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We consider the response of the QCD ground state at finite baryon density to a strong magnetic field B.
We point out the dominant role played by the coupling of neutral Goldstone bosons, such as �0, to the
magnetic field via the axial triangle anomaly. We show that, in vacuum, above a value of B�m2

�=e, a
metastable object appears—the �0 domain wall. Because of the axial anomaly, the wall carries a baryon
number surface density proportional to B. As a result, for B * 1019 G a stack of parallel �0 domain walls
is energetically more favorable than nuclear matter at the same density. Similarly, at higher densities,
somewhat weaker magnetic fields of order B * 1017–1018 G transform the color-superconducting ground
state of QCD into new phases containing stacks of axial isoscalar (� or �0) domain walls. We also show
that a quark-matter state known as ‘‘Goldstone current state,’’ in which a gradient of a Goldstone field is
spontaneously generated, is ferromagnetic due to the axial anomaly. We estimate the size of the fields
created by such a state in a typical neutron star to be of order 1014–1015 G.
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I. INTRODUCTION

There have been several studies of the structure of QCD
vacuum in high magnetic fields [1– 4]. The typical strength
of a magnetic field which would change the structure of the
QCD vacuum is very high and can be estimated as

 B�
m2
�

e
� 1020 G; (1)

where m� � 770 MeV is the typical energy scale of QCD.
For example, the typical magnetic field that changes sub-
stantially the chiral condensate is �4�f��2=e [1], which is
of the same order as in Eq. (1). In Ref. [2] it was argued that
for B * 10 GeV2 � 5 � 1021 G a condensate of spin-
polarized u �u pairs appear.

The behavior of nuclear matter in strong magnetic fields
has been studied more extensively. The motivation for such
studies is the high magnetic field observed in magnetars
[5]. On general grounds one expects (see, e.g., Ref. [6])
that the magnetic field affects significantly the structure of
the matter once the synchrotron (Landau level) energy

������
eB
p

is comparable to the typical energy associated with charge
excitations in the system, such as, e.g., proton Fermi en-
ergies in nuclear matter.

The response of color-superconducting quark matter to a
strong magnetic field has also been studied [7–13].
Similarly, in all mechanisms studied so far, the ground
state is affected above some value of the magnetic field
determined by the superconducting gap � and/or the
chemical potential �. For example, fields of order ��=e
or higher are needed to destroy color superconductivity [7].

In this paper we show that, due to the anomalous cou-
pling of neutral pseudoscalar Golstone bosons to electro-
magnetism, the structure of the ground state is modified at
much lower values of the magnetic field. In fact, these

values are parametrically lower than (1) in the limit where
the Golsdtone bosons become massless (e.g., the chiral
limit).

For the low-density nuclear matter we find two scales of
magnetic field that are relevant (see Sec. III):

 B0 �
3m2

�

e
; B1 � 16�

f2
�m�

emN
: (2)

In particular, above B1 nuclear matter is replaced by a
different state. The most striking feature of Eq. (2) is that
bothB0 andB1 vanish in the chiral limit: whenm� � 0, the
structure of nuclear matter is altered at an arbitrarily small
magnetic field. This is in sharp contrast to the previous
estimates of the critical magnetic field, Eq. (1).

The state of QCD associated with scales (2) is a �0

domain wall—a configuration in which the local expecta-
tion value of the �0 field varies along the direction of the
magnetic fieldB over a scale of pion Compton wavelength.
We show that for jBj>B0 the domain wall becomes
locally stable (metastable).

The central observation of this paper is that such a
domain wall carries nonzero surface baryon charge density
proportional to jBj. As we show, this is a consequence of
the quantum axial anomaly—the triangle anomaly involv-
ing the baryon, electromagnetic, and neutral axial cur-
rents.1 When jBj>B1 the parallel stack of such domain
walls is energetically more favorable at � � mN than low-
density nuclear matter, as it carries less energy per baryon.
That means nuclear matter turns into a stack of �0 domain
walls at such large magnetic fields. For larger magnetic
fields this ‘‘wall state’’ should persist down to chemical
potentials � * mNB1=jBj.

1The physics of triangle anomaly at finite density has also
received some interest recently, see, e.g., [14–17].
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We note right away that although both B0 and B1 vanish
in the chiral limitm� ! 0 (withB0 � B1), for the physical
pion mass, these magnetic fields are of order 1019 G,
smaller than the QCD scale (1), but still much larger than
the fields typical of magnetars.

