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In this work, we study the isospin-violating decay of �! !�0 and quantify the electromagnetic (EM)
transitions and intermediate meson exchanges as two major sources of the decay mechanisms. In the EM
decays, the present datum status allows a good constraint on the EM decay form factor in the vector meson
dominance model, and it turns out that the EM transition can only account for about 1=4� 1=3 of the
branching ratio for �! !�0. The intermediate meson exchanges, K �K�K�� (intermediate K �K interaction
via K� exchanges), K �K��K� (intermediate K �K� rescattering via kaon exchanges), and K �K��K�� (inter-
mediate K �K� rescattering via K� exchanges), which evade the naive Okubo-Zweig-Iizuka rule, serve as
another important contribution to the isospin violations. They are evaluated with effective Lagrangians
where explicit constraints from experiment can be applied. Combining these three contributions, we
obtain results in good agreement with the experimental data. This approach is also extended to J= � 0� !
!�0, where we find contributions from the K �K�K��, K �K��K�, and K �K��K�� loops are negligibly small,
and the isospin violation is likely to be dominated by the EM transition.
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I. INTRODUCTION

The isospin breaking decay channel �! !�0 has been
measured by experiment with improved precisions [1], and
the Particle Data Group quote BR��! !�0� �
�5:2�1:3

�1:1� � 10�5 as the world average for its branching
ratio [2]. This decay channel is very interesting due to
the presence of the Okubo-Zweig-Iizuka (OZI) rule viola-
tion and isospin symmetry breaking together. These two
mechanisms, which generally account for different aspects
of the underlying dynamics, are correlated in this channel.
With the availability of much improved experimental in-
formation about other related transitions, one can pursue a
quantitative study of the underlying dynamics and learn
more about the correlation between the OZI rule violation
and isospin symmetry breaking in the nonperturbative
regime.

The electromagnetic (EM) decay of �! !�0 is an
important source of isospin violations, where the s and �s
annihilate into a virtual photon, which then decays into
!�0. The other source of isospin violation originates from
the mass differences between the u and d quark [3]. It can
contribute to �! !�0 via OZI-rule-violating strong
decays.

In the literature the isospin violation in �! !�0 was
studied by isoscalar and isovector mixing, e.g. ��!�
�0 and�0 � �� �0 mixings [4–9]. This scenario contains
both EM and strong transitions in an s-channel, and allow
the�! !�0 decay without violating the OZI rule [10]. In
such an approach, the EM and strong decays cannot be
separated out. An alternative view is to separate the EM
and strong processes by explicitly introducing the EM
amplitude as an s-channel process, and then including
the hadronic loop contributions as the t-channel processes.

This will be our focus in this work. Our strategy is to
constrain the EM transition first, and a well-defined EM
transition will then allow us to make a reliable evaluation
of the strong isospin violation mechanism.

The EM transitions can be studied in the vector meson
dominance (VMD) model. Recently, a systematic inves-
tigation of the role played by the EM transitions in
J= � 0� ! VP, where V and P denote light nonet vector
and pseudoscalar mesons, respectively, was reported in
Refs. [11,12], and the up-to-date experimental data pro-
vided a good constraint on the VMD model. For �!
!�0, the VMD approach has great advantages: on the
one hand, the � and ! meson masses are very close to
the �mass. Hence, the EM form factors can be constrained
by the precise data for the �0 meson mass and width [2].
On the other hand, since other heavier vectors are rather far
away from this kinematic region, their contributions to the
form factor will be limited. The dominant mechanisms can
thus be clarified. The availability of experimental informa-
tion for �! ��0 and ��� �����0 [13] is also an
advantage for quantifying the EM contributions.

The isospin-violating strong decay can be related to the
OZI rule violation at low energies via intermediate had-
ronic loops as proposed by Lipkin [14,15]. Microscopic
interpretation of such a scenario as a mechanism for the
OZI rule violation was investigated by Geiger and Isgur in
a quark model [16,17]. For instance, an s�s pair of 1� can
couple to nonstrange n �n 	 �u �u� d �d�=

���
2
p

via K �K, K� �K �
c:c:, etc. Suppressions of such an OZI-rule-violating pro-
cess come from the cancellations between the intermediate
meson loops and off-shell effects on the intermediate states
[18,19]. Qualitatively, at high energies, where the mass
scale of the intermediate states becomes unimportant,
one would expect a ‘‘perfect cancellation’’ among all those

PHYSICAL REVIEW D 77, 014010 (2008)

1550-7998=2008=77(1)=014010(12) 014010-1 © 2008 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.77.014010


intermediate states, and it recovers the OZI rule. At low
energies, where the mass scale of the individual states is
dominant, the perfect cancellation will break down due to
e.g. mu � md originated from the chiral symmetry break-
ing. The OZI rule violations hence give rise to the recog-
nition of isospin symmetry breakings.

Such a mechanism in �! !�0 decay can be described
as follows: In �! !�0, the intermediate charged and
neutral kaon loop transitions are supposed to cancel out
if the isospin symmetry is conserved. However, due to
small mass differences between the u and d quarks, the
charged and neutral kaons will also have small differences
in mass, i.e. mK0 �mK
 � 3:972
 0:027 MeV [2], and
they are coupled to the � meson with slightly different
strength. The hadronic loops will then have ‘‘imperfect’’
cancellations and lead to measurable isospin-violating
branching ratios. This drives us to investigate the contri-
butions from the intermediate meson exchanges to �!
!�0, which is not only an OZI-rule-violating mechanism,
but also a source of isospin violations.

