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In this work we investigate the weak �b ! �c semileptonic and nonleptonic decays. The light-front
quark model and diquark picture for heavy baryons are adopted to evaluate the �b ! �c transition form
factors. In the heavy quark limit we study the Isgur-Wise function. The transition form factors are
obtained in the whole physical momentum regions. The numerical predictions on the branching ratios of
nonleptonic decay modes �b ! �cM and various polarization asymmetries are made. A comparison with
other approaches is discussed.
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I. INTRODUCTION

The weak decays of �b provide valuable information of
the Cabibbo-Kobayashi-Maskawa (CKM) parameter Vcb
and serve as an ideal laboratory to study nonperturbative
QCD effects in the heavy baryon system. Recently, the
DELPHI collaboration reported their measurement on the
slope parameter �2 in the Isgur-Wise function and the
branching ratio of the exclusive semileptonic process
�b ! �cl ��l [1]. This experimental measurement reexcites
great theoretical interests in semileptonic decays of �b [2–
7]. From PDG06 [8], signals of several nonleptonic pro-
cesses, such as �b ! �c�, �ca1 (1260) have been ob-
served. These processes are a good probe to test the
factorization hypothesis which has been extensively ex-
plored in the B meson case [9]. The forthcoming LHCb
project is expected to accumulate large samples of the
b-flavor hadrons and offer an opportunity to study in detail
the �b decays. Thus, it probably is the time to investigate
the �b weak decays more systematically. In this work, we
will concentrate on the �b ! �c semileptonic and non-
leptonic decays.

As in the B meson decays, the key for correct evaluation
on the rate of the semileptonic decays is how to properly
derive the hadronic matrix element which is parametrized
by the �b ! �c transition form factors. There are various
approaches in the market to evaluate these form factors: the
QCD sum rules [5], quark models [2,6,7,10], perturbative
QCD approach [3,4] etc. In this work, we will study the
heavy baryon form factors in the light-front quark model.
The light-front quark model is a relativistic quark model
based on the light-front QCD [11]. The basic ingredient is
the hadron light-front wave function which is explicitly
Lorentz invariant. The hadron spin is constructed using the
Melosh rotation. The light-front approach has been widely
applied to calculate various decay constants and form
factors for the meson cases [12–16]. Different from the
case discussed in [10] where the light-front quark model

was also employed, we adopt the diquark picture for
baryons. It has been known for a long time that two quarks
in a color-antitriplet state attract each other and may form a
correlated diquark [17]. Indeed, the diquark picture of
baryons is considered to be appropriate for the low mo-
mentum transfer processes [18–21]. In the conventional
quark model, the heavy baryon is composed of one heavy
quark and two light quarks. The light spectator quarks
participate only in the soft interactions as �b transits into
�c; hence it is reasonable to employ the diquark picture for
heavy baryons where the diquark serves as a whole spec-
tator. Concretely, under the diquark approximation, �b and
�c are of the one-heavy-quark-one-light-diquark (ud)
structure which is analogous to the meson case and a
considerable simplification in the calculations is expected.
In fact, some nonperturbative interactions between the two
light quarks can be effectively absorbed into the constitu-
ent diquark mass. In this phenomenological study, we use
the rate of the semileptonic process �b ! �cl ��l which
will be accurately measured at LHCb and future ILC, to
constrain the light scalar diquark mass.

For the nonleptonic two-body decays �b ! �cM where
M denote light mesons, the amplitude is factorized to a
product of the meson decay constant and �b ! �c tran-
sition form factors by the factorization assumption.
Because there only a color-allowed diagram is involved,
the factorization assumption is believed to be reliable in the
B meson case [9]. However, the theoretical predictions on
the nonleptonic two-body decays vary by a factor of 2–3
for various models. The main theoretical uncertainties
arise from the model evaluations of the form factors. In
order to reduce model dependence and obtain a more
reliable prediction, we study the semileptonic decays and
nonleptonic processes simultaneously. The present experi-
mental data of the semileptonic decays (although the errors
are still quite sizable) set constraints on the phenomeno-
logical parameters in the light-front approach. With these
parameters, even though not very accurate yet, we evaluate
the �b ! �c form factors and make predictions on the
widths of the semileptonic decay �b ! �c � l �� and non-
leptonic two-body decay �b ! �c �M where M is a
meson.
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We organize our paper as follows. In Sec. II, we for-
mulate the form factors for the transition �b ! �c in the
light-front approach. We will show that in the heavy quark
limit, the resultant form factors are related to one universal
Isgur-Wise function. In Sec. III, the formulations of the
decay ratios and the polarizations for the semileptonic and
nonleptonic two-body decays are given. In Sec. IV, we
present our numerical results and all relevant input parame-
ters are given explicitly. We then compare our numerical
results with the predictions by other approaches. Finally,
Sec. V is devoted to conclusion and discussion.

II. �b ! �c TRANSITION FORM FACTORS IN THE
LIGHT-FRONT APPROACH

In the diquark picture, the heavy baryon �b�c� is com-
posed of one heavy quark b�c� and a light diquark [ud]. In
order to form a color singlet hadron, the diquark [ud] is in a
color antitriplet. Because �b�c� is at the ground state, the
diquark is in a 0� scalar state (s � 0, l � 0) and the orbital
angular momentum between the diquark and the heavy
quark is also zero, i.e. L � l � 0.

A. Heavy baryon in the light-front approach

In the light-front approach, the heavy baryon �Q with
total momentum P, spin S � 1=2, and scalar diquark can
be written as
 

j�Q�P; S; Sz�i �
Z
fd3p1gfd3p2g2�2��3�3� ~P� ~p1 � ~p2�

�
X
�1

�SSz�~p1; ~p2; �1�C
�
��F

bc

� jQ��p1; �1��q
�
1bq

�
2c��p2�i; (1)

where Q represents b or c, [q1q2] represents [ud], �
denotes helicity, p1, p2 are the on-mass-shell light-front
momenta defined by

 ~p � �p�; p?�; p? � �p
1; p2�; p� �

m2 � p2
?

p�
;

(2)

and
 

fd3pg 	
dp�d2p?

