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The nonet symmetry scheme seems to describe rather well the masses and �� �0 mixing angle of the
ground state pseudoscalar mesons. It is expected that nonet symmetry should also be valid for the matrix
elements of the pseudoscalar density operators which play an important role in charmless two-body B
decays with � or �0 in the final state. Starting from the divergences of the SU�3� octet and singlet axial
vector currents, we show that nonet symmetry for the pseudoscalar mass term implies nonet symmetry for
the pseudoscalar density operators. In this nonet symmetry scheme, we find that the branching ratio B!
PP, PV with � in the final state agrees well with data, while those with �0 are underestimated, but by
increasing the B! �0 form factor by 40%–50%, one could explain the tree-dominated B� ! ���0 and
B� ! ���0 measured branching ratios. With this increased form factor and with only a moderate
annihilation contribution, we are able to obtain 62� 10�6 for the penguin-dominated B� ! K��0

branching ratios, quite close to the measured value. This supports the predicted value for the B! �0

form factor in PQCD and light-cone sum rules approach. A possible increase by 15% of h0j �si�5sjs�si for
�0 would bring the predicted B� ! K��0 branching ratio to 69:375� 10�6, very close to experiment.
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I. INTRODUCTION

Unlike the low-lying vector mesons where the flavor
diagonal 1� q �q states are eigenstate because of the OZI
selection rule, the 0� pseudoscalar q �q state can mix with
each other. Since QCD interactions through the exchange
of gluons are flavor-independent, one expects the wave
function for the pseudoscalar nonet also flavor-
independent in the limit of vanishsing current quark mass
(mq ! 0, q � u, d, s) and the � and �0 can be described as
two linear combinations of the q �q state, the SU�3� singlet
�0 and the SU�3� octet �8 which mix with each other
through a small SU�3� symmetry breaking mixing parame-
ter. In fact, with mu and md � ms, ms � �QCD, and
because of the U�1� QCD-anomaly, the �0 mass is much
larger compared to the �8 mass, the�� �0 mixing angle is
O�ms=�QCD� so that the physical � and �0 are almost pure
�8 and �0 eigenstate, respectively, in contrast with the
ideal mixing for the 1� low-lying vector meson states.
Another feature of the 0� q �q nonet is that, because of
the spontaneous breakdown of SU�3� � SU�3� symmetry,
the octet mesons are massless Goldstone bosons in the
limit of vanishing current quark mass. This simplifies
considerably the description of the ground state pseudo-
scalar meson system. As shown in [1], a rather accurate
description of the mass and mixing angle in the �� �0

system is obtained by adding a U�1� QCD-anomaly term
for the �0 mass in the nonet pseudoscalar meson pseudo-
scalar meson mass matrix. This mass matrix is generated
by the quark mass term and is the leading term in the large
Nc expansion while higher order terms in the chiral
Lagrangian [2] is O�1=Nc� and is thus suppressed in the
large Nc limit. This justifies the nonet symmetry mass term
for the pseudoscalar mass matrix. Vice-versa, from the
nonet symmetry value for the off-diagonal mass term

h�0jHSBj�8i, where HSB � ms �ss�mu �uu�md
�dd one

would get a mixing angle � � �18� in good agreement
with a value � 	 ��22
 3�� in [1], or � 	 ��18:4
 2��

in [3] and a similar value � 	 ��17� 20�� [4] obtained
from the two-photon decay width of � and �0. However, if
we use the Gell-Mann-Okubo (GMO) mass formula for the
octet mass m2