The crucial role in our analysis is played by the Wess-
Zumino-Witten (WZW) term describing the anomalous
interaction of the neutral pion field with the external elec-
tromagnetic field, and a related pion contribution to the
baryon current. For example, the WZW term describes the
anomalous �0 ! 2� decay. We review the prerequisite
basics of the WZW action in Sec. II. We then derive the
scales (2) in Sec. III.

In Sec. IV we show that the same mechanism that leads
to the formation of �0 domain walls in vacuum also
operates in color-superconducting phases of QCD at high
baryon densities. Such phases could exist in the cores of
dense neutron or quark stars. The Nambu-Goldstone bo-
sons associated with broken symmetries in these phases are
much lighter [18,19] than �0 in vacuum. As a result, in
these phases, the domain walls appear spontaneously at
lower magnetic fields of order 1017–1018 G, which de-
crease with increasing � due to the decrease of the
Nambu-Goldstone boson masses.

Finally, in Sec. V we consider another consequence of
the anomaly: the spontaneous generation of magnetization,
i.e., ferromagnetism, in dense QCD matter. Ferro-
magnetism of nuclear and quark matter, under various
mechanisms, has been discussed in the literature [20–
23]. It has been suggested that ferromagnetism may help
explaining certain features of magnetars [24]. We point out
that for such magnetization to appear, it is sufficient for a
pseudoscalar Goldstone boson field to develop a nonzero
average spatial gradient. Such a situation may indeed
appear in the so-called ‘‘Goldstone boson current’’ phases
of quark matter with mismatched quark Fermi surfaces. In
the case when all gapless fermions are electrically neutral,
we show that the magnitude of the magnetization is deter-
mined by the triangle anomalies. We estimate this magni-
tude in one particular scenario of Goldstone boson current
in the color-flavor-locked phase with neutral kaon conden-
sation (CFLK0 phase) to be of order 1016 G. Since only a
finite (and presumably small) region inside the neutron star
is occupied by this current phase, we estimate the typical
magnetic field generated by such a mechanism to be of
order 1014–1015 G. If such a mechanism indeed operates
within the cores of some magnetars, it might account for
their unusually large magnetic fields.

II. THE WZW ACTION IN ELECTROMAGNETIC
FIELD

A. SU(3) case

We start from the SU(3) chiral perturbation theory,
which describes the octet of pseudoscalar Nambu-
Goldstone bosons in terms of a 3	 3 unitary matrix �

 � � exp
�
i�a’a

f�

�
; (3)

where �a are the 8 Gell-Mann matrices and

 

1���
2
p �a’a �

�0��
2
p 
 ���

6
p �
 K


�� � �0��
2
p 
 ���

6
p K0

K� K0 � 2���
6
p

0
BBB@

1
CCCA: (4)

Without the WZW term, the Lagrangian of the theory in an
external electromagnetic field A� is

 L �
f2
�

4
trD��yD��
 tr�M�
 H:c:�; (5)

where

 D�� � @��
 ieA��Q;��; (6)

with Q � diag�2=3;�1=3;�1=3�. The Lagrangian is in-
variant under global SU�3�L 	 SU�3�R symmetry, and
under the local U�1�Q subgroup of this symmetry.
Gauging the whole SU�3�L 	 SU�3�R in QCD is not pos-
sible due to the axial anomalies [25]. The anomalies are
captured by the WZW term in the action [26,27]. We
introduce the standard notations,

 L� � �@��y; R� � @��y�: (7)

In the background of the external electromagnetic field A�
as well as an auxiliary gauge potential AB� coupled to a
baryon current, the WZW term is given by [26–29]
 

SWZW��;A�;AB���SWZW�0��
Z
d4xAB�j

�
B


���	


16�2

Z
d4x

	

�
eA� tr�QL�L	L

QR�R	R
�

� ie2F��A	 tr
�
Q2L

Q

2R




1

2
Q�Q@
�y�

1

2
Q�yQ@
�

��
: (8)

Here SWZW�0� is the WZW term without the gauge field
(which can be written in the form of a five-dimensional
integral). The additional terms in (8) make the action
invariant with respect to local U�1�B and U�1�Q (baryon
and electric charge) transformations.