A reasonable approach is that at hadronic level, we study
the EM and hadronic loop contributions coherently with
the aid of the up-to-date experimental data. It will enable
us to quantify these two isospin-violating sources with
some obvious advantages: (i) At hadronic level, we can
extract couplings from independent experimental measure-
ments without knowing all the details about the quark
distribution functions. This technique has been broadly
applied to the study of nonperturbative long-range inter-
actions in the hadronic decays of heavy quarkonia, espe-
cially in charmonium decays [20–24]. (ii) Adopting the
experimental constraints on the meson masses and effec-
tive couplings, we also avoid the details about how the
difference of the u� d quark masses leads to the correc-
tions to the decay constants.

In the next section, we first analyze the EM� decay in a
VMD model and then present our intermediate-meson-
exchange model with effective Lagrangians. The numeri-
cal results for�! !�0 are given in Sec. III. An extension
of this approach to J= � 0� ! !�0 is also discussed. A
summary is then given in Sec. IV.

II. THE MODEL

A. Electromagnetic decay in VMD model

The V�� coupling is described by the VMD model [25],

 L V� �
X
V

eM2
V

fV
V�A�; (1)

where eM2
V=fV is a direct photon-vector-meson coupling

in Feynman diagram language, and the isospin 1 and 0
component of the EM field are both included. It should be
noted that this form of interaction is only an approximation
and can have large off-shell effects arising from either off-
shell vector meson or virtual photon fields. In this approach

we consider such effects in the V�P coupling form factor
which will then be absorbed into the energy-dependent
widths of the vector mesons.

The typical effective Lagrangian for the V�P coupling
is

 L V�P �
gV�P�q2�

MV
���	
@

�V�@	A
P; (2)

where V��� �;!;�; J= ;  0 . . .� and A
 are the vector
meson and EM field, respectively; MV is the vector meson
mass; ���	
 is the antisymmetric Levi-Civita tensor. The
coupling constant gV�P�q2� is off-shell and involves a form
factor due to the virtuality of the photon. It can be ex-
pressed as

 gV�P�q2� � gV�P�0�F �q2�; (3)

where gV�P�0� is the on-shell coupling and can be deter-
mined by vector meson radiative decays [11,12], e.g. !!
��0 and �! ��0.

In the VMD model, we can decompose the virtual
photon by a sum of vector mesons as shown by Fig. 1.
The amplitude for process-I [i.e. Fig. 1(I)] can be expressed
as

 MEM�I
fi �

X
V

e
fV

M2
V

M2
� �M

2
V � iMV�V

e
f�

�
g!V�
M!

"	
��p	!"


!p

�
�"

�
�; (4)

where g!V� is the VVP strong coupling constant, and �V is
the total width of the intermediate vector meson. This gives

 gV�P�q2� � gV�P�0�F �q2�

�
X
V

g!V�
e
fV

M2
V

M2
� �M

2
V � iMV�V

; (5)

which relates the on-shell coupling gV�P�0� to an off-shell
coupling with form factors.

FIG. 1. Schematic diagrams for the EM transitions in �!
!�0.
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Similarly, the transition matrix element for process-II
[Fig. 1(II)] can be written as

 MEM�II
fi �

X
V

e
fV

M2
V

M2
! �M2

V � iMV�V

e
f!

�
g�V�
M�

"	
��p	!"


!p

�
�"

�
�; (6)

where g�V� is again the strong coupling constant.
In the VMD framework, it also allows contributions

from process-III [Fig. 1(III)] of which the expression is

 MEM�III
fi �

X
V1V2

e
fV1

e
fV2

M2
V1

M2
� �M

2
V1
� iMV1

�V1

�
M2
V2

M2
! �M2

V2
� iMV2

�V2

e
f!

e
f�

�
gV1V2�

MV1

"	
��p
	
!"



!p

�
�"

�
�; (7)

where V1 and V2 are intermediate vector mesons which are
different from ! and � when they are connected to these
two states by the virtual photon. However, since we adopt
experimental data for�! �0�0 in process-II to determine
the g��0�0 coupling, contributions from process-III will
have been included in process-II. Nonetheless, we note in
advance that exclusive contributions from process-III are
negligibly small. Therefore, we will only concentrate on
the first two processes in this study.

The following points can be made about �! !�0:
(i) We argue that the dominant contributions are from

�0 in this kinematics. Contributions from higher
states will be relatively suppressed because their
masses are larger than the virtuality of the photon.
Other suppressions from the V�� and VVP cou-
plings are also expected. Basically, those higher
vector mesons are farther away from the � and !
masses than the �0. We thus make an approximation
of Eqs. (4) and (6) by considering only the � meson
contributions:

 MEM
fi � MEM�I

fi �MEM�II
fi

	
~gEM

M�
"	
��p

	
!"



!p

�
�"

�
�; (8)

where the EM coupling ~gEM has a form
 

~gEM ’
e
f�

�
e
f�

�M�

M!

� M2
�

M2
� �M

2
� � iM���

g!�0�0

�
e
f!

M2
�

M2
! �M2

� � iM���
g��0�0

�
; (9)

with �� and �! the total widths of �0 and !,
respectively.