2�2��3
;

�3�~p� � ��p���2�p?�;

jQ�p1; �1��q1q2��p2�i � by�1
�p1�a

y�p2�j0i;

�a�p0�; ay�p�� � 2�2��3�3�~p0 � ~p�;

fd�0 �p0�; d
y
��p�g � 2�2��3�3�~p0 � ~p���0�:

(3)

The coefficient C��� is a normalized color factor and Fbc is
a normalized flavor coefficient,

 

C���F
bcC�

0

�0�0F
b0c0 hQ�0 �p

0
1; �

0
1��q

�0

1b0q
�0

2c0 ��p
0
2�jQ��p1; �1�

� �q�1bq
�
2c��p2�i

� 22�2��6�3�~p01 � ~p1��
3�~p02 � ~p2���01�1

: (4)

In order to describe the internal motion of the constitu-
ents, one needs to introduce intrinsic variables �xi; ki?�
with i � 1, 2 through

 p�1 � x1P
�; p�2 � x2P

�; x1 � x2 � 1;

p1? � x1P? � k1?; p2? � x2P? � k2?;

k? � �k1? � k2?;

(5)

where xi are the light-front momentum fractions satisfying
0< x1; x2 < 1. The variables �xi; ki?� are independent of
the total momentum of the hadron and thus are Lorentz-
invariant variables. The invariant mass square M2

0 is de-
fined as

 M2
0 �

k2
1? �m

2
1

x1
�
k2

2? �m
2
2

x2
: (6)

The invariant mass M0 is in general different from the
hadron mass M which satisfies the physical mass-shell
condition M2 � P2. This is due to the fact that the baryon,
heavy quark, and diquark cannot be on their mass shells
simultaneously. We define the internal momenta as

 ki � �k
�
i ; k

�
i ; ki?� � �ei � kiz; ei � kiz; ki?�

�

�
m2
i � k

2
i?

xiM0
; xiM0; ki?

�
: (7)

It is easy to obtain
 

M0 � e1 � e2;

ei �
xiM0

2
�
m2
i � k

2
i?

2xiM0
�

��������������������������������
m2
i � k

2
i? � k

2
iz

q
;

kiz �
xiM0

2
�
m2
i � k

2
i?

2xiM0
;

(8)

where ei denotes the energy of the ith constituent. The
momenta ki? and kiz constitute a momentum vector ~ki �
�ki?; kiz� and correspond to the components in the trans-
verse and z directions, respectively.

The momentum-space function �SSz in Eq. (1) is ex-
pressed as

 �SSz�~p1; ~p2; �1� � h�1jR
y
M�x1; k1?; m1�js1i

� h00; 1
2s1j

1
2Szi	�x; k?�; (9)

where 	�x; k?� is the light-front wave function
which describes the momentum distribution of the
constituents in the bound state with x � x2, k? � k2?;
h00; 1

2 s1j
1
2Szi is the corresponding Clebsch-Gordan

coefficient with spin s � sz � 0 for the scalar diquark;
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h�1jR
y
M�x1; k1?; m1�js1i is the well-known Melosh transformation matrix element which transforms the conventional spin

states in the instant form into the light-front helicity eigenstates,

 h�1jR
y
M�x1; k1?; m1�js1i �

�u�k1; �1�uD�k1; s1�

2m1
�
�m1 � x1M0���1s1

� i ~
�1s1

 ~k1? � ~n�������������������������������������������

�m1 � x1M0�
2 � k2

1?

q ; (10)

where u�D� denotes a Dirac spinor in the light-front (instant) form and ~n � �0; 0; 1� is a unit vector in the z direction. In
practice, it is more convenient to use the covariant form for the Melosh transform matrix [12,15]

 h�1jR
y
M�x1; k1?; m1�js1i

�
00;

1

2
s1

��������1

2
Sz

�
�

1��������������������������������������
2�p1 
 �P�m1M0�

p �u�p1; �1��u� �P; Sz�; (11)

where

 � � 1; �P � p1 � p2 (12)

for the scalar diquark. If the diquark is a vector which is
usually supposed to be the case for the �c�b� baryon, the
Melosh transform matrix should be modified.

The heavy baryon state is normalized as
 

h��P0; S0; S0z�j��P; S; Sz�i

� 2�2��3P��3� ~P0 � ~P��S0S�S0zSz : (13)

Thus, the light-front wave function satisfies the constraint

 

Z dxd2k?
2�2�3�

j	�x; k?�j2 � 1: (14)

In principle, the wave functions can be obtained by
solving the light-front bound state equations. However, it
is too hard to calculate them based on the first principle, so
that instead, we utilize a phenomenological function, and

the Gaussian form would be the most preferable one,

 	�x; k?� � N

���������
@k2z

@x2

s
exp

�
� ~k2

2�2

�
; (15)

with

 N � 4
�
�

�2

�
3=4
;

@k2z

@x2
�

e1e2

x1x2M0
; (16)

where � determines the confinement scale of hadron. The
phenomenological parameters in the light-front quark
model are quark masses and the hadron wave function
parameter � which should be prior determined before
numerical computations can be carried out and we will
do the job in the later subsections.

B. �b ! �c transition form factors

The form factors for the weak transition �Q ! �Q0 are
defined in the standard way as

 

h�Q0 �P
0; S0; S0z�j �Q0���1� �5�Qj�Q�P; S; Sz�i � �u�Q0

�P0; S0z�
�
��f1�q

2� � i
��
q�

M�Q

f2�q
2� �

q�
M�Q

f3�q
2�

�
u�Q
�P; Sz�

� �u�Q0
�P0; S0z�

�
��g1�q2� � i
��

q�

M�Q

g2�q2� �
q�
M�Q

g3�q2�

�
� �5u�Q0

�P; Sz�; (17)

where q 	 P� P0,Q andQ0 denote b and c, respectively. The above formulation is the most general expression with only
constraint of keeping the Lorentz invariance and parity conservation for strong interactions. There are six form factors fi,
gi in total for the vector and axial-vector current �c���1� �5�b and all the information on the strong interaction is involved
in them. Since S � S0 � 1=2, we will be able to write j�Q�P; S; S

0
z�i as j�Q�P; Sz�i in the following formulations. A

parametrization is more convenient for the heavy-to-heavy transitions, which is written in terms of the four-velocities as

 

h�Q0 �v
0; S0z�j �Q0���1� �5�Qj�Q�v; Sz�i � �u�Q0

�v0; S0z��F1�!��� � F2�!�v� � F3�!�v
0
��u�Q

�v; Sz�

� �u�Q0
�v0; S0z��G1�!��� �G2�!�v� �G3�!�v

0
���5u�Q

�v; Sz�; (18)
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where v � P
M�Q

, v0 � P0
M�

Q0
, and ! � v 
 v0. The relation

between the two methods is
 

F1 � f1 �
M�Q

�M�Q0

M�Q

f2; F2 � f2 � f3;

F3 �
M�Q0

M�Q

�f2 � f3�; G1 � g1 �
M�Q

�M�Q0

M�Q

g2;

G2 � g2 � g3; G3 �
M�Q0

M�Q

�g2 � g3�: (19)

The lowest order Feynman diagram for the �b ! �c
weak decay is depicted in Fig. 1. In [22], the light-front
quark model for heavy pentaquark with one heavy quark
and two light diquarks is presented. In our case, the heavy
baryon �b�c� is composed of a heavy quark b�c� and one

diquark [ud]. Thus, most of our formulations are similar to
that in [22] except there is only one diquark in our case.