8, we would have, in terms of the �� �0

mixing angle �

 m2
� � m2

8 � tan�2�m2
�0 �m

2
8� (1)

which, for � � �18� gives m� � 483 MeV, about
60 MeV below experiment. Thus the �� �0 mixing which
contributes to L7 in [2] has driven the m� below the GMO
value by 63 MeV. This is also the case with a nonet mass
matrix in the quark basis [5,6] which has a large �� �0

mixing and an upper bound for the � mass far below
experiment. The higher order terms L4, L5, L6, L8 and
chiral logarithms obtained in Ref. [2] shiftm� upward by a
similar amount with the result that the � mass is very close
to the GMO value, in agreement with experiment. Similar
result is also obtained in [6] more recently. Thus, nonet
symmetry seems to be a good approximation for the 0�

nonet mass term. One could then go further and try to see if
the matrix elements of the pseudoscalar density local op-
erator e.g. �si�5s could also satisfies nonet symmetry. This
will allow a simple calculation of the penguin matrix
elements in the charmless two-body decays of B meson
with � or �0 in the final states. In this paper we will use the
divergence equation for the octet and singlet axial vector
current to show that nonet symmetry scheme for the mass
term implies nonet symmetry for the pseudoscalar density
�qi�5q for � and �0. The basic idea is to include in the
matrix elements of the axial vector current and its diver-
gence the �0;8 pole contribution which will add the mixing
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mass term h�0jHSBj�8i to the divergence equation and
allows us to obtain the nonet symmetry expression for
the matrix element of the pseudoscalar density operators
between the vacuum and �0;8. In the next section we will
first derive a divergence equation for the �u���5u and
�s���5s axial vector current, in the presence of the
SU�3� � SU�3�-breaking HSB current quark mass term.
Section III is an analysis ofB� ! P� andB� ! P�0 ,P �
K�, �� in QCD factorization (QCDF) with nonet symme-
try for the pseudoscalar density and B! � and B! �0

transition form factors. We find that the branching ratio for
modes with � in the final state agrees well with data, while
those with �0 in the final state are underestimated. We then
increase the B! �0 form factor by 40%–50%, to bring the
tree-dominated B� ! ���0 and B� ! ���0 to the mea-
sured values. The increased form factor is then used to
obtain a branching ratio close to data for the penguin-
dominated B� ! K��0 decay.

II. PSEUDOSCALAR DENSITY MATRIX ELEMENT
AND NONET SYMMETRY

Let j�0i, j�8i be the SU�3� singlet and octet eigenstate
of the I � 0, pseudoscalar nonet in the absence of the
SU�3� symmetry breaking quark mass term HSB, in terms
of the flavor diagonal q �q component

 j�0i � �ju �u� d �d� s�si�=
���
3
p
;

j�8i � �ju �u� d �d� 2s�si�=
���
6
p
:

(2)

Consider now the matrix element of the axial vector cur-
rent matrix element �u���5u and �s���5s between the
vacuum and �0 and �8:

 h0j �u���5uj�0i � ifup�=
���
3
p
;

h0j �u���5uj�8i � ifup�=
���
6
p
:

(3)

and

 h0j �s���5sj�0i � ifsp�=
���
3
p
;

h0j �s���5sj�8i � �2ifsp�=
���
6
p
:

(4)

where fu and fs are defined as the decay constant of u �u and
s�s state, respectively. Except for the momentum depen-
dence factor p�, the above axial vector current matrix
elements depend on the same fu and fs according to nonet
symmetry scheme with identical q �q spatial wave function
in �0 and �8 [1], but fs could be different from fu by an
SU�3� breaking s-quark mass term. The octet A8� and
singlet A0� axial vector current matrix elements between
the vacuum and �8, �0 are then given by

 h0jA�8j�8i �
�fu � fd � 4fs�

6
p�;

h0jA�0j�0i �
�fu � fd � fs�

3
p�:

(5)

(p� is the 4-momentum of �0 and �8. Similar, for other
members of the SU�3� octet, we have f� and fK for �� �
u �d, K� � u �smeson, respectively. Assuming each s- quark
contributes to the decay constant a symmetry breaking
term �, to first order in �, (rewriting fq �q � fq), we have [7]

 f� � fu �d 	 fu; fK � fu �s � �1� ��fu �d;

fs � �1� 2��fu 	 �1� ��fK:
(6)