The U�1�B transformation is not a part of the SU�3�L 	
SU�3�R group and the fields � do not transform under it.
However, the external U�1�B gauge potential AB� does
couple to � via the Goldstone-Wilczek baryon current j�B
[27,30]. In the external electromagnetic field, the con-
served and gauge-invariant baryon current j�B can be found
using the ‘‘trial and error’’ gauging, following Witten [27]
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j�B � �
1

24�2 �
��	
ftr�L�L	L
�

� 3ie@��A	 tr�QL
 
QR
��g; (9)

or the ‘‘covariant derivative’’ gauging, following
Goldstone and Wilczek [30]
 

j�B � �
1

24�2 �
��	


�
tr���D��y���D	�y���D
�
��

�
3ie
2
F�	 tr�Q��D
�
 
D
�y���

�
: (10)

In the form (9) both terms are obviously conserved, but not
separately gauge invariant. In the form (10) both terms are
obviously gauge invariant, but not separately conserved. It
can be checked that the two forms are equivalent.

B. SU(2) case

If one specializes to the SU(2) case [i.e., only ’1, ’2, ’3

are nonzero in Eq. (3)], then the previous formulas sim-
plify. We can write

 � �
1

f�
��
 i�a�a�; �2 
 �a�a � f2

�; (11)

and Q � t3 
 1=6 (t3 � �3=2) to verify, e.g., that
tr�Q�Q@
�y �Q�yQ@
�� � �1=3� tr�t3�L
 
 R
��.
The WZW action is zero in the absence of the external
fields: SWZW�0� � 0. In the presence of external fields, it
becomes
 

SWZW �
Z
d4x

�
�AB�j

�
B 


���	


16�2

�
1

3
eA� tr�L�L	L
�

�
ie2

2
F��A	 tr�t3�L
 
 R
��

��
; (12)

and
 

j�B � �
1

24�2 �
��	
ftr�L�L	L
�

� 3ie@��A	 tr�t3L
 
 t
3R
��g; (13)

or
 

j�B � �
1

24�2 �
��	


�
tr���D��y���D	�y���D
�
��

�
3ie
2
F�	 tr�t3��D
�
 
D
�y���

�
: (14)

The WZW action can therefore be written as

 SWZW � �
Z
d4x

�
AB� 


e
2
A�

�
j�B : (15)

The second term is the contribution of the baryon charge to
the electric charge of a baryon as in the Gell-Mann-
Nishijima formula Q � I3 
 NB=2.

Consider one particular case, when � is restricted to the
form

 � � exp
�
i
f�
�3’3

�
; (16)

and the external field is chosen to be a constant magnetic
field Bi � �ijkFjk=2 and baryon chemical potential AB� �
��; 0�. In this case the WZW action assumes an even
simpler form [only the last term in Eq. (13) survives]:

 SWZW �
e

4�2f�

Z
d4x�B � r’3: (17)

This form of the magnetic effective action has been written
down and discussed in Ref. [14], where it was interpreted
as a nonzero magnetization of a �0 domain wall at finite �
given by

 M �
e

4�2f�
�r’3: (18)

In this paper we point out that the same term is responsible
for the nonzero baryon density of a domain wall in an
external magnetic field:

 nB �
e

4�2f�
B � r’3: (19)

III. �0 DOMAIN WALL IN A MAGNETIC FIELD

A. Local stability

To treat the �0 domain wall and the fluctuations around
it, it is most convenient to use the following parametriza-
tion:

 � � f� cos cos�; �1 � f� sin cos�; (20)

 �0 � f� cos sin�; �2 � f� sin sin�: (21)

The Lagrangian (without the magnetic field) is given by

 L �
f2
�

2
��@��2 
 cos2�@���2 
 sin2�@���2�

� f2
�m2

��1� cos cos��: (22)

The �0 domain wall corresponds to the following static
solution to the field equations,

  � 0; � � 4 arctanem�z: (23)

Topologically, since Eq. (23) corresponds to a contract-
ible loop in the SU(2) group manifold (S3), the wall can be
‘‘unwound.’’ Moreover, in the absence of a magnetic field
the �0 domain wall is not even locally stable. This can be
seen by analyzing small fluctuations around the solution
(23). For small �1 and �2 the Lagrangian is given by
 

L �
1

2
��@��1�

2 
 �@��2�
2�

�
m2
�

2

�
1�

6

cosh2m�z

�
��2

1 
 �
2
2�: (24)

The equations of motion are
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 ��@2
x
@

2
y��

a�@2
z�

a
m2
�

�
1�

6

cosh2m�z

�
�a�E2�a:

(25)

The corresponding Schrödinger equation has two bound
states. The lowest state is tachyonic,

 E2 � k2
x 
 k2

y � 3m2
�; (26)

so the wall is locally unstable. (The second bound state
corresponds to a zero mode of the wall.)