(ii) The vector-meson-photon couplings, e=fV , can be
determined by V ! e�e�:

 

e
fV
�

�
3�V!e�e�

2	ejpej

�
1=2
; (10)

where jpej is the electron three-momentum in the
vector meson rest frame, and 	e � 1=137 is the fine-
structure constant.

(iii) The coupling, g2
!�0�0 ’ 85, can be well determined

by either !! ��0 or !! �0e�e� [2] in the same
framework.

(iv) For g��0�0 , the KLOE measurement suggests that
�! ��! �����0 has a weight of 0.937 in �!
�����0 [13]. This gives

 0:937� �exp
�!��������0 �

jpj3

12�M2
�

�g��0�0

� g����� � g������
2;

(11)

with jpj denoting the three-vector momentum of the
final state meson in the �-rest frame. It is reasonable
to assume g��0�0 � g����� � g����� , Thus, the
coupling constant can be determined: g��0�0 �

0:68.
On the other hand, the coupling g��0�0 can be ex-
tracted in �! ��0 by assuming that the �0 is the
dominant contribution to the form factor. This leads
to

 g��0�0 �

�12�M2
���!��0

jpj3�e=f��2
�M2

� � �2
��

M2
�

�
1=2
’ 0:68;

(12)

where the � meson width is included. These two
results are in excellent agreement with each other
and highlight the necessity of considering the width
effects of the �0 pole in the form factor. Also, this
evidently shows that the �0 pole is the dominant
contribution in the � meson radiative decays, and
the VMD approach indeed provides a reliable de-
scription of the EM transitions in �! !�0.
In the above treatment, all the couplings are deter-
mined by experimental data and there is no free
parameter in the calculation of the EM decay
couplings.

B. Intermediate K �K�K�� � c:c: loop

As discussed in the introduction, in principle, one should
include all the possible intermediate-meson-exchange
loops in the calculation. In reality, the breakdown of the
local quark-hadron duality allows us to pick up the leading
contributions as a reasonable approximation [14,15]. In the
� meson decay, the leading branching ratio is via �!
K �K, which makes the intermediate K �K rescattering via K�

exchange a dominant contribution. Apart from this, �K� �K
coupling is sizeable in the SU(3) flavor symmetry which
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also makes the intermediate K �K� � c:c: rescattering via
kaon and/or K� exchange important contributions in �!
!�0. Contributions from higher mass states turn to be
suppressed at the � mass region. We take this as a reason-
able approximation in this work, and formulate the con-
tributions from (i) intermediate K �K�K�� loop;
(ii) intermediate K �K��K� loop; and (iii) intermediate
K �K��K�� loop.

The transition amplitude for�! !�0 via an intermedi-
ate meson loop can be expressed as follows:

 Mfi �
Z d4p2

�2��4
X
K�pol

T1T2T3

a1a2a3
F �p2

2�: (13)

For K �K�K��, the vertex functions are

 

8>>><
>>>:
T1 	 ig1�p1 � p3� � "�

T2 	
ig2

M!
"	
��p

	
!"



!p

�
2 "

�
2

T3 	 ig3�p� � p3� � "2;

(14)

where g1, g2, and g3 are the coupling constants at the
meson interaction vertices (see Fig. 1). The four vectors,
p�, p!, and p�0 , are the momenta for the initial� and final
state ! and � meson; the four-vector momentum, p1, p2,
and p3, are for the intermediate mesons, respectively;
while a1 � p2

1 �m
2
1, a2 � p2

2 �m
2
2, and a3 � p2

3 �m
2
3

are the denominators of the propagators of intermediate
mesons.

The form factor F �p2�, which takes care of the off-shell
effects of the exchanged particles, is usually parameterized
as

 F �p2� �

�
�2 �m2

�2 � p2

�
n
; (15)

where n � 0, 1, 2 correspond to different treatments of the
loop integrals.

The coupling constants for the charged and neutral
meson interactions are denoted by subscription ‘‘c’’ and
‘‘n,’’ respectively. In the charged meson exchange loop,
coupling g1c can be determined by the experimental data
for �! K�K� � c:c,

 g2
1c �

6�M2
�

jP1cj
3 ��!K�K��c:c:; (16)

where ��!K�K��c:c: � �49:2
 0:6�%� �tot [2]. For the
neutral channel, g1n is determined by �! K0 �K0 � c:c:
for which we adopt ��!KSKL � �34:0
 0:5�%� �tot [2]
to derive

 g2
1n �

6�M2
�

jP1nj
3 ��!KSKL: (17)

The coupling constant g3c and g3n can be deduced
through the decay K� ! K�. For example, g3n is deter-
mined by K�0 ! K0�0:

 g2
3n � g2

K�0K0�0 �
6�M2

K�0

jPj3
�K�0!K0�0 : (18)

It shows that within the precision of the experimental data
forK�0 ! K0�0 andK�
 ! K
��, coupling gK�0K0�0 has
the same value as gK�
K
�� . The extracted values are listed
in Table I.

The relative signs between the couplings are determined
by the SU(3) flavor symmetry relations [26]:

 g3c � �g3n � gK��K��0 � �gK��K��0 � gK�0K0�0

� �g �K�0 �K0�0 : (19)

Note that the above equation is to illustrate the relative
signs instead of the values for the coupling constants.