Now, we are ready to calculate the weak transition
matrix elements. Using the light-front quark model de-
scription of j�Q�P; S; Sz�i, we obtain

 

h�Q0 �P0; S0z�j �Q0���1� �5�Qj�Q�P; Sz�i �
Z
fd3p2g

	��Q0
�x0; k0?�	�Q

�x; k?�

2
�������������������������������������������������������������������������������������
p�1 p

0�
1 �p1 
 �P�m1M0��p01 


�P0 �m01M
0
0�

q
� �u� �P0; S0z� ��

0
Lm�p6

0
1 �m

0
1��

��1� �5��p6 1 �m1��u� �P; Sz�; (20)

where

 

�� 0 � �0��0 � � � 1; m1 � mb; m01 � mc; m2 � m�ud�; (21)

and P and P0 denote the momenta of initial and final baryons, p1, p01 are the momenta of b and c quarks, respectively.
Because the diquark is a scalar, one does not need to deal with spinors which make computations more complex. In this
framework, at each effective vertex, only the three-momentum rather than the four-momentum is conserved, hence ~p1 �
~p01 � ~q and ~p2 � ~p02. From ~p2 � ~p02, we have

 x0 �
P�

P0�
x; k0? � k? � x2q?; (22)

with x � x2, x0 � x02. Thus, Eq. (20) is rewritten as

 

h�Q0 �P0; S0z�j �Q0���1� �5�Qj�Q�P; Sz�i �
Z dxd2k?

2�2��3
	�Q0

�x0; k0?�	�Q
�x; k?�

2
��������������������������������������������������������������������������������
x1x01�p1 
 �P�m1M0��p01 


�P0 �m01M
0
0�

q
� �u� �P0; S0z��p6 01 �m

0
1��

��1� �5��p6 1 �m1�u� �P; Sz�: (23)

Following [23], the Dirac and Pauli form factors can be derived from the helicity-conserving and helicity-flip matrix
elements of the plus component of the vector current operators in the light-front framework. Analogously, the form factors
corresponding to axial-vector current are obtained by the authors of [24]. In this work we choose the transverse frame
where q� � 0, q? � 0 which is similar to the treatment in [22]. We then have

 

f1�q
2� �

h�Q0 �P
0; "�jV�j�Q�P; "�i

2
���������������
P�P0�
p ;

f2�q2�

M�Q

� �
h�Q0 �P

0; "�jV�j�Q�P; #�i

2q?L
���������������
P�P0�
p ;

g1�q
2� �

h�Q0 �P0; "�jA�j�Q�P; "�i

2
���������������
P�P0�
p ;

g2�q2�

M�Q

� �
h�Q0 �P0; "�jA�j�Q�P; #�i

2q?L
���������������
P�P0�
p ;

(24)

where q?L � q1
? � iq

2
?. The above relations can be written in a compact form as

FIG. 1. Feynman diagram for �b ! �c transitions, where
N

denotes V � A current vertex.
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 h�Q0 �P
0; S0z�jV

�j�Q�P; Sz�i � 2
���������������
P�P0�
p �

f1�q
2��S0zSz �

f2�q2�

M�Q

� ~
 
 ~q?

3�S0zSz

�
;

h�Q0 �P
0; S0z�jA

�j�Q�P; Sz�i � 2
���������������
P�P0�
p �

g1�q
2��
3�S0zSz �

g2�q2�

M�Q

� ~
 
 ~q?�S0zSz

�
:

(25)

It is noted that the form factors f3�q2� and g3�q2� cannot be extracted in terms of the above method for we have imposed the
condition q� � 0. However, they do not contribute to the semileptonic decays �b ! �cl ��l and vanish in the heavy quark
limit.

In order to extract f1;2�q2� and g1;2�q2� from Eq. (23), the following identities are necessary:

 

1

2

X
Sz;S0z

u� �P; Sz��S0zSz �u� �P0; S0z� �
1

4
���������������
P�P0�
p � �P6 �M0��

�� �P6 0 �M00�;

1

2

X
Sz;S0z

u� �P; Sz��
3
i?�S0zSz �u� �P0; S0z� � �
1

4
���������������
P�P0�
p � �P6 �M0�
i�� �P6

0 �M00�;

1

2

X
Sz;S0z

u� �P; Sz��

3�S0zSz �u� �P0; S0z� �

1

4
���������������
P�P0�
p � �P6 �M0��

��5�
�P6 0 �M00�;

1

2

X
Sz;S0z

u� �P; Sz��
i?�S0zSz �u� �P0; S0z� � �
1

4
���������������
P�P0�
p � �P6 �M0�
i��5�

�P6 0 �M00�:

(26)

It should be noted that u� �P; Sz� is not equal to u�P; Sz�, but the relation ��u� �P; Sz� � ��u�P; Sz� is satisfied.
From Eqs. (23), (25), and (26), the transition form factors are obtained:

 

f1�q2� �
1

8P�P0�
Z dxd2k?

2�2��3
	�Q0

�x0; k0?�	�Q
�x; k?�

2
��������������������������������������������������������������������������������
x1x01�p1 
 �P�m1M0��p01 


�P0 �m01M
0
0�

q
� Tr�� �P6 �M0���� �P6

0 �M00��p6
0
1 �m

0
1��

��p6 1 �m1��;

g1�q2� �
1

8P�P0�
Z dxd2k?

2�2��3
	�Q0

�x0; k0?�	�Q
�x; k?�

2
��������������������������������������������������������������������������������
x1x01�p1 
 �P�m1M0��p01 


�P0 �m01M
0
0�

q
� Tr�� �P6 �M0����5�

�P6 0 �M00��p6
0
1 �m

0
1��

��5�p6 1 �m1��;

f2�q2�

M�Q

� �
1

8P�P0�qi?

Z dxd2k?
2�2��3

	�Q0
�x0; k0?�	�Q

�x; k?�

2
��������������������������������������������������������������������������������
x1x

0
1�p1 
 �P�m1M0��p

0
1 


�P0 �m01M
0
0�

q
� Tr�� �P6 �M0�
i�� �P6

0 �M00��p6
0
1 �m

0
1��

��p6 1 �m1��;

g2�q2�

M�Q

�
1

8P�P0�qi?

