p2; �� is
infrared finite. The hard matching and the hard emissions
are IR finite by themselves. Thus, the total cross section
can be understood as a combination of a process dependent
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IR finite hard part and universal but IR regulator dependent
contributions from soft and collinear emissions.

The SCET thrust distribution (67) is compared to the
CTTW thrust distribution (62) in Fig. 1. The plot is of d�d� �
R0��� with �s fixed at 0.4. A more careful rendition of the
differential thrust distribution would take the derivative of
R��� before assigning the matching scale �j � Q

���
�
p

, as is
done below. However, the effect is higher order, and so we
just plot R0��� directly.

V. GENERALIZATIONS

In this section, some simple generalizations are de-
scribed. The above results were derived assuming �s to
be constant in order to emphasize the resummation of
Sudakov logarithms in contrast to large logarithms associ-
ated with the scale �QCD. Now, it is shown how the results
can be modified with running �s. Also, the SCET predic-
tion for another event shape, the jet mass , is given.

It is straightforward to allow �s to run. Including 1-loop
running, the effect is to modify the single and double logs
in the following way [11]:

 ��log2 �
�
! �S��;��

� �
4�CF
�2

0�s���

�
1�

�s���
�s���

� log
�s���
�s���

�
(69)

 �� log
�
�
! �A��;�� � �

CF
�0

log
�s���
�s���

: (70)

For example, the differential thrust distribution for � > 0
with running �s becomes

 �
1

�0

d�
d�

�
SCET

�
1

�
exp�4S�Q;Q�� � 6A�Q;Q��

� 8S�Q
���
�
p
; Q�� � 6A�Q

���
�
p
; Q���~r�@
�

	
e�2�E


��2
�
�

2�s
3�

dfin���; (71)

where

 
 � 4A�Q
���
�
p
; Q�; (72)

dfin is given in Eq. (7) and
 

~r�@
� � 1�
2

3�

��
�8�

7�2

6

�
�s�Q��

�
7�

2�2

3

�
�s�Q

���
�
p
�

�
�2

2
�s�Q���

�
1

2
�s�Q

���
�
p
���s�Q��

�
@2



�
3

2
�s�Q

���
�
p
�@


�
: (73)

This is the same function ~r as in Eq. (60), but with the �s
factors evaluated at the appropriate matching scales.

At this point, one would hope to compare to data.
However, besides the obvious shortcoming of not contain-
ing the full NLL resummation (it does not include effects
of the two-loop cusp anomalous dimension), this parton-
level expression does not include important nonperturba-
tive effects. Because of the running of �s, the perturbative
expression breaks down when the soft scale is of order
�QCD, that is, when ���QCD=Q, as can be seen explicitly
in (73). In fact, even for significantly larger values of thrust
power corrections of order �QCD=Q become quantitatively
important, at least at LEP energies. This problem has been
approached elsewhere using SCET [25,26] and with other
techniques [21,29,30].

Other event shapes can be studied the same way as
thrust. For example, consider the heavy jet mass  defined
by

  �
1

Q2 max�p2
L; p

2
R�: (74)

In this case, the matching scales are �h � Q, �j � Q
����

p

,
and �s � Q and SCET gives for  > 0
 �

1

�0

d�
d

�
SCET

�
2


j1� cHj2 exp�4S�Q;Q�

� 6A�Q;Q� � 8S�Q
����

p

; Q�

� 6A�Q
����

p

; Q��
�

~k�@
�
e��E


��
�

�

	

�
~k�@
�

e��E


��
� 1�

�
�

2�s
3�

dfin��; (75)

where

 
 � 4A�Q
����

p

; Q�: (76)
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1-T
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dσ
dT

CTTW
SCET

FIG. 1 (color online). Matched resummed differential thrust
distribution in SCET and in the standard approach of CTTW
with fixed coupling �s � 0:4.
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This formula agrees with the jet mass distribution in [16] to
leading log and first order in �s. The same function dfin

appears for jet mass and for thrust because to order �s in
the parton model,  � � � 1

Q2 min�s; t; u�.

VI. CONCLUSIONS

We have investigated how to combine resummation with
next-to-leading order matching of event shapes in the
original approach of [18] (CTTW) and using SCET. In
the CTTW formulation, real emissions from collinear
splitting functions are used and various kinematical fea-
tures associated with soft emission are combined to derive
a differential cross section. The cross section factorizes
into the product of two jet functions. Resummation is done
by solving a differential equation for the jet functions in
terms of the physical scales p2 and Q2 of the event. In
contrast, SCET factorizes the event shape distribution into
a contribution from hard, jet, and soft functions. These
functions are matched at the scales �h � Q, �j � p and

�s �
p2

Q respectively and resummation is done through
renormalization group evolution. The resummed thrust
distribution in SCET and CTTW have been compared,
and found to agree to next-to-leading order in �s and for
leading-log resummation.

The resummation of thrust in SCET brings to light a
number of features of the process not obvious in CTTW
formulation. For example, the appearance of the seesaw
scale �s � Q�1� T� as the natural matching scale for the
soft function follows from the kinematics of the SCET
factorization theorem. Of course, the existence of this scale
has been known for a long time from QCD, but in the
effective field theory approach this scale just drops out of
the factorized expression. Thus, for more complicated
processes, it is reasonable to expect a similar transparency
for the matching scales, which may facilitate subleading
log resummation. In fact, two-loop, three-loop, and some

four-loop anomalous dimensions for various quantities are
already available [27,32–34], and so subleading log re-
summation appears quite feasible. The biggest impediment
to using these more accurate resummed results in a com-
parison to data is that power corrections of order �QCD=Q
have an important quantitative effect on event shapes.
However, these corrections should modify only the soft
function while higher order resummed expressions for the
hard and jet functions will remain valid. Thus, the effective
theory should be able to weave together the perturbative
and nonperturbative calculations.

A new result of this paper is the demonstration that
inclusive quantities, such as the total cross section for
e�e� can be calculated in a new way using SCET.
Instead of taking the full differential n� 1 body cross
section and combining with the one-loop n-body cross
section, SCET combines finite parts of loops of soft and
jet functions with a hard matching calculation and a finite
integral over hard emissions. The soft and jet functions
depend on the infrared regulator, but their convolution, and
the hard function, do not. For e�e� annihilation at NLO,
this may not be so impressive, but the procedure promises
to apply to more complicated processes, perhaps even
some for which NLO results are not available. It would
also be very interesting to explore this mechanism at
NNLO or to work with hadronic processes where the
singularity structure is more complicated.
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