The usual way to obtain the pseudoscalar density matrix
elements is to take the divergence of the axial vector
current between the vacuum and the pseudoscalar meson
octet. For example, taking the matrix elements of �ui�5d,
�ui�5s, ( �ui�5u� � �di�5d� between the vacuum and ��,
K�, �0, respectively, we have

 f�B0�mu �md� � �mu �md�h0j �ui�5dju �di;

fKB0�mu �ms� � �mu �ms�h0j �ui�5sju �si:
(7)

and for �0

 fuB0�mu �md� � �mu �md�h0j �ui�5uju �ui: (8)

where the � and K meson masses are the usual expressions
in terms of B0 and the current quark mass [1,2]. The
expression for �0 is obtained by putting [8]

 h0j �ui�5uj�0i � �h0j �di�5dj�0i: (9)

Apart from the difference in f� and fK, we see that the
above pseudoscalar density matrix element in Eqs. (7) and
(8) satisfies SU�3� symmetry. We will see below that to
have nonet symmetry for the pseudoscalar density matrix
element between the vacuum and �0;8, the pole term in the
divergence equation must be included. We now consider
the divergence of the I � 0 An� and As� axial vector
current

 An� � � �u���5u� �d���5d�; As� � �s���5s:

(10)

The divergence is given by

 @An � 2�mu �ui�5u�md
�di�5d� � 2

�s
4�

G ~G:

@As � 2ms �si�5s�
�s
4�

G ~G:
(11)

The matrix elements of @An and @As between the vacuum
and �0;8 are given by

 h0j@Anj�0i � 2muh0j �ui�5uj�0i

� 2mdh0j �di�5dj�0i;�2h0j
�s
4�

G ~Gj�0i;

(12)

 h0j@Asj�0i � 2msh0j �si�5sj�0i � h0j
�s
4�

G ~Gj�0i:

(13)
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and for �8

 h0j@Anj�8i � 2muh0j �ui�5uj�8i

� 2mdh0j �di�5dj�8i;�2h0j
�s
4�

G ~Gj�8i;

(14)

 h0j@Asj�8i � 2msh0j �si�5sj�8i � h0j
�s
4�

G ~Gj�8i:

(15)

In the limit mu � md � 0 , since the l.h.s of Eq. (14) is
fum2

8, the matrix element 2h0j �s4�G
~Gj�8i on the r.h.s is

O�m2
8� and is given by the �0 pole contribution. We now

evaluate Eqs. (12)–(15) with the pole terms included using
the nonet symmetry expressions for m2

0;8 and m2
08 [1]

 

m2
8 � B0

2
3�2ms � m̂�;

m2
0 � �m2

0 � B0
2
3�ms � 2m̂�;

m2
08 � B0

2
3

���
2
p
��ms � m̂�:

(16)

in standard notation [2] (m̂ � �mu �md�=2). At the �0 and
�8 mass, p2 � m2

0 and p2 � m2
8 in the l.h.s of Eqs. (12)–

(15) respectively. As mentioned above, since mu;d � ms,
SU�3� is broken and the �0;8 pole will contribute to
both the 1.h.s and r.h.s of Eqs. (12)–(15). The pole
terms on the r.h.s come from the QCD-anomaly matrix
element h0j �s4�G

~Gj�0i and h0j �s4�G
~Gj�8i induced by

SU�3�-breaking �0 � �8 mixing mass term m2
08. The pres-

ence of the �0;8 pole term is important, since its contribu-
tion is the same order as the current-quark mass terms in
m2