Z dxd2k?
2�2��3

	�Q0
�x0; k0?�	�Q

�x; k?�

2
��������������������������������������������������������������������������������
x1x

0
1�p1 
 �P�m1M0��p

0
1 


�P0 �m01M
0
0�

q
� Tr�� �P6 �M0�


i��5�
�P6 0 �M00��p6 1 �m

0
1��

��5�p6 1 �m1��;

(27)

with i � 1, 2. The traces can be worked out straightforwardly:
 

1

8P�P0�
Tr�� �P6 �M0���� �P6

0 �M00��p6
0
1�m

0
1��

��p6 1�m1�� ���p1�x1
�P� 
 �p01�x

0
1

�P0�� �x1M0�m1��x01M
0
0�m

0
1�;

1

8P�P0�
Tr�� �P6 �M0��

��5�
�P6 0 �M00��p6

0
1�m

0
1��

��5�p1�m1�� � �p1�x1
�P� 
 �p01�x

0
1

�P0�� �x1M0�m1��x
0
1M
0
0�m

0
1�;

and
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1

8P�P0�
Tr�� �P6 �M0�
i�� �P6

0 �M00��p6
0
1�m

0
1��

��p6 1�m1����m01�x
0
1

�M00��p
i
1?�x1

�Pi?���m1�x1M0��p0i1?�x
0
1

�P0i?�;

1

8P�P0�
Tr�� �P6 �M0�
i��5�

�P6 0 �M00��p6
0
1�m

0
1��

��5�p6 1�m1����m01�x
0
1

�M00��p
i
1?�x1

�Pi?���m1�x1M0��p0i1?�x
0
1

�P0i?�:

(28)

Using �P�0� � p�0�1 � p
�0�
2 and other momentum relations, the products of momenta in Eqs. (27) and (28) are given in terms of

the internal variables as
 

p1 
 �P � e1M0 �
m2

1 � x
2
1M

2
0 � k

2
1?

2x1
; p01 
 �P0 � e01M

0
0 �

m021 � x
02
1 M

02
0 � k

02
1?

2x01
;

p�0�i1? � x1
�P�0�i? � k�0�i1?; �p1 � x1

�P� 
 �p01 � x
0
1

�P0� � �k1? 
 k
0
1?:

(29)

At last, we obtain the final expressions for the �Q ! �Q0 weak transition form factors

 f1�q2� �
Z dxd2k?

2�2��3
	�Q0

�x0; k0?�	�Q
�x; k?��k2? 
 k02? � �x1M0 �m1��x01M

0
0 �m

0
1����������������������������������������������������������������������������������������������

��m1 � x1M0�
2 � k2

2?���m
0
1 � x1M00�

2 � k022?�
q ;

g1�q
2� �

Z dxd2k?
2�2��3

	�Q0
�x0; k0?�	�Q

�x; k?���k2? 
 k02? � �x1M0 �m1��x01M
0
0 �m

0
1����������������������������������������������������������������������������������������������

��m1 � x1M0�
2 � k2

2?���m
0
1 � x1M00�

2 � k022?�
q ;

f2�q2�

M�Q

�
1

qi?

Z dxd2k?
2�2��3

	�Q0
�x0; k0?�	�Q

�x; k?���m1 � x1M0�k0i1? � �m
0
1 � x

0
1M
0
0�k

i
1?���������������������������������������������������������������������������������������������

��m1 � x1M0�
2 � k2

2?���m
0
1 � x1M00�

2 � k022?�
q ;

g2�q
2�

M�Q

�
1

qi?

Z dxd2k?
2�2��3

	�Q0
�x0; k0?�	�Q

�x; k?���m1 � x1M0�k0i1? � �m
0
1 � x

0
1M
0
0�k

i
1?���������������������������������������������������������������������������������������������

��m1 � x1M0�
2 � k2

2?���m
0
1 � x1M00�

2 � k022?�
q :

(30)

C. The form factors in the heavy quark limit

It is well known that there is a nontrivial symmetry in
QCD: the heavy quark symmetry in the infinite quark mass
limit [25]. Since the masses of heavy quarks b and c are
much larger than the strong interaction scale �QCD, the
spin of the heavy quark decouples from light quark and
gluon degrees of freedoms, and an extra symmetry
SUf�2� � SUs�2� is expected. This flavor and spin symme-
try provides several model-independent relations for the
heavy-to-heavy baryonic form factors: the six form factors
fi, gi (i � 1, 2, 3) are related to a unique universal Isgur-
Wise function ��v 
 v0�. In the heavy quark limit, the heavy
quark Q is described by a two-component spinor Qv �

eimQv
x �1�v6 �
2 Q, where v is the velocity of the heavy baryon.

The current �Q0���1� �5�Q in the full theory is matched
onto the current �Q0v0���1� �5�Qv in the heavy quark
effective theory. The baryon bound state and Dirac spinor
field are replaced by
 

j�Q�P; Sz�i !
����������
M�Q

q
j�Q�v; Sz�i;

u� �P; Sz� !
�������
mQ
p

u�v; Sz�:
(31)

The Isgur-Wise function which appears in the transition
amplitude �Q ! �Q0 is defined as [26]

 h�Q0 �v
0; S0z�j �Q0v0�

��1� �5�Qvj�Q�v; Sz�i

� ��!� �u�v0; S0z����1� �5�u�v; Sz�; (32)

where ! 	 v 
 v0. The heavy flavor symmetry implies that
the Isgur-Wise function is normalized to be 1 at the zero-
recoil point, ��1� � 1. The physical form factors are ob-
tained as

 f1�q
2� � g1�q

2� � ��!�; f2 � f3 � g2 � g3 � 0;

(33)

where q2 � M2
�Q
�M2

�Q0
� 2M�Q

M�Q0
!.

Since the momentum of �Q is dominated by the mo-
mentum of the heavy quark Q, the momentum of the light
spectator diquark x is of order �QCD=mQ. The variable
X 	 xmb is of the order of �QCD. In analog to the situation
for heavy mesons, the wave function of �Q should have a
scaling behavior in the heavy quark limit [27],

 	�Q
�x; k?� !

�������
mQ

X

r
��X; k?�; (34)

where the factor �������mQ
p is deliberately factorized out and the

rest of 	�Q
�x; k?� is independent of mQ, ��X; k?� is

normalized as
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Z 1
0

dX
X

Z d2k?
2�2��3

j��X; k?�j
2 � 1: (35)

For the on-shell diquark momentum p2, we have p�2 �
�p2

2?
�m2

2�

p�2
, and

 v 
 p2 �
m2

2 � k
2
? � X

2

2X
: (36)

Hence, the wave function ��X; k?�, which only depends
on the velocity of the baryon, is the same for �Q and �Q0 .