In the magnetic field, the Laplacian in the �x; y� plane
becomes the Hamiltonian of a particle in a magnetic field,
whose spectrum (the Landau levels) is well known, leading
to

 E2 � �2n
 1�eB� 3m2
�; n � 0; 1; . . . (27)

Therefore, when the magnetic field exceeds the value

 B0 �
3m2

�

e
� 1:0	 1019 G; (28)

the �0 domain wall becomes locally stable.

B. Global stability at finite �

Substituting the configuration (23) into the Lagrangian
(22), one finds the following energy density per unit area,

 

E

S
� 8f2

�m�: (29)

At finite baryon chemical potential � and in the pres-
ence of a magnetic field Fxy � B (i.e., Bz � �B), the
configuration (23) carries a baryon number according to
Eq. (19) with ’3 � f��. The baryon number per unit
surface area is thus given by

 

NB
S
�
eB
2�

: (30)

Being a total derivative, the WZW term (17) does not affect
the field equations.

The energy per baryon number of the �0 domain wall is

 

E

NB
� 16�

f2
�m�

eB
: (31)

When the baryon chemical potential exceeds the value of
that ratio, i.e., for �> 16�f2

�m�=�eB�, the wall becomes
energetically more favorable than the vacuum, and the
ground state must be a stack of parallel domain walls, (at
least) as long as � & mN—the energy per baryon number
of the nuclear matter. In order to be more favorable than the
nuclear matter at � � mN the ratio (31) must be less than
mN. This happens if the magnetic field exceeds

 B1 �
16�f2

�m�

emN
� 1:1	 1019 G: (32)

In the chiral limitm� ! 0, B1  B0, but for the real-world
pion mass B1 is only slightly higher than B0.

According to Eq. (15), the �0 domain wall carries a
finite surface electric charge density equal to half of the
baryon charge density given by Eq. (30). Within QCD, this
charge can be neutralized by the �� bosons localized on
the wall: according to Eq. (27) the energy cost of adding a
�� vanishes at B � B0. The number of charged pions
necessary to neutralize the wall fills exactly half of the
first Landau level. This suggests that the electrically neu-
tral ground state may show quantum Hall behavior. For
B> B0, each pion cost an energy of �e�B� B0��

1=2.
However, for B> B0, within the full standard model
(with electromagnetism), other mechanisms of neutraliz-
ing the electric charge of the wall may compete with add-
ing charged pions (e.g., adding electrons). Since the energy
of adding one electron to the system is only me (its lowest
Landau level energy), our estimate for B1 is largely
unaffected.

C. Structure and baryon charge of a finite domain wall

So far we have considered an infinite domain wall. Let
us now consider a large, but finite-size, domain wall. For
the infinite wall, the baryon charge, given by Eq. (30),
comes from the second term in the baryon current (13),
which gives Eq. (17). This term is a full derivative, so for a
finite wall it must vanish. Where does the baryon number
come from in this case? We now demonstrate explicitly
that the finite domain wall carries a baryon number that
comes from the first term in Eq. (13).

We consider a flat domain wall with a circular boundary.
We use cylindrical coordinates ��;’; z� with the origin at
the center of the wall. The boundary of the wall is chosen to
be z � 0, � � R. We assume the radius R is much larger
than the thickness of the wall, R m�1

� .
We use the parametrization (20). We expect that when

� < R and R� � >m�1
� , we are sufficiently far away

from the boundary so that the domain wall is given by
Eq. (23). In particular, when z varies from �1 to 
1, �
jumps by 2�:

 ��z � 
1� � ��z � �1� � 2�; � < R: (33)

When � > R, one does not cross any domain wall as one
moves along the z direction,

 ��z � 
1� � ��z � �1� � 0; � > R: (34)

We find that � is a multiple-valued function: it changes by
2� when we move along a small loop around the boundary
� � R, z � 0. To avoid a singularity in the fields them-
selves, cos has to vanish on the boundary. We can choose

 �� � R; z � 0� �
�
2
: (35)