The coupling constant g2 cannot be directly derived
from experiment. But it can be related to the !�0�0

coupling via the SU(3) flavor symmetry:
 

g2c � g2n � g!K��K� � g!K��K� � g! �KK0 � g!K�0 �K0

� g!�0�0=2; (20)

where, again, the relative signs between the charged and
neutral couplings are determined by Ref. [26].

With the couplings determined as the above, one can see
that a relative sign arises between the amplitudes for the
charged and neutral meson exchange loops. We then dis-
tinguish these two amplitudes as follows:

 Mfi 	 Mc
fi �M

n
fi; (21)

where Mc
fi and Mn

fi have similar structures except that the
couplings and masses involving the intermediate charged
and neutral mesons are different due to the isospin sym-
metry violations. The nonvanishing cancellation thus can
contribute to the isospin-violating branching ratios.

To proceed, we treat the loop integral in two different
ways. First, we apply an on-shell approximation (Cutkosky
rule) for the intermediate K �K, which will reduce the loop
integration into an integral over the azimuthal angles de-
fined by p3 relative to p�. This approximation picks up the
imaginary part of the transition amplitude, and with n � 0,
1, 2, we can examine the effects from the form factors.
There are some disadvantages of this treatment. For inter-
mediate mesons of which the mass threshold is above the�
mass, their contributions to the imaginary (absorptive) part
vanish though their contributions to the real (dispersive)
part may be sizeable. Because of this, we also consider the
loop integrals including the dispersive part in a Feynman

TABLE I. The absolute values of coupling constants for the
vertex interactions. Their relative phases are determined by the
SU(3) flavor symmetry.

Coupling constants jg�K �Kj jg!K� �Kj jgK�K�j�jfK�K�j� jf�K� �Kj

Charged kaon coupling 4.49 4.58 3.96 6.48
Neutral kaon coupling 4.62 4.58 3.96 6.48
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integration. To kill the ultraviolet divergences, we include
the form factors with n � 1 and 2 for a monopole and
dipole, respectively. Below are the details.

1. Integrations with on-shell approximation

By applying the Cutkosky rule to the loop integration,
we can reduce the transition amplitude (e.g. for the charged
meson loop) to be

 Mc
fi �

jp3cj

32�2M�

Z
d�

TcF �P
2
2c�

p2
2c �m

2
2c

; (22)

with

 Tc 	 �T1T2T3�c

�
ig1cg2cg3c

M!
4"	
��"

	
!p



3cp

�
�p�!"� � p3c: (23)

The integration is over the azimuthal angles of the mo-
mentum p3c relative to the momentum of the final state �
meson. The kinematics are defined as p! �
�E!; 0; 0; jP!j�, p� � �E�; 0; 0;�jP!j�, and p2

2c � �p3c �
p��

2 � M2
� �m

2
3c � 2E�E3c � 2jP�jjp3cj cos�.

Similarly, we obtain the amplitude for the neutral meson
loop:

 Mn
fi �

jp3nj

32�2M�

Z
d�

TnF �p
2
2n�

p2
2n �m

2
2n

; (24)

with

 Tn 	 �T1T2T3�n

�
ig1ng2ng3n

M!
4"	
��"	!p



3np

�
�p�!"� � p3n: (25)

Note that the momenta and masses for the intermediate
states are different between the charged and neutral cases
as denoted by the subscription ‘‘c’’ and ‘‘n,’’ respectively.

The nonvanishing amplitudes require the vector meson
polarizations to be taken as either �"!; "�� � ��;�� or
��;��. We then obtain

 Mfi��;�� � �Mfi��;�� � �
g1g2g3jp3j

3jP!j
8�M!

I ;

(26)

where

 I 	
Z sin2�F �P2

2�

p2
2 �m

2
2

sin�d�: (27)

(i) With no form factor, i.e., F �p2
2� � 1, the integral

becomes

 I �
1

As

�
2

A2 �
A2 � 1

A3 log
1� A
1� A

�
: (28)

(ii) With a monopole form factor, i.e., F �p2
2� � ��

2 �
m2

2�=��
2 � p2

2�, the integral becomes
 

I �
m2

2 ��2

AsBs

�
�

2

AB
�

A2 � 1

A2�A� B�
log

1� A
1� A

�
1� B2

B2�A� B�
log

1� B
1� B

�
: (29)

(iii) With a dipole form factor, i.e., F �p2
2� � ��

2 �
m2

2�=��
2 � p2

2��
2, the integral becomes

 

I �
�m2

2 ��2�2

AsB2
s�A� B�2

�
�

2B�A� B��B2 � 1�

B2�1� B2�

�
A2 � 1

A
log

1� A
1� A

�
AB2 � 2B� A

B2 log
1� B
1� B

�
: (30)

The kinematic functions are defined as

 As � M2
! �m

2
1 � 2E1E! �m

2
2;

Bs � M2
! �m2

1 � 2E1E! ��2;
(31)

 A � �2jp1jjP!j=As; B � �2jp1jjP!j=Bs: (32)

2. Feynman integrations with form factors

With the form factors, the ultraviolet divergence in the
Feynman integration can be avoided. For the charged
meson loop as an example, the integral has an expression

 M c
fi �

Z d4p2c

�2��4
X
K�pol

ig1c�p1c � p3c� � "��
ig2c
M!
"	
��p	!"