We now consider the transition form factors obtained in
the previous section under the heavy quark limit. For the
initial baryon, we have

 M�Q
! mQ; M0 ! mQ; e1 ! mQ;

e2 ! v 
 p2; ~k2
! �v 
 p2�

2 �m2
2;

p6 1 �m1 ! mQ�v6 � 1�
e1e2

x1x2M0
!
mQ

X
�v 
 p2�;

(37)

and

 ��X; k?� � 4
�������������
v 
 p2
p

�
�

�2
1

�
3=4

exp
�
�
�v 
 p2�

2 �m2
2

2�2
1

�
:

(38)

The subscript in �1 represents the case of the heavy quark
limit. Similar expressions can be obtained for the final
baryon where a prime sign ‘‘0’’ would be attached to
each variable.

The calculation of the Isgur-Wise function in the heavy
quark limit becomes much simpler than that for fi and gi
because they can be evaluated directly in the timelike
region by choosing a reference frame where q? � 0 [22].
The matrix element �Q ! �Q0 is
 

h�Q0 �v0; S0z�j �Q0v0�
��1� �5�Qvj�Q�v; Sz�i

�
Z dX

X
d2k?

2�2��3
��X; k?���X0; k0?� �u�v

0; S0z�

� ���1� �5�u�v; Sz�; (39)

where z 	 X0=X. By comparing the above equation with
Eq. (32), we get

 ��!� �
Z dX

X
d2k?

2�2��3
��X; k?���X0; k0?�: (40)

The obtained Isgur-Wise function ��!� is an overlapping
integration of the initial and final wave functions and no
spin information is left. The variable z is related to ! via

 z! z
 � !

���������������
!2 � 1

p
; z� �

1

z�
; (41)

where ���� denotes the final baryon recoiling direction.
There is a symmetry between z� and z�. ��!� does not
change when we replace z� by z�, or vice versa.

Equation (40) shows explicitly that ��!� depends only on
the velocities of the initial and final baryons and is inde-
pendent of the heavy quark masses.

The Isgur-Wise function can also be obtained from
Eq. (20) by taking the heavy quark limit. It is not difficult
to verify that f1�q2� � g1�q2� � ��!�, f2 � g2 � 0 in
leading order of �QCD=mQ. The normalization of Isgur-
Wise function at the zero-recoil point is guaranteed by our
normalization condition for wave functions, Eq. (35). Its
consistency with forms in the heavy quark limit implies the
correctness of the light-front approach.

III. SEMILEPTONIC AND NONLEPTONIC
DECAYS OF TRANSITION �b ! �c

The polarization effects in exclusive processes, such as
B! 	K�, offers nontrivial information about strong in-
teraction, which is important to test different theoretical
approaches. The decays of �b ! �c indeed contain com-
plex spin structures. In this section, we obtain formulations
for the rates of semileptonic and nonleptonic processes. In
this work, we concern only the exclusive decay modes.

A. Semileptonic decays of �b ! �cl ��l
The transition amplitude of �b ! �c contains several

independent helicity components. The helicity amplitudes
induced by the weak vector and axial-vector currents are
described by HV;A

�0;�W
, where �0 and �W denote the helicities

of the final baryon and the virtual W-boson, respectively.
According to the definitions of the form factors for �b !
�c given in Eq. (18), the helicity amplitudes are related to
these form factors through the following expressions [28]:

 HV
�1=2�;0 �

��������
Q�
p �����
q2

p �
�M�b

�M�c
�f1 �

q2

M�b

f2

�
;

HV
�1=2�;1 �

����������
2Q�

p �
�f1 �

M�b
�M�c

M�b

f2

�
;

HA
�1=2�;0 �

��������
Q�
p �����
q2

p �
�M�b

�M�c
�g1 �

q2

M�b

g2

�
;

HA
�1=2�;1 �

����������
2Q�

p �
�g1 �

M�b
�M�c

M�b

g2

�
;

(42)

where Q
 � 2�P 
 P0 
M�b
M�c
� � 2M�b

M�c
�!
 1�.

The amplitudes for the negative helicities are obtained in
terms of the relation

 HV;A
��0��W

� 
HV;A
�0;�W

; (43)

where the upper (lower) sign corresponds to V�A�.
Because of the V � A structure of the weak current, the

helicity amplitudes are obtained as

 H�0;�W � HV
�0;�W

�HA
�0;�W

: (44)

The helicities of the W-boson �W can be either 0 or 1,
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which correspond to the longitudinal and transverse polar-
izations, respectively. Following the definitions in litera-
ture, we decompose the decay width into a sum of the
longitudinal and transverse parts according to the helicity
states of the virtual W-boson. The differential decay rate of
�b ! �cl ��l is

 

d�

d!
�
d�L
d!
�
d�T
d!

; (45)

and the longitudinally (L) and transversely (T) polarized
rates are respectively [28]
 

d�L
d!
�
G2
FjVcbj

2

�2��3
q2pcM�c

12M�b

�jH�1=2�;0j
2 � jH��1=2�;0j

2�;

d�T
d!
�
G2
FjVcbj

2

�2��3
q2pcM�c

12M�b

�jH�1=2�;1j
2 � jH��1=2�;�1j

2�;

(46)

where pc � M�c

���������������
!2 � 1
p

is the momentum of �c in the
reset frame of �b. Integrating over the solid angle, we
obtain the decay rate

 � �
Z !max

1
d!

d�

d!
; (47)

where the upper bound of the integration !max �
1
2 �
M�b
M�c
�

M�c
M�b
� is the maximal recoil. In order to compare our results

with those in the literature, we used the variable ! in the

expression for the differential decay rate. In the heavy
quark limit, the decay rate of �b ! �cl ��l is simplified into

 

d�

d!
�
G2
FjVcbj

2

24�3 M5
�b

���������������
!2 � 1

p
r3

� �6!r2 � 8!2r� 4r� 6!���!�2; (48)

with r � M�c
M�b

.