0;8. Indeed had we dropped the �0;8 pole term we would
run into contradiction with the divergence equation. To
obtain the pseudoscalar density matrix elements, let us
bring the p2-dependence pole term in the l.h.s to the r.h.s
of Eqs. (12)–(15). Putting fu � fd and h0j �ui�5uj�0;8i �
h0j �di�5dj�0;8i, we find, for �0

 fu
1���
3
p � �m2

0 � B0
2

3
�ms � 2m̂�� � fu

1���
3
p �m2

0�

fu
1���
6
p

�
B0

2
���
2
p

3
�m̂�ms�

�
� 2

1���
3
p m̂h0j �ui�5uju �ui;

(17)

 fs
1���
3
p

�
�m2

0 � B0
2

3
�ms � 2m̂�

�
� fs

1���
3
p �m2

0�

fs
2���
6
p B0

2
���
2
p

3
�m̂�ms� � 2

1���
3
p msh0j �si�5sjs�si:

(18)

and. similarly, for �8

 fu
1���
6
p

�
B0

2

3
�2ms � m̂�

�
� �fu

1���
3
p B0

2
���
2
p

3
�m̂�ms�

� 2
1���
6
p m̂h0j �ui�5uju �ui;

(19)

 � fs
2���
6
p

�
B0

2

3
�2ms � m̂�

�
� �fs

1���
3
p B0

2
���
2
p

3
�m̂�ms�

� 2
2���
6
p msh0j�si�5sjs�si:

(20)

Comparing the l.h.s and the r.h.s of Eqs. (17) and (18),
we get the pseudoscalar density matrix element for �0

 h0j �ui�5uju �ui � B0fu; (21)

 h0j �si�5sjs�si � B0fs: (22)

Similarly, by comparing l.h.s and the r.h.s of Eqs. (19) and
(20), we get the same expression for the pseudoscalar
density matrix element, but in �8.

We have shown that, by including the �0 and �8 pole in
the divergence equations, and by using the nonet symmetry
expressions for the current quark mass contributions to the
�0 and �8 mass, the pseudoscalar density operators matrix
elements between �0 and �8 can be obtained by nonet
symmetry and quark counting rule. Like the matrix ele-
ments h0j �ui�5dj�

�i, h0j �ui�5uj�
0i, and h0j �ui�5sjK

�i,
they are given by the parameter B0 and the decay constant
involved. Experimentally, from the known value of the
�� �0 mixing angle, � � ��20
 2��, one has m2

08 �
��0:81
 0:05�m2

K to be compared with the nonet symme-
try value of m2

08 ’ �0:90m2
K [1], we expect nonet symme-

try for the pseudoscalar density matrix elements in �� �0

valid to this accuracy. Since the octet m2
8 mass gets about

15% increase from higher order terms L4, L5, L6, L8 and
chiral logarithms [2], Eqs. (19) and (20) show that
h0j �si�5sjs�si in � will be increased by a similar amount.
Note that the r.h.s of Eqs. (19) and (20) gets this increase
from higher order terms in the pole and other terms. Higher
order SU�3� breaking contribution to the singletm2

0 mass is
not known, but if we assume a similar 15% increase from
the nonet value in Eq. (16), h0j �si�5sjs�si in �0 will also be
increased by a similar amount. This could be another
source of enhancement for the B! K�0 branching ratio,
as found below. We note that it might be possible to obtain
the pseudoscalar density matrix elements in Eqs. (17)–(20)
using the known values of m2

0;8 and m2
08, but because the

precise dependence on the quark mass is not known and
because of the experimental errors involved, the physical
interpretation of the result will be lost. We would like to
stress that in our derivation, the anomaly contribution to
the �0 mass has been included in the divergence equation,
thus the enhancement factor for h0j �si�5sj�0i suggested in
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[9] would have the origin elsewhere. With the pseudoscalar
density matrix elements given above and nonet symmetry
for the B! �, �0 transition form factors, we shall now
compute the B� ! K��, K��0 and B� ! ���, ���0

decay branching ratios in QCDF.