!p

�
2c"

�
2�ig3c�p� � p3c� � "2�

�p2
1c �m

2
1c��p

2
3c �m

2
3c��p

2
2c �m

2
2c�

F �p2
2c�: (33)

With a monopole form factor, we have

 M c
fi � �

g1cg2cg3c

M!
"	
��p	!"



!p

�
�"

�
�

Z 1

0
dx
Z 1�x

0
dy

2

�4��2
log
4�m1c; m3c;��
4�m1c; m3c; m2c�

; (34)

while with a dipole form factor, we have
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Mc
fi � �

g1cg2cg3c

M!
"	
��p

	
!"



!p

�
�"

�
�

Z 1

0
dx

�
Z 1�x

0
dy

2

�4��2

�
log
4�m1c; m3c;��
4�m1c; m3c; m2c�

(35)

 �
y��2 �m2

2c�

4�m1c; m3c;��

�
; (36)

where the function � is defined as
 

��a; b; c� 	 M2
!�1� x� y�2 � �M2

� �M
2
! �M2

��

� �1� x� y�x�M2
�x

2 � �M2
! � a

2�

� �1� x� y� � �M2
� � b

2�x� yc2: (37)

Expressions forMn
fi are essentially the same asMc

fi with
g1c;2c;3c andm1c;2c;3c replaced by g1n;2n;3n andm1n;2n;3n, and
we do not repeat them here in order to save space.

C. Intermediate K �K��K� � c:c: loop

As shown by Fig. 2, the vertex functions for the
K �K��K� � c:c: loop are

 

8>>><
>>>:
T1 	

if1

M�
"	
��p	�"



�p

�
3 "

�
3 ;

T2 	 if2�p1 � p2� � "!;

T3 	 if3�p� � p2� � "3;

(38)

where f1;2;3 are the coupling constants and F �p2
2� is the

form factor.
Similar to the previous section, one finds that a relative

sign arises from the charged and neutral meson exchange
loops, which can be distinguished by Mfi 	 Mc

fi �M
n
fi.

Thus, we have the expression for the charged amplitude
with a monopole form factor
 

Mc
fi �

f1cf2cf3c

M!
"	
��p

	
!"



!p

�
�"

�
�

Z 1

0
dx
Z 1�x

0
dy

2

�4��2

� log
4�m1c; m3c;��
4�m1c; m3c; m2c�

; (39)

and with a dipole form factor
 

Mc
fi �

f1cf2cf3c

M!
"	
��p

	
!"



!p

�
�"

�
�

Z 1

0
dx

�
Z 1�x

0
dy

2

�4��2

�
log
4�m1c; m3c;��
4�m1c; m3c; m2c�

(40)

 �
y��2 �m2

2c�

4�m1c; m3c;��

�
: (41)

In the above two equations the intermediate meson masses
m1;2;3 are from the K �K��K� loops, which are different from
those in Eqs. (33) and (35).

In the K �K��K� loop, the coupling constant g�K�K is
related to g!�0�0 in the SU(3) flavor symmetry:
 

f1c � f1n � g�K��K� � g�K��K� � g�K�0 �K0 � g� �K�0K0

� g!�0�0=
���
2
p
; (42)

where we neglect the possible differences caused by the
isospin violation between the charged and neutral channel.
The reason is because these loop contributions are negli-
gibly small and such a difference cannot produce measur-
able effects. At the !K �K vertex, the coupling g!K �K can be
related to �K �K by the following relation:

 f2c � g!K�K� � �g!K�K� � g�K�K�=
���
2
p
;

f2n � g!K0 �K0 � �g! �K0K0 � g�K0 �K0=
���
2
p
;

(43)

where we assume that the isospin breaking in the !K �K
couplings is similar to that in the �K �K ones.

The absolute values of the coupling constants are listed
in Table I.

D. Intermediate K �K��K�� � c:c: loop

We also consider the transition amplitude from the
intermediate K �K��K�� � c:c: loop (Fig. 2), which can be
expressed the same form as Eq. (13) except that the vertex
functions change to

 

8>>>><
>>>>:

T1 	
ih1

M�
"	
��P

	
�"



�p

�
3 "

�
3 ;

T2 	
ih2

m2
"	0
0�0�0p

	0
2 "


0

2 P
�0
! "�

0

!;

T3 	
ih3

m3
"	00
00�00�00p	

00

2 "

00

2 p�
00

3 "�
00

3 ;

(44)

where h1;2;3 are the coupling constants and F �p2
2� is the

form factor.
Similar to the above sections, a relative sign arises from

the charged and neutral meson exchange loops, i.e. Mfi 	

Mc
fi �M

n
fi, and we only give here the expressions for the

charged amplitude with a monopole and dipole form factor,
respectively,

FIG. 2. Schematic picture for the decay of �! !�0 via K �K�K��, K �K��K�, and K �K��K�� intermediate meson loops.
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and
 

Mc
fi � �

h1ch2ch3c

M�m2cm3c
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!p
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�

Z 1

0
dx
Z 1�x

0
dy

�
Z 1�x�y

0
dz

2

�4��2

�
A
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1

�
B
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1

�
; (46)

with
 

A� 1
4�2x�

3
2z� 1��M2

��M
2
!�M2

�0� �
1
2xM

2
�0 �

1
4zM

2
!;