We expect that  is nonzero only near the boundary. So
the �1 and �2 fields differ substantially from 0 only near

D. T. SON AND M. A. STEPHANOV PHYSICAL REVIEW D 77, 014021 (2008)

014021-4



� � R. As these fields describe the charged pions, the
boundary of the domain wall is a superconducting string
[31]. At the boundary � � R, the charged pion condensate
is largest, ��1�2 
 ��2�2 � f2

�. Moreover, the phase � of
the charged pion condensate has a nontrivial winding
number around the circle � � R. Indeed, in order to mini-
mize the kinetic energy, this winding number is equal to the
magnetic flux that goes through the contour, in unit of the
elementary flux:

 ��’ � 2�� ���’ � 0� �
1

2�
eB��R2� �

1

2
eBR2:

(36)

Because of continuity, the phase � has the same winding
number on any contour that surrounds the z axis, � � 0. To
avoid singularity on this axis, we must have sin � 0 at
� � 0. We choose �� � 0� � 0.

Thus we find that a finite �0 domain wall has a peculiar
feature: the phase � makes 1

2 eBR
2 full circles on any

contour that surrounds the axis z � 0, and the phase �
makes a full circle on any contour that has linking number
one with the boundary � � R of the wall. The phase 
changes from 0 on the z axis to �=2 on the boundary of the
wall. It is easy to see that the configuration has the topol-
ogy of a Skyrmion with the baryon chargeNB �

1
2 eBR

2. In
can be already seen from Eq. (10) but it is instructive to
check that Eq. (9) gives the same result. Indeed, the full
derivative term in Eq. (9) does not contribute to the total
baryon charge and we have

 NB � �
1

24�2

Z
d3x�ijk tr�LiLjLk�: (37)

Changing coordinate system to , �, and �, one finds that
the baryon charge is equal to 1

2 eBR
2. The baryon charge

per unit surface area is the same as in Eq. (30).

IV. COLOR-SUPERCONDUCTING PHASES

So far, we have considered the effect of the magnetic
field on low-density matter. In this section, we consider the
effect of the magnetic field on the structure of high-density
quark matter. Such high-density matter may exist in one of
the color-superconducting phases (see, e.g., Refs. [32–36]
for reviews). We shall see that due to the existence of light
pseudoscalar Nambu-Goldstone bosons, stacks of domain
walls for such bosons can be generated, and because the
corresponding bosons are light, the critical magnetic field
can be much lower than in a vacuum.

A. 2SC phase in a magnetic field

Theoretically, the simplest color-superconducting phase
is the two-flavor superconducting (2SC) phase [37,38]. On
the phase diagram, this phase occupies a window of chemi-
cal potential next to low-density nuclear matter: right after

the chiral symmetry is restored, but before the density of
strange quarks becomes significant.

In this regime, the attraction between quarks in the
color-triplet mutual state leads to an instability of the
Fermi surface due to the familiar Cooper mechanism.
The resulting Cooper pair condensate has the quantum
numbers of a color triplet and an isospin singlet, and carries
zero angular momentum.

Perturbatively, there are two such condensates: the left-
and the right-handed quark pairs: X� qLqL and Y �
qRqR. The gauge-invariant (color singlet) order parameter
is the singlet made out of X and Y color vectors: � � XYy.
Like X and Y, � is also an isosinglet: the isospin SU�2�L 	
SU�2�R chiral symmetry is not broken in the 2SC phase.
However, since the phases of X and Y change in opposite
directions under the axial isospin singlet U�1�A symmetry,
the phase of the order parameter � � XYy changes under
U�1�A. This means that the U�1�A symmetry is broken by
the condensate.

In reality, this U�1�A symmetry is not a true symmetry of
QCD—it is violated by the quantum fluctuations of the
gluon fields via an anomaly. However, the vacuum con-
figurations of the gluon fields responsible for this violation,
i.e., the instantons, are suppressed at large baryon density
due to color Debye screening, and the U�1�A transforma-
tion can be treated as an approximate symmetry at large�.

In the 2SC phase, where the U�1�A is spontaneously
broken, the measure of the explicit violation of this sym-
metry by anomaly/instantons is the mass m� of the
Goldstone boson (which we call �). This mass decreases
very fast with � (see below and Ref. [18]). The smallness
ofm� is what is responsible for the low value of the critical
magnetic field.