The polarization of the cascade decay �b !
�c�! p�� �W�! l�� is expressed by various asymmetry
parameters [7,28]. Among them, the integrated longitudi-
nal and transverse asymmetries are defined by

 aL �

R!max
1 d!q2pc�jH�1=2�;0j

2 � jH��1=2�;0j
2�R!max

1 d!q2pc�jH�1=2�;0j
2 � jH��1=2�;0j

2�
;

aT �

R!max
1 d!q2pc�jH�1=2�;1j

2 � jH��1=2�;�1j
2�R!max

1 d!q2pc�jH�1=2�;1j
2 � jH��1=2�;�1j

2�
:

(49)

The ratio of the longitudinal to transverse decay rates R is
defined by

 R �
�L
�T
�

R!max
1 d!q2pc�jH�1=2�;0j

2 � jH��1=2�;0j
2�R!max

1 d!q2pc�jH�1=2�;1j
2 � jH��1=2�;�1j

2�
;

(50)

and the longitudinal �c polarization asymmetry PL is
given as

 PL �

R!max
1 d!q2pc�jH�1=2�;0j

2 � jH��1=2�;0j
2 � jH�1=2�;1j

2 � jH��1=2�;�1j
2�R!max

1 d!q2pc�jH�1=2�;0j
2 � jH��1=2�;0j

2 � jH�1=2�;1j
2 � jH��1=2�;�1j

2�
�
aT � RaL

1� R
: (51)

B. Nonleptonic decay of �b ! �cM

Several exclusive nonleptonic decays of �b ! �c �M,
where M is a meson, have been measured in recent experi-
ments [8]. From the theoretical aspects, the nonleptonic
decays are much more complicated than the semileptonic
ones because of the strong interaction. Generally, the
present theoretical framework is based on the factorization
assumption, where the hadronic matrix element is factor-
ized into a product of two matrix elements of single
currents. One can be written as a decay constant while
the other is expressed in terms of a few form factors
according to the Lorentz structure of the current. For the
weak decays of mesons, such a factorization approach is
verified to work very well for the color-allowed processes
and the nonfactorizable contributions are negligible. We
have reason to believe that this would be valid for the
baryon case, especially as the diquark picture is employed.
The decays �0

b ! ��c M� belong to this type. Thus, the
study on these modes could be not only a test for the
factorization hypothesis, but also a check of the consis-

tency of the obtained form factors in the heavy bottomed
baryon system.

For the nonleptonic decays �0
b ! ��c M�, the effective

interaction at the quark level is b! c �q1q2. The relevant
Hamiltonian is

 HW �
GF���

2
p VcbV�q1q2

�c1O1 � c2O2�;

O1 � � �cb�V�A� �q2q1�V�A; O2 � � �q2b�V�A� �cq1�V�A;

(52)

where ci denotes the short-distance Wilson coefficient,
Vcb�Vq1q2

� is the CKM matrix elements, q1 stands for u
or c, and q2 for d or s in the context. Then one needs to
evaluate the hadronic matrix elements

 h�cMjHW j�bi �
GF���

2
p VcbV�q1q2

X
i�1;2

cih�cMjOij�bi:

(53)

Under the factorization approximation, the hadronic ma-
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trix element is reduced to

 h�cMjOij�bi � h�cjJ�j�bihMjJ0�j0i; (54)

where J�J0� is the V � A weak current. The first factor
h�cjJ�j�bi is parametrized by six form factors as done in
Eq. (17). The second factor defines the decay constants as
follows:

 

hP�P�jA�j0i � fPP�;

hS�P�jV�j0i � fSP�;

hV�P; 
�jV�j0i � fVMV
��;

hA�P; 
�jA�j0i � fVMA
��;

(55)

where P�V� denotes a pseudoscalar (vector) meson, and
S�A� denotes a scalar (axial-vector) meson. In the defini-
tions, we omit a factor (� i) for the pseudoscalar meson
decay constant.

In general, the transition amplitude of �b ! �cM can
be written as

 

M��b ! �cP� � �u�c
�A� B�5�u�b

;

M��b ! �cV� � �u�c

���A1���5 � A2�p�c

���5

� B1�� � B2�p�c
���u�b

;

(56)

where 
� is the polarization vector of the final vector or
axial-vector mesons. Including the effective Wilson coef-
ficient a1 � c1 � c2=Nc, the decay amplitudes in the fac-
torization approximation are [29,30]

 

A � �fP�M�b
�M�c

�f1�M2�;

B � �fP�M�b
�M�c

�g1�M2�;

A1 � ��fVM
�
g1�M2� � g2�M2�

M�b
�M�c

M�b

�
;

A2 � �2�fVM
g2�M

2�

M�b

;

B1 � �fVM
�
f1�M

2� � f2�M
2�
M�b

�M�c

M�b

�
;

B2 � 2�fVM
f2�M

2�

M�b

;

(57)

where � � GF��
2
p VcbV�q1q2

a1 and M is the meson mass.

Replacing P, V by S and A in the above expressions, one
can easily obtain similar expressions for scalar and axial-
vector mesons.

The decay rates of �b ! �cP�S� and up-down asym-
metries are [30]

 

� �
pc
8�

�
�M�b

�M�c
�2 �M2

M2
�b

jAj2

�
�M�b

�M�c
�2 �M2

M2
�b

jBj2
�
;

� � �
2�Re�A�B�

jAj2 � �2jBj2
;

(58)

where pc is the �c momentum in the rest frame of �b and
� � pc

E�c�M�c
. For �b ! �cV�A� decays, the decay rates

and up-down asymmetries are
 

� �
pc�E�c

�M�c
�

8�M�b

�
2�jSj2 � jP2j

2�

�
E2

M2 �jS�Dj
2 � jP1j

2�

�
;

� �
4M2Re�S�P2� � 2E2Re�S�D��P1

2M2�jSj2 � jP2j
2� � E2�jS�Dj2 � jP1j

2�
;

(59)

where E is energy of the vector (axial-vector) meson, and

 S � �A1; P1 � �
pc
E

�M�b
�M�c

E�c
�M�c

B1 � B2

�
;

P2 �
pc

E�c
�M�c

B1;

D � �
p2
c

E�E�c
�M�c

�
�A1 � A2�:

(60)

IV. NUMERICAL RESULTS

In this section, we will present our numerical results of
the form factors for the transition �b ! �c. Then use them
to predict the rates of the exclusive semileptonic �b !
�cl ��l, and two-body nonleptonic processes, such as �b !
�cM

�, where M � �, K, �, K�, a1.
At first, we provide our input parameters in the light-

front quark model. The baryon masses M�b
� 5:624 GeV,

M�c
� 2:285 GeV are taken from [8]. The quark masses

and the hadron wave function parameter � need to be
specified. For the heavy quark masses, we take mb and
mc from [15]. Following [22], the mass of a [ud] diquark is
assumed to be close to the constitute strange quark mass. In
the literature, the mass of the constituent light scalar di-
quark m�ud� is rather arbitrary, for example, it is set as: 400
[22], 500 [21], 710 [7], and 650–800 MeV [31]. A recent
result from lattice calculation gives the scalar diquark mass
varies from 1190 to 696 MeV when a hopping parameter �
changes from 0.140 to 0.148 [32]. To reduce error and
model dependence, we use the value of BR��b !
�cl ��l� � 5:0�1:1