B� �x� z� 1�xzM2
!M

2
�0 �

1
4�M

2
��M

2
!�M

2
�0�

2�;

41 � x2M2
�0 � z2M2

!� xz�M2
��M

2
!�M2

�0�

� z�M2
!�M

2
1c� � yM

2
2c� x�M

2
�0 �M2

3c�

� �1� x� y� z��2: (47)

In this transition loop the intermediate meson masses
m1;2;3 correspond to K, �K�, and k�. Quantities h1;2;3 denote
the corresponding vertex coupling constants with the rela-
tive signs given by
 

h3c � �h3n � �g �K�0 �K�0�0 � �gK�0K�0�0 � �gK��K���0

� �gK��K���0 � g!�0�0=2: (48)

III. NUMERICAL RESULTS

A. Branching ratios from EM decay transition

The � meson EM decay turns out to be very sensitive to
the �0 mass pole and decay width in the VMD model. This
is because their masses are close to each other. As a test, in
the infinitely narrow-width limit, i.e. �� � �! � 0 GeV,
the branching ratio turns out to be overestimated: BREM �
1:46� 10�4, which is more than 2 times the experimental
value. This may not be surprising since one should adopt
the mass eigenstates in the calculation instead of the iso-
spin eigenstates in degenerate perturbation theory.
Therefore, we apply the experimental data for the inter-
mediate vector meson masses and widths in the
calculation.

With the width of the � meson included, we obtain
BREM � 1:68� 10�5, with M� � 775:9 MeV and �� �
143:9 MeV [13]. With the PDG average, i.e. M� �

775:5 MeV and �� � 149:4 MeV, we have BREM �

1:67� 10�5. This explicitly shows an important role
played by the � meson.

We also examine the relative strength between process-I
and II. Their exclusive contributions to the branching ratios
are BREM�I � 1:45� 10�5 and BREM�II � 4:56� 10�7,

respectively, which shows that process-I is dominant over
II in the � decay.

The above results suggest that the EM transition alone
cannot account for the observed branching ratio for �!
!�0. We hence need to look at the contributions from the
intermediate meson exchanges.

B. Branching ratios from hadronic loop under on-shell
approximation

Under the on-shell approximation only the intermediate
K �K will contribute since the threshold of any other strange
meson pairs will be above the � mass.

Without the form factor, the branching ratio from the
K �K�K�� loop is 3:02� 10�6. This number is much smaller
than the EM contributions. Apart from the significant
cancellations between the charged and neutral channel
amplitudes, another reason is because of the kinematic
suppression on the absorptive amplitudes, i.e. the inter-
mediate K �K is close to the�mass. Similar phenomena are
observed in J= ! �f0�1810� ! �!� at the higher mass
tail of the f0�1810� [27]. At least it is reasonable to under-
stand that contributions from near-threshold intermediate
meson rescattering are limited in the on-shell
approximation.

In order to investigate the role played by the form
factors, we present the calculation results in Fig. 3 for
three cases: (i) the hadronic loop has a dipole form factor
(solid curve); (ii) the hadronic loop has a monopole form
factor (dashed curve); and (iii) no form factors are included
(dotted-dashed line). It is easy to understand that under the
on-shell approximation the calculation without the form
factors for the hadronic loops will have the largest contri-
butions to the branching ratio. In contrast, the inclusion of

FIG. 3 (color online). The � dependence of the K �K�K�� loop
contributions in the on-shell approximation. The dotted-dashed,
dashed, and solid curve denote different considerations for the
form factors, i.e. no form factor, monopole and dipole, respec-
tively.
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a monopole form factor suppresses the hadronic loop con-
tributions, and a dipole form factor leads to the most
suppressions. These three results then converge to the
same value when �! 1 as shown in Fig. 3.

The overall results in terms of � including the EM and
hadronic loop amplitudes are presented in Fig. 4 for two
different phases, i.e. on the left panel the EM amplitude is
out of phase to the hadronic loop (destructive addition),
while on the right panel these two amplitudes are in phase
(constructive addition). On the left panel the horizontal line
reflects the largest cancellation between the EM and had-
ronic loop amplitudes with no form factor suppressions. At
the small � region, the cancellations are small for both
monopole and dipole calculations since the hadronic loop
amplitudes are small in both cases as shown by Fig. 3.
These three curves smoothly approach the same value at
high � where the hadronic loop contributions become
negligibly small.

On the right panel, the EM amplitude is in phase to the
hadronic loop. In the case that no form factor is introduced
in the hadronic loop, the constructive addition of the EM
and hadronic loop amplitudes gives BR � 2:55� 10�5.
For the monopole and dipole form factor, the constructive
effects increase with parameter � since the exclusive
hadronic loop contributions are small in the small � re-
gion. It shows by the dashed and solid curve that the
inclusive branching ratios converge to the dotted-dashed
curve at large �. In this constructive addition, the maxi-
mum branching ratio is still smaller than the experimental
data, which is a sign for the underestimate of the hadronic
loop contributions in the on-shell approximation, and im-
plies the need for contributions from the dispersive part,
i.e. from intermediate mesons above the � mass.