The effective Lagrangian density for the � boson in the
2SC phase is [18]

 L � f2��@0’�
2 � u2�@i’�

2 �m2
��1� cos’��; (38)

where ’ is the local value of the U�1�A phase whose
fluctuations generate Goldstone boson �. For asymptoti-
cally large � �QCD the low-energy constants in the
effective Lagrangian (38) are calculable [19,39]:

 f2 �
�2
q

8�2 ; u2 �
1

3
: (39)

and

 m� �

���
a
2

r
�q

f
� � 2�

���
a
p

�; (40)

where � is the superconducting gap and a has been esti-
mated in Ref. [18]

 a � 5	 104

�
ln

�q

�QCD

�
7
�
�QCD

�q

�
29=3

: (41)
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In Eqs. (39)–(41), �q denotes the quark chemical poten-
tial: �q � �=3.

The domain wall configuration ’ � 4 arctan�exp	
�m�z=u�� is a static solution of the equations of motion
with energy per unit surface area given by

 

E

S
� 16uf2m�: (42)

Unlike the �0 domain wall in Sec. III, it is locally stable
because of the topology of U�1�A: the wall can be unwound
only by changing the magnitude of �, which requires
energies beyond the scale of the effective Lagrangian (38).

The interaction of ’ with the magnetic field due to the
axial anomaly is described by [14]

 L �
e�

36�2r’ � B: (43)

Being a total derivative, this term does not change the field
equations for ’, but it does contribute to the total free
energy of a domain wall. In particular, for the domain wall
perpendicular to the homogeneous field B, the magnetic
free energy per unit area is given by e�B=�18��, which
can be interpreted as the surface density of dipole magnetic
moment directed perpendicularly to the wall,

 

jmj

S
�

e�
18�

: (44)

For sufficiently large B, the free energy gain due to the
interaction of the wall with the magnetic field outweighs
the surface energy cost of creating a wall (42). Thus the
critical field is

 Bc �
E

jmj
� 288�u

f2m�

e�
�

4���
3
p
�

�m�

e

� 1:2 � 1018 G
�

�
1 GeV

�� m�

10 MeV

�
: (45)

For B> Bc, the domain walls are energetically favor-
able and (provided boundary conditions allow) they will
stack up until their mean separation is of the order of their
width 1=m�.

For comparison, the critical magnetic field needed to
destroy superconductivity is at least of order ��=e [7].
Because of fast decrease of m� with �, the value of Bc is
much lower than the critical field at large �.

B. CFL

At large � one eventually enters the regime where the
mass of the strange quark can be neglected; the density of
strange quarks is as large as that of up and down and the
pairing involving all three flavors becomes energetically
favorable. This pairing state is called color-flavor-locked
(CFL) phase [40].

In the CFL phase, the Cooper pairs are both flavor and
color triplets, i.e., X� qLqL and Y � qRqR each carry a

color and a flavor index and transform as color-flavor
matrices X ! LXCT and Y ! RYCT under the flavor
and color SU�3�L 	 SU�3�R 	 SU�3�C transformations.
The gauge-invariant order parameter � � XYy transforms
in the same way as the ordinary chiral condensate in
vacuum, �! L�Ry. Therefore, the chiral SU�3�L 	
SU�3�R is broken, in the CFL phase, down to the vectorlike
SU�3�L
R as it is in the vacuum.

Similarly to the 2SC phase, the U�1�A symmetry is also
spontaneously broken in the CFL phase. The SU�3�L 	
SU�3�R 	 U�1�A symmetry is explicitly violated by instan-
tons and quark masses, so all Nambu-Goldstone bosons are
massive. For simplicity, we consider the regime reached at
asymptotically high � where one can neglect the contri-
bution of instantons to all masses. The lightest Nambu-
Goldstone boson in this case is an isosinglet which has the
quantum number of �ss, i.e., a mixture of � and �0 [19]. Its
mass square is given by [19]

 m2
�ss �

3�2mumd

�2f2 (46)

where f2 ��2 is given below in Eqs. (48) and (49).
The effective Lagrangian for this field, ’�ss, is similar to

the Lagrangian (38),

 L � f2��@’�ss�
2 � u2�@i’�ss�

2 �m2
�ss�1� cos’�ss��: (47)