III. B� ! K���;�0� AND B� ! ����;�0� DECAY IN
QCD FACTORIZATION

The B! M1M2 decay amplitude in QCDF is given by
[10,11]:
 

A�B! M1M2�

�
GF���

2
p

X
p�u;c

VpbV�ps

�
�
X10

i�1

api hM1M2jOijBiH

�
X10

i

fBfM1
fM2

bi

�
; (23)

where the QCD coefficients api contain the vertex correc-
tions, penguin corrections, and hard spectator scattering
contributions, the hadronic matrix elements
hM1M2jOijBiH of the tree and penguin operators Oi are
given by factorization model [12,13], bi are annihilation
contributions. The values for api , p � u, c, computed from
the expressions in [10,11] at the renormalization scale� �
mb, with mb � 4:2 GeV are
 

ac4 � �0:033� 0:013i� 0:0009�H;

au4 � �0:027� 0:017i� 0:0009�H;

ac6 � �0:045� 0:003i;

au6 � �0:042� 0:013i;

ac8 � �0:0004� 0:0001i;

au8 � 0:0004� 0:0001i;

ac10 � �0:0011� 0:0001i� 0:0006�H;

au10 � �0:0011� 0:0006i� 0:0006�H:

(24)

for i � 4, 6, 8, 10. For other coefficients, aui � api � ai

 a1 � 1:02� 0:015i� 0:012�H;

a2 � 0:156� 0:089i� 0:074�H;

a3 � 0:0025� 0:0030i� 0:0024�H;

a5 � �0:0016� 0:0034i� 0:0029�H;

a7 � �0:00003� 0:00004i� 0:00003�H;

a9 � �0:009� 0:0001i� 0:0001�H:

(25)

where the complex parameter �H exp�i	H� represents the
endpoint singularity contribution in the hard-scattering
corrections XH � �1� �H exp�i	H�� ln�mB

�h
� [10,11] (we

have put the phase 	H � 0 in the above expressions).

For the annihilation terms, we have
 

b2 � �0:0038� 0:0065�A � 0:0018�2
A;

b3 � �0:0065� 0:0150�A � 0:0085�2
A;

bew3 � �0:00011� 0:00015�A � 0:000003�2
A:

(26)

where bi are evaluated with the factor fBfM1
fM2

included
and �A, like �H, appears in the divergent annihilation term
XA � �1� �A exp�i	A�� ln�mB

�h
�.

For the CKM matrix elements, since the inclusive and
exclusive data on jVubj differ by a large amount and the
higher inclusive data exceeds the unitarity limit for Rb �
jVudV�ubj=jVcdV

�
cbj with the current value sin�2
� �

0:687
 0:032 [14], we shall determine jVubj from the
more precise jVcbj data. We have [15]

 jVubj �
jVcbV

�
cdj

jV�udj
j sin


����������������������
1�

cos2�

sin2�

s
: (27)

With � � �99�13
�9 �

� [14] and jVcbj � �41:78
 0:30

0:08� � 10�3 [16], we find

 jVubj � 3:60� 10�3: (28)

in good agreement with the exclusive data in the range
jVubj � 3:33� 3:51 [16]. The recent measurements of the
Bs � �Bs mixing also allow the extraction of jVtdj from
Bd � �Bd mixing data. The current determination [17] gives
jVtd=Vtsj � �0:208�0:008

�0:006� which in turn can be used to
determined the angle � from the unitarity relation [15]

 jVtdj �
jVcbV

�
cdj

jV�tbj
j sin�

����������������������
1�

cos2�

sin2�

s
: (29)

with jVtbj � 1, we find � � 66� which implies an angle
� � 91:8�, in good agreement with the value found in the
current UT-fit value of �88
 16�� [18]. In the following in
our B decay calculations, we shall use the unitarity triangle
values for jVubj and �. For other hadronic parameters we
use the values in Table 1 of [11] and take ms�2 GeV� �
80 MeV, fu � f�, fs � f��1� 2�fKf� � 1��. For the B!
� and B! K transition form factor, we use the current
light-cone sum rules central value [19]