C. Branching ratios from Feynman integrations

Note that we are interested in a small effect arising from
cancellations between two sizeable amplitudes. Since the
charged and neutral amplitudes distinguish themselves by
the mass differences between the charged and neutral
particles involved in the loop transition, it makes the

behavior of the cancellations very sensitive to the choice
of the cutoff energies. Again, it is necessary to investigate
the � dependence of the hadronic loop integrals. We first
study the exclusive behaviors of the K �K�K��, K �K��K�, and
K �K��K�� loops and then combine them with the EM
transitions to study their interferences.

In Fig. 5, the K �K�K�� loop in terms of the cutoff energy
� is illustrated. The left panel is for a monopole form
factor, while the right one is for a dipole type. The dashed
and dotted-dashed curves are contributions from the
charged and neutral meson loop, respectively, and the solid
curves are their differences. In fact, the differences be-
tween the dashed and dotted-dashed curves are so small
that it is hard to distinguish them as shown by the figures.
Their cancellations leave only a small residue quantity
accounting for the isospin violation effects.

The dependence of the details of the cancellations to the
cutoff energy turns out to be more dramatic with a dipole
form factor as shown by the right panel of Fig. 5. Although
the integral for both the charged and neutral meson loops
has a well-defined behavior, details of the cancellations as
shown by the solid curve has an oscillatory behavior at
small �. This is understandable since the difference be-
tween the charged and neutral meson loop integrals has a
complicated dependence on the couplings, and the mass
differences between the charged and neutral kaon and K�

in the propagators. For large �, the integral difference
smooths out since � becomes the major energy scale.

In Fig. 5 there are dips appearing at small � for both
monopole and dipole form factors. This is due to the factor
�2 �m2

K� in the numerators of the form factors and the
largest cancellation between the charged and neutral me-
son loops.

For the P-wave �! !�0 decay, the form factor favors
a dipole behavior with relatively large � in order to ac-
count for the off-shell effects. Guided by the solid curve on
the right panel of Fig. 5, we argue that � ’ 1:5� 2 GeV is
appropriate for the hadronic loop contributions. Also, in
this region, the integral difference has a well-defined
smooth behavior. In the case of the monopole form factor,
to describe the experimental data, � must have a relatively

FIG. 4 (color online). The � dependence of the sum of the EM and K �K�K�� loop amplitudes in the on-shell approximation. The left
panel indicates results for a destructive addition and the right panel for a constructive addition. The solid, dashed, and dotted-dashed
curves denote different considerations for the form factors, i.e. dipole, monopole and no form factor, respectively.
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smaller value, i.e. <2 GeV. Otherwise, the branching ratio
will be overestimated. Because of this ambiguity, we leave
the value of � to be determined by the experimental data.

The K �K��K� loop contributions are presented by Fig. 6
for the monopole and dipole form factors. Similar to Fig. 5,
the intermediate charged and neutral meson loop contribu-
tions to the branching ratios are compared with each other
as denoted by the dashed and dotted-dashed curves, while
the solid curves are given by their amplitude differences.
Interestingly, the K �K��K� loop contributions turn out to
exhibit a smooth behavior with both monopole and dipole
form factors, and their magnitudes are comparable with the
K �K�K�� loop. Again, the dips are related to the factor �2 �
m2
K in the numerator of the form factors and the largest

cancellation between the charged and neutral meson loops.
In Fig. 7, the � dependence of the exclusive contribu-

tions from the K �K��K�� loop are presented. Compared
with the other two loops, the exclusive branching ratio
decreases in terms of the increasing �. As a result, its
interferences with other channels around � � 1:5�
2:0 GeV turn to be small.

Adding the hadronic loops to the EM amplitude coher-
ently, we examine two phases in Fig. 8 in terms of the �,
i.e. constructive (left panel) and destructive additions (right
panel). It shows that with � � 1:8� 2:3 GeV, the con-

structive addition with the dipole form factor for the had-
ronic loops gives the branching ratio in agreement with the
experimental data, while with the monopole form factor, �
requires a range of 1:2� 1:5 GeV. These cutoff energy
ranges are consistent with the commonly accepted values.
For a destructive addition between the EM and hadronic
loop amplitudes as shown on the right panel, we find that
the dipole form factor cannot reproduce the data within
� � 1� 2:6 GeV due to the significant cancellations be-
tween the EM and hadronic loop transitions. In contrast,
with a monopole form factor for the hadronic loops the
destructive addition can still reproduce the data around
� � 2:3 GeV. However, this value of � turns out to be
out of the commonly accepted range for a monopole cutoff
energy. In this sense, it shows that the data favor a con-
structive phase between the EM and hadronic loop
amplitudes.

The dipole form factor might be even more preferable.
As we have discussed earlier that the P-wave decay will
generally favor a dipole form factor, we hence argue that
the constructive addition between the EM and hadronic
loop amplitudes with a dipole form factor is a favorable
mechanism accounting for the experimental observation of
BR��! !�0� � �5:2�1:3

�1:1� � 10�5 [2]. In Table II,
branching ratios of the exclusive and coherent (construc-

FIG. 6 (color online). The � dependence of the K �K��K� loop contributions to the branching ratio in the Feynman integration. The
notations are similar to Fig. 5. Again, we note that the dashed and dotted-dashed curves are difficult to distinguish by sight.