Since the boson is a mixture of the � and �0, its decay
constant is a linear combination of the singlet and the octet
decay constants. One can easily derive

 f2 � 1
12�f

2
�0 
 2f2

��; (48)

where f02� and f2
� have been computed in Ref. [19],

 f02� �
3

4

�2
q

2�2 ; f2
� �

21� 8 ln2

18

�2
q

2�2 : (49)

The anomalous coupling of the ’�ss field to the magnetic
field and baryon chemical potential is given by [14]

 L 0 �
e�

12�2r’�ss � B: (50)

Therefore, the critical magnetic field in CFL can be
estimated as

 B0c � 96�u
f2m�ss

e�
�

111� 32 ln2

81
���
3
p
�

�m �ss

e

�
8
���������������������������
111� 32 ln2
p

3
���
6
p
�

�
�������������
mumd
p

: (51)

Numerically, it can be written as

 B0c � 1:0 � 1017 G
�

�
1:5 GeV

��
m�ss

2 MeV

�

� 8:3 � 1016 G
�

�

30 MeV

�� �������������
mumd
p

5 MeV

�
: (52)
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Numerically, the value obtained here is close to the
theoretical upper limit of magnetic fields possible in neu-
tron stars [5].

V. FERROMAGNETIC QUARK MATTER

The presence of the anomaly term �r’ � B in the
Lagrangian implies that if a gradient of a pseudoscalar
boson is spontaneously generated in the ground state,
then the state will carry a spontaneous magnetization pro-
portional to �r’—i.e., it will be ferromagnetic.2 Such a
phase has been discussed in the literature under the name
‘‘Goldstone boson current’’ or ‘‘supercurrent’’ phase. This
phase becomes favorable in the range of chemical poten-
tials between CFL and 2SC phases. If we start from the
CFL phase and decrease the chemical potential �, the
splitting of the Fermi surfaces, m2

s=�2pF�, caused by
strange quark mass ms leads to an instability [45]. A
similar instability occurs in the 2SC phase [46].

In the language of the effective theory (chiral perturba-
tion theory with baryon excitations [47]), the instability
arises when a fermion excitation mode (a baryon) is about
to turn gapless [48,49] due to the effective chemical po-
tential, m2

s=�2pF�, introduced by the strange quark mass.
Because of the existence of a bilinear coupling r’ � j of
the supercurrent r’ of a Goldstone boson to the normal
current j �  yv of the fermion  , when the fermion is
nearly gapless one can lower the energy by simultaneously
generating the Goldston boson currentr’ and the ordinary
current j of opposite directions [50–52].

For definiteness, we shall discuss the Goldstone boson
current state in the kaon-condensed CFL phase (CFLK0)
[53]. Most of the discussion is also relevant for the current
phase in the CFL phase without kaon condensation [54]
and in the 2SC phase [55].

As discussed in Ref. [54], to leading order in the strong-
coupling constant 	s, there is a degeneracy between the
‘‘vector current’’ state and the ‘‘axial current’’ state. In the
vector current state X and Y rotate in the same direction as
one moves along the z direction, and in the axial current
state they rotate in the opposite directions. We shall assume
that the axial current state is favored. In this state, the
gauge-invariant order parameter � varies in space.

We should stress that the term ‘‘current state’’ is some-
what misleading, as the total current in the ground state is
zero. For example, in the axial current state the axial
current from the condensate is compensated by the axial
current of gapless fermions. However, in contrast to the

conserved currents, there is no reason for the magnetiza-
tion to vanish.

According to Ref. [53], the Goldstone boson current
CFLK0 phase appears when the effective chemical poten-
tial �s induced by the strange quark mass is in a narrow
range

 1:605�<�s �
m2
s

2pF
< 1:615�: (53)

Here pF � �=3 is the quark Fermi momentum.
The chiral field � in the CFLK0 phase is

 � � exp��iczQ� exp
�
i�
2
�6

�
exp��iczQ�

� exp��i2czQ� exp
�
i�
2
�6

�
; (54)

where c is some constant that is determined by energy
minimization. There is also a U�1�A linear background but
it does not contribute to the anomaly that we need (since
trQ � 0). It turns out [53] that the minimum of the energy
is achieved when c � �, so one is stretching the applica-
bility of the effective theory. We are interested in rough
estimates, so we shall use the effective theory extrapola-
tion. In the ground state,

 �@z�y � @z�
� � 2icQ; (55)

so the WZW term contribution to the Lagrangian is

 

e

2�2 �B tr�cQ2� �
e

3�2 �Bc: (56)

Putting c � �, we find the magnetic moment density
(magnetization)

 M �
e

3�2 �� � 2:4 � 1016 G
�

�
1:5 GeV

��
�

30 MeV

�
:

(57)

An important point not to be overlooked in such a
calculation of the magnetization is a possible contribution
of the near-gapless fermions that are present in the system.
In the particular case of CFLK0 considered here, these
fermions are electrically neutral and do not contribute.