 FB�0 �0� � 0:258; FBK0 �0� � 0:33 (30)

With �� �0 mixing angle � � �20�, we have
 

j�i � �0:58�ju �ui � jd �di� � 0:57js�si�;

j�0i � �0:40�ju �ui � jd �di� � 0:82js�si�:
(31)

From Eq. (31), we find

 FB��0� � 0:58FB�0 �0�; FB�
0
�0� � 0:40FB�0 �0�: (32)

The B! K��0; �� decay amplitude can now be obtained
from the factorization formula for the hadronic matrix
elements in Eq. (23) with the pseudoscalar density matrix
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element obtained in Eq. (22) and the form factors given
above. We have

 h0j �si�5sj�i � C�B0fs; h0j �si�5sj�0i � C�0B0fs:

(33)

where B0 � m2
K=�ms � m̂� and C� � �0:57, C�0 � 0:82,

the fraction of s�s state in � and �0 respectively. This
contributes to the O6 matrix element a term fsrK� , with
rK� � 2m2

K=�mb � m̂��ms � m̂�, similar to that in �B0 !

K��� decay, except that in B� ! K�� and B� !
K��0, the O6 matrix element is enhanced by a factor
fs=fK. In this way, the decay amplitude in units of GeVare
 

A�B� ! ���0� � �0:110� 0:204i� � 10�7;

A� �B0 ! K���� � ��0:368� 0:004i�

� 10�7�FB!�0 �0�=0:258�

� �0:090� 0:002i� � 10�7:

(34)

from which the branching ratios are, with �H � 0, �A �
0:6 (only the central values for the relevant parameters are
used in the calculations)
 

B�B� ! ���0� � 5:050� 10�6;

B� �B0 ! K���� � 18:249� 10�6:
(35)

in good agreement with the current measured branching
ratios [20]
 

B�B� ! ���0� � �5:7
 0:4� � 10�6;

B� �B0 ! K���� � �19:04
 0:6� � 10�6:
(36)

We note a sizable annihilation contribution, given by the
last term in Eq. (34), is needed to produce a large B� �B0 !
K����. This is not surprising since annihilation contribu-
tion is also needed to explain the large branching ratios of
B� ! ��K�0 and B0 ! K��� decay [21]. Our result also
shows that the values 0.258 for FB�0 �0� and 0.33 for FBK0 �0�
given above are reasonable. We will use these values in the
calculation of the decay modes with � and �0. We find
 

A�B� ! K��� � ��0:283� 0:032i�

� 10�7�FB!�0 �0�=0:150�

� �0:317� 0:080i�

� 10�7�FB!K0 �0�=0:33�

� �0:015� 0:0004i� � 10�7: (37)

 

A�B� ! K��0� � ��0:192� 0:022i�

� 10�7�FB!�
0

0 �0�=0:104�

� �0:425� 0:039i�

� 10�7�FB!K0 �0�=0:33�

� �0:111� 0:003i� � 10�7: (38)

where the last term in Eqs. (37) and (38) are the annihila-
tion contributions (�H � 0, �A � 0:6). The predicted
branching ratios are then
 

B�B� ! K��� � 0:431� 10�6;

B�B� ! K��0� � 48:263� 10�6:
(39)

to be compared with the current experimental values [20]
 

B�B� ! K��� � �2:2
 0:3� � 10�6;

B�B� ! K��0� � �69:7�2:8
�2:7� � 10�6:

(40)

We see that the B�B� ! K��0� is underestimated by
about 30%, while the B�B� ! K��� is very much sup-
pressed, but because of large cancellation in the B� !
K�� amplitude due to the negative s�s amplitude in the �
meson wave function, a precise prediction for B�B� !
K��� is more difficult. For B� ! K��0, since b3 contrib-
utes both to �B0 ! K��� and B� ! K��0 decays, it is
difficult to adjust the annihilation term for B� ! K��0

without overestimating the �B0 ! K��� branching ratio.
Another possibility is to increase the form factor FB!�

0

0 �0�
from the nonet symmetry value to bring the predicted value
closer to data. That this is the case can be seen by looking
at the B� ! ���0 decays. We have
 

A�B� ! ���� � �0:119� 0:147i�

� 10�7�FB!�0 �0�=0:150�

� �0:002� 0:003i�

� 10�7�FB!�0 �0�=0:258�

� �0:004� 0:003i� � 10�7: (41)

 

A�B� ! ���0� � �0:081� 0:100i�

� 10�7�FB!�
0

0 �0�=0:104�

� �0:008� 0:002i�

� 10�7�FB!�0 �0�=0:258�

� �0:033� 0:021i� � 10�7: (42)

(the last term in the above amplitudes is the annihilation
contributions). This gives
 

B�B� ! ���� � 3:388� 10�6;

B�B� ! ���0� � 1:910� 10�6:
(43)

comparing with the current measured branching ratios
[20]:
 

B�B� ! ���� � �4:4
 0:4� � 10�6;

B�B� ! ���0� � �2:6�0:6
�0:5� � 10�6:

(44)

we see that the predicted B�B� ! ���� agrees more or
less with experiment, considering theoretical uncertainties
in the CKM parameters and in the B! � and B! K form
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factors. while B�B� ! ���0� is below the BABAR value
of �4:0
 0:8
 0:4� � 10�6 [20]. Existing QCDF calcula-
tions [22] also underestimate B�B� ! ���0� by a factor
of 	 2 as seen from the recent data [20] which gives
 

B�B� ! ���� � �5:4
 1:2� � 10�6;

B�B� ! ���0� � �9:1�3:7
�2:8� � 10�6:

(45)

Since the above tree-dominated decays with �, �0 in the
final state are more sensitive to the FB!� and FB!�

0
form

factor, by increasing the FB!�
0

form factor by 40%–50%
from the nonet symmetry value, one could bring B�B� !
���0�, B�B� ! ���0�, and B�B� ! K��0� closer to the
measured branching ratios. For example, by taking
FB!�

0

0 �0� � 0:156, one gets
 

B�B� ! ���0� � 3:888� 10�6;

B�B� ! K��0� � 61:837� 10�6:
(46)

which largely improves the prediction for B�B� ! K��0�
but the predicted B�B� ! ���0� slightly exceeds the
HFAG new average, though consistent with the BABAR
value for this mode. We note also the predicted B�B� !
���0� in [22] approaches the measured value with the
increased form factor FB!�

0

0 �0� � 0:156. As mentioned
earlier, additional sources of enhancement of B�B� !
K��0� could come from a possible higher order SU�3�
breaking effects in the matrix element h0j �si�5sjs�si for
�0. Assuming a 15% increase of this matrix element

from its nonet value, we would have B�B� ! K��0� �
69:375� 10�6, very close to the measured value.

V. CONCLUSION

We have shown that nonet symmetry for the pseudosca-
lar meson mass term implies nonet symmetry for the
pseudoscalar density matrix element. We then use nonet
symmetry for the pseudoscalar density matrix element and
the B! �, B! �0 form factors to compute two-body
charmless B decays with �, �0 in the final state. The
discrepancy with experiment for tree-dominated decays
with �0 in the final state indicates that the FB!�

0

0 �0� form
factors should be bigger than the nonet symmetry value by
40%–50%. This value, together with a moderate annihila-
tion contribution found in �B0 ! K��� decay, produces a
B� ! K��0 branching ratio close to data. Our value for
the FB!�

0

0 �0� form factor supports the current calculations
in PQCD and light-cone sum rules approach [23,24]. A
possible increase by 15% of the pseudoscalar density
matrix element h0j �si�5sjs�si for �0 would bring the pre-
dicted B� ! K��0 branching ratio very close to
experiment.
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