�0:8�stat��1:6
�1:2�syst�% measured by the

DELPHI collaboration [1] to fix parameters. The present
data favors diquark mass as m�ud� � 500 MeV. All the
input parameters are collected in Table I.
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A. �b ! �c form factors and the Isgur-Wise function

Because the calculation of form factors is performed in
the frame q� � 0 with q2 � �q2

? � 0, only the values of
the form factors in the spacelike region can be obtained.
The advantage of this choice is that the so-called Z-graph
contribution arising from the nonvalence quarks vanishes.
In this study, another advantage is that it simplifies the
calculation of baryonic matrix elements. In order to obtain
the physical form factors, an analytical extension from the
spacelike region to the timelike region is required. The
form factors in the spacelike region can be parametrized in
a three-parameter form as

 F�q2� �
F�0�

�1� q2

M2
�b

��1� a� q
2

M2
�b

� � b� q
2

M2
�b

�2�
; (61)

where F represents the form factor f1;2 and g1;2. The
parameters a, b, and F�0� are fixed by performing a
three-parameter fit to the form factors in the spacelike
region which were obtained in previous sections. We
then use these parameters to determine the physical form
factors in the timelike region. The fitted values of a, b, and
F�0� for different form factors f1;2 and g1;2 are given in
Table III. The q2 dependence of the form factors is plotted
in Fig. 2.

From Table II and Fig. 2, we find that the form factors f1

and g1 are nearly equal. At small recoil, i.e. large q2 region,
there is only a tiny difference between the two functions.
Even at the maximal recoil point q2 � 0, their difference is
less than 3%. This can be understood by Eq. (30) where
the difference between f2 and g2 is at the order of
�2

QCD=�M�b
M�c
�, a next-to-next-to-leading order in the

1=mQ expansion. The form factor f2 and g2 are small
comparing to f1 and g1. In practice, g2 is approximately
zero, and f2 is about 20%–30% of f1 and g1. These
conclusions are consistent with the results of [4]. From
Table II, the parameter a for various form factors is close to
1 and the parameter b is small. The results suggest that the
q2-dependence of fi and gi approximately exhibits a dipole
behavior F�q2� � F�0�

�1�q2=M�b
�n

with n � 2.

In the heavy quark limit, the heavy baryons �b and �c
have the same scale parameter �1 in their wave functions.
We choose �1 � 0:40 GeV which is equal to the parame-
ter in the �b wave function. The Isgur-Wise function is
usually parametrized by

 ��!� � 1� �2�!� 1� �

2

2
�!� 1�2 � 
 
 
 ; (62)

where �2 	 � d��!�
d! j!�1 is the slope parameter and 
2 	

d2��!�
d!2 j!�1 is the curvature of the Isgur-Wise function. Our

fitted values are

 �2 � 1:47; (63)

 
2 � 1:90: (64)

The DELPHI collaboration reported their measurement on

TABLE I. Quark mass and the parameter � (in units of GeV).

mc mb m�ud� �c�ud� �b�ud�

1.3 4.4 0.50 0.35 0.40

FIG. 2 (color online). (a) Form factors f1 and g1. (b) Form factors f2 and g2.
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the slope of the Isgur-Wise function ��!� � 1� �2�!�
1� as �2 � 2:03
 0:46�stat��0:72

�1:00�syst� in the semileptonic
decay �b ! �cl ��l [1]. The recent theoretical calculations
on the slope parameter �2 are: �2 � 1:35
 0:12 in QCD
sum rules [5]; �2 � 1:51 in a relativistic quark model [7].
All the results are in agreement with the experiment data
within the theoretical and experimental errors. The Isgur-
Wise function in the total! space is depicted in Fig. 3. The
errors in the parameter �1 have only a minor effect which
is consistent with the B meson case [33].

B. Semileptonic decay of �b ! �c � l ��l
With the form factors and the Isgur-Wise function given

in the above subsection, we are able to calculate the
branching ratios and various asymmetries of �b ! �cl ��l

decay. Table III provides our numerical predictions. The
results are presented for two cases: with taking the heavy
quark limit and without taking the heavy quark limit. The
ratio of longitudinal to transverse rates R> 1 implies that
the longitudinal polarization dominates.

The significant difference for the transverse polarization
asymmetry aT in the two cases (with or without taking the
heavy quark limit) implies that aT is sensitive to the heavy
quark symmetry breaking effects. Thus, measurement of
aT may be an ideal probe to test how well the heavy quark
symmetry works in the weak decays of heavy baryons, not
only for the rate estimate, but also other relevant measur-
able quantities such as aT . Indeed, for the branching ratio
and the �c polarization asymmetry PL, the deviation in the
two cases is at the level of a few percents, thus the heavy
quark limit provides a good approximation.

We also compare our results with the predictions by the
relativistic quark model [7]. The two models result in
nearly equal predictions for the longitudinal asymmetry
aL and the �c polarization asymmetry PL. This confirms
the observation of [10] that these quantities are less model
dependent.

C. Nonleptonic decays of �b ! �c �M

The nonleptonic decays �b ! �c �M in the factoriza-
tion approach have been studied in the previous section.
Now, we present our numerical predictions on the decay
rates and relevant measurable quantities. The CKM matrix
elements take values [8]
 

Vud � 0:9738; Vus � 0:2257; Vcd � 0:230;

Vcs � 0:957; Vcb � 0:0416; (65)

and the effective Wilson coefficient a1 � 1. The meson
decay constants are shown in Table IV.

The predictions for the branching ratios and up-down
asymmetries are provided in Table V. The Tables VI and
VII demonstrate comparisons of our result with that in
other approaches. Some arguments are made in orders:

(1) For the processes with mesons �, �, Ds, D�s , a1

being in the final states, the corresponding subpro-
cesses are b! c �ud or b! c �cs, which are the
Cabibbo-favored processes. The decay ratios fall
in the region 4� 10�3 to 1� 10�2. They are the
dominant decay modes which will be measured in
the near future. For the processes with mesons K,
K�, D, D� in the final states, the subprocesses are

TABLE III. The branching ratios and polarization asymmetries of �b ! �cl ��l.

Br aL aT R PL

Within the heavy quark limit (this work) 6.2% �0:926 �0:483 1.539 �0:751
Without the heavy quark limit (this work) 6.3% �0:932 �0:601 1.466 �0:798
Within the heavy quark limit (in [7]) 6.2% �0:928 �0:483 1.59 �0:756
With 1=mQ corrections (in [7]) 6.9% �0:940 �0:600 1.61 �0:810

TABLE II. The �b ! �c form factors given in the three-
parameter form.