What is a typical value of the magnetic field generated
by this mechanism inside a neutron or quark star? The local
baryon chemical potential is a function of the distance to
the center of the star and is increasing towards the center of
the star. Let us assume that it reaches the narrow range in
which the Goldstone boson current CFLK0 phase appears
[53]

 

m2
s

2�
�1:615��1 <

�
3
<
m2
s

2�
�1:605��1; (58)

before reaching the maximum at the star’s center. This
range maps onto a relatively thin shell inside the star, and
we denote its mean radius as R and the thickness d (we

2The ferromagnetism of an axial domain wall in vacuum has
been discussed in Refs. [41,42] using a microscopic approach in
connection with the primordial magnetic field generation (see
also Ref. [43]). It is worth pointing out that unlike the vacuum
case, where the magnetization is forbidden by C parity [44], in
the case we consider the C parity is explicitly broken by the
background baryon charge density.
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estimate below d� 100 m for a typical star of R� � 10 km
radius). Assuming that the magnetization in the shell is
uniform, one finds that the magnetic field it creates outside
is the same as that of a dipole moment equal to the total
magnetic moment of the shellM � 4�R2d. Near the surface
of the shell this field is of order

 B�M
d
R

(59)

(within the shell the field is much larger B�M and it is
zero inside the nonferromagnetic region surrounded by the
shell—the shell screens the field out of it). From Eq. (58)
the width of the range in � is of the order of 10 MeV.
Taking the typical range of variation of � in the star of
order 500 MeV, we estimate d=R� 10=500 � 0:02. Using
the estimate (57) for the magnetization M, we find from
(59) that typical fields generated by such mechanism are of
order B� 1014–1015 G, which is the right order of magni-
tude to account for the observed magnetic fields of
magnetars.

VI. CONCLUSION

In this paper we discussed the effects of the magnetic
field on the ground state of QCD at different values of
baryon density. The key mechanism which leads to the
effects we describe is due to the axial anomaly. In the
effective low-energy description of QCD—the chiral
Lagrangian for the Goldstone bosons—this effect is rep-
resented by a term which appears when we gauge the
topological (Goldstone-Wilczek) baryon current. On the

microscopic level, it is given by the triangle diagram with
the baryon, electromagnetic, and axial charge currents at
the vertices.

We have demonstrated that in a sufficiently strong mag-
netic field the most stable state with finite baryon number is
not nuclear matter, but a �0 domain wall. Similarly, at
higher baryon densities, the most stable state in a suffi-
ciently strong magnetic field is that of an isoscalar axial (�
or �0) domain wall.

We also show that the states of quark matter with
Goldstone boson current are ferromagnetic, and show
that their magnetization is related to triangle anomalies.
We estimate the magnetic field generated by such a mecha-
nism in a typical neutron/quark star to be of order
1014–1015 G, which is a relevant magnitude for neutron
star phenomenology.

Further work is needed to understand if such ferromag-
netic quark matter exists. In particular, one should under-
stand whether the ‘‘vector current’’ or ‘‘axial current’’ state
is favored. In addition, one should determine if the current
states are favored compared to other candidate ground
states (for example, the Fulde-Ferrell-Larkin-
Ovchinnikov states with multiple plane waves) [36].
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[47] A. Kryjevski and T. Schäfer, Phys. Lett. B 606, 52 (2005).
[48] M. G. Alford, J. Berges, and K. Rajagopal, Phys. Rev. Lett.

84, 598 (2000).
[49] M. Alford, C. Kouvaris, and K. Rajagopal, Phys. Rev. Lett.

92, 222001 (2004); M. Alford, C. Kouvaris, and K.
Rajagopal, Phys. Rev. D 71, 054009 (2005).

[50] D. T. Son and M. A. Stephanov, Phys. Rev. A 74, 013614
(2006).

[51] A. Kryjevski, arXiv:hep-ph/0508180 [Phys. Rev. D (to be
published)].
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