F F�0� a b

f1 0.505 68 1.00 0.75
f2 �0:099 43 1.50 1.43
g1 0.500 87 1.00 0.70
g2 �0:008 89 1.50 1.45

FIG. 3. The �b ! �c Isgur-Wise function ��!� with diquark
mass m�ud� � 500 MeV.
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b! c �us or b! c �cd which are the Cabibbo-
suppressed processes. Their decay ratios are of order
�3� 5� � 10�4.

(2) In the scheme adopted in this work, we obtain the

ratio
BR��0

b!��c l� ��l�
BR��0

b!��c ���
to be 16.8, and this theoretical

prediction is consistent with the experimental mea-

surement (a preliminary result)
BR��0

b!��c l� ��l�
BR��0

b!��c ���
�

20:0
 3:0�stat� 
 1:2�syst� [38].
(3) From Table VI, it is noted that the differences

among the predictions on the branching ratios for
nonleptonic decays by various theoretical ap-
proaches are obvious. It is hard to decide which
model is closer to reality at present, because more
precise data are still lacking. It may be more appro-
priate to employ the experimental data about the
semileptonic decay as inputs to reduce the model
dependence of the �b ! �c transition form factors
as we did in this work.

(4) All the up-down asymmetries � are negative, this
result reflects the V � A nature of the weak currents.
Table VII shows that the numerical values of the up-
down asymmetries � predicted by different ap-
proaches are nearly the same except for the process
�0
b ! ��c D

��
s where the difference is about 10%.

V. CONCLUSIONS

In this work, we investigate extensively the �b ! �c
transition form factors in the light-front approach
and make predictions on the rates for the semileptonic
decay �b ! �cl ��l and nonleptonic two-body decays

TABLE VI. Branching ratios for nonleptonic decays �b !
�c �M within different theoretical approaches (in units of
10�2).

This work [30] [34] [35] [36] [37]

�0
b ! ��c �� 0.375 0.38 0.175 
 
 
 0.391 0.503

�0
b ! ��c �� 0.673 0.54 0.491 
 
 
 1.082 0.723

�0
b ! ��c K� 0.030 
 
 
 0.013 
 
 
 
 
 
 0.037

�0
b ! ��c K�� 0.035 
 
 
 0.027 
 
 
 
 
 
 0.037

�0
b ! ��c a�1 0.649 
 
 
 0.532 
 
 
 
 
 
 
 
 


�0
b ! ��c D

�
s 1.140 1.1 0.770 2.23 1.291 
 
 


�0
b ! ��c D

��
s 0.996 0.91 1.414 3.26 1.983 
 
 


�0
b ! ��c D

� 0.050 
 
 
 0.030 
 
 
 
 
 


�0
b ! ��c D

�� 0.051 
 
 
 0.049 
 
 
 
 
 


TABLE VII. Up-down asymmetries for nonleptonic decays
�b ! �cM within different theoretical approaches.

This work [30] [34] [35] [37]

�0
b ! ��c �

� �1 �0:99 �0:999 
 
 
 �1

�0
b ! ��c �

� �0:885 �0:88 �0:897 
 
 
 �0:885

�0
b ! ��c K

� �1 
 
 
 �1 
 
 
 �1

�0
b ! ��c K

�� �0:857 
 
 
 �0:865 
 
 
 0.885

�0
b ! ��c a

�
1 �0:760 
 
 
 �0:758 
 
 
 
 
 


�0
b ! ��c D

�
s �0:982 �0:99 �0:984 �0:98 
 
 


�0
b ! ��c D

��
s �0:442 �0:36 �0:419 �0:40 
 
 


�0
b ! ��c D

� �0:986 
 
 
 �0:987 
 
 
 
 
 


�0
b ! ��c D

�� �0:481 
 
 
 �0:459 
 
 
 
 
 


TABLE V. Branching ratios and up-down asymmetries of nonleptonic decays �b ! �cM
with the light diquark mass m�ud� � 500 MeV.

Within the heavy quark limit Without the heavy quark limit
Br � Br �

�0
b ! ��c �

� 4:22� 10�3 �1 3:75� 10�3 �1

�0
b ! ��c �

� 6:07� 10�3 �0:897 6:73� 10�3 �0:885

�0
b ! ��c K

� 3:41� 10�4 �1 3:02� 10�4 �1

�0
b ! ��c K

�� 3:15� 10�4 �0:865 3:50� 10�4 �0:857

�0
b ! ��c a

�
1 5:84� 10�3 �0:758 6:49� 10�3 �0:760

�0
b ! ��c D

�
s 1:18� 10�2 �0:984 1:14� 10�2 �0:982

�0
b ! ��c D

��
s 8:88� 10�3 �0:419 9:96� 10�3 �0:442

�0
b ! ��c D

� 5:23� 10�4 �0:987 5:01� 10�4 �0:986

�0
b ! ��c D

�� 4:61� 10�4 �0:459 5:12� 10�4 �0:481

TABLE IV. Meson decay constants f (in units of MeV) [15].

Meson � � K K� D D� Ds D�s a1

f 131 216 160 210 200 220 230 230 203
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�b ! �c �M. In the light-front quark model, we adopt
the diquark picture for the heavy baryons. It is believed
that, for the heavy baryons which contain at least one
heavy quark, the quark-diquark picture seems to work
well, therefore one can employ it for evaluating the had-
ronic matrix elements of �b ! �c transitions which are
dominated by nonperturbative QCD effects. The light sca-
lar diquark mass determined from the data on the semi-
leptonic decay is about 500 MeV. Our numerical results
show that the q2-dependence of the momentum transfer of
different form factors has a dipolelike behavior. The slope
parameter of the universal Isgur-Wise function is found to
be consistent with that obtained by fitting experimental
data. The small difference for the branching ratio of the
semileptonic decay with and without the heavy quark limit
implies that the heavy quark symmetry is good in the heavy
bottom baryon system. However, on the other aspect, the
transverse polarization asymmetry is shown to be sensitive
to the heavy quark symmetry breaking, and it is worth

further and more accurate studies. Our results for the
exclusive nonleptonic two-body decays �b ! �c �M is
modest among the predictions by other approaches. The
semileptonic to nonleptonic ��c �� decay ratio is well in
accord with the experimental measurements. The nonlep-
tonic decays, so far have not been accurately measured,
and there are only upper bounds for some channels, so that
it is still hard to judge the closeness of the present models
to the physical reality yet. Fortunately, the LHCb will run
and a remarkable amount of data on �b production and
decay will be accumulated in the future LHCb, then one
may be able to verify the different models.
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