FIG. 5 (color online). The � dependence of the K �K�K�� loop contributions to the branching ratio in the Feynman integration. The
left panel indicates results with a monopole form factor, and the right one with a dipole form factor. The dashed and dotted-dashed
curves are contributions from only charged and neutral meson loop, respectively, while the solid curves are the results after
cancellations between the charged and neutral amplitudes. We note that the dashed and dotted-dashed curves are close to each other
and difficult to distinguish them by sight.
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tively) additions of the EM and hadronic loops with the
dipole and monopole form factors are listed in comparison
with the data.

In comparison with the results given by the on-shell
approximation, it shows that the dispersive part of the
loop transitions plays an important role in reproducing
the data.

D. Hadronic loop contributions to the isospin violations
in J= ! !�0

Similar to �! !�0, the decays of J= ! !�0 and
 0 ! !�0 are also isospin-violating processes via the OZI
doubly disconnected transitions. Their branching ratios are
measured in experiment, i.e. BR�J= ! !�0� � �4:5


0:5� � 10�4 and BR� 0 ! !�0� � �2:1
 0:6� � 10�5

[2], which are not significantly suppressed compared
with J= � 0� ! ��, !�0, etc. An explanation based on
vector meson dominance is provided in Refs. [11,12]
where the branching ratios are fitted by EM transitions
with an appropriate form factor. It also shows that
process-I is the dominant contributions to the branching
ratio while process-II is negligibly small. In this study, a
natural question is about the role played by the hadronic
loops and their contributions to the branching ratios.

Interestingly, J= ! K� �K is one of the largest decay
modes, from which relatively large couplings for the
J= K� �K vertex can be derived. However, due to the heavy
mass of J= , suppressions on the loop amplitudes become

FIG. 8 (color online). The � dependence of the constructive (left panel) and destructive additions (right panel) between the EM and
hadronic loops. The dashed curves denote the results for adopting a monopole form factor for the hadronic loops, while the solid curves
are for adopting a dipole form factor.

FIG. 7 (color online). The � dependence of the K �K��K�� loop contributions to the branching ratio in the Feynman integration. The
notations are similar to Fig. 5. Again, we note that the dashed and dotted-dashed curves are difficult to distinguish by sight.

TABLE II. The exclusive and coherent (constructive) contributions of the EM and hadronic
loops to the �! !�0 branching ratios with a dipole and monopole form factor. The
experimental data is the world average given by PDG2006 [2]. The branching ratios in
columns 3–8 have a unit of 10�5. The errors estimated in column 7 are due to the precisions
taken for the exclusive branching ratios.

� GeV EM transition K �K�K�� K �K��K� K �K��K�� Total Exp.

Dipole 2.14 1.66 0.23 0.33 �0:0 5:2
 0:2 �5:2�1:3
�1:1�

Monopole 1.38 1.66 0.14 0.56 �0:0 5:3
 0:5 �5:2�1:3
�1:1�
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crucial. With the cancellation between the charged and
neutral K �K�K�� loops, the hadronic loop contributions to
the branching ratio turn out to be orders of magnitude
smaller than the data. In  0 decay, the cancellation between
the charged and neutral K �K��K� loops is not as significant
as that in J= where the branching ratios, BR�J= !
K��K� � c:c:� � �5:0
 0:4� � 10�3 and BR�J= !
K �K�0 � c:c:� � �4:2
 0:4� � 10�3 are close to each
other. In contrast, BR� 0 ! K��K� � c:c:� � �1:7�0:8

�0:7� �
10�5 and BR� 0 ! K�0 �K0 � c:c:� � �1:09
 0:20� �
10�4 have large differences, and have contained significant
contributions from the EM transitions [11,12]. This favors
maximizing the isospin violation effects in the hadronic
loops. However, due to the suppression from the off-shell
form factors, the hadronic loop contributions will still be
negligibly small compared with the EM transitions.

The numerical calculations show that the branching
ratios from the intermediate K �K�K��, K �K��K�, and
K �K��K�� loops in J= � 0� ! !�0 are orders of magni-
tude smaller than the data. This result suggests that the EM
transition is likely the dominant isospin-violating process
in the vector charmonium decays into light vector and
pseudoscalar mesons. Thus, it enhances the argument
[11,12] that the long-standing ‘‘�� puzzle’’ in J= � 0� !
VP is mainly due to the strong destructive interferences
from the EM transitions in  0 ! �� which leads to the
abnormally small branching ratio fraction of BR� 0 !
���=BR�J= ! ��� ’ 0:2% [2].

IV. SUMMARY

We investigate the isospin-violating mechanisms in
�! !�0 and J= ! !�0 by quantifying the EM and
strong transitions as different sources of the isospin viola-
tions. The EM contribution is constrained in the VMD
model, and the hadronic loop contributions is studied by
relating them to the OZI-rule-violating processes. At had-
ronic level, the OZI rule violations are recognized through
the nonvanishing cancellations between the charged and

neutral intermediate-meson-exchange loops. In other
words, the observation of the isospin-violating branching
ratios can be viewed as a consequence of coherent contri-
butions from the EM transitions and the nonvanishing
cancellations among those intermediate meson exchanges
due to the mass differences between the charged and
neutral intermediate mesons and different couplings to
the initial and final state mesons.

By extracting the vertex coupling information from
independent processes, we can constrain the model pa-
rameters and make a quantitative assessment of the strong
isospin violations via leading K �K�K��, K �K��K�, and
K �K��K�� loops. It shows that the dispersive part of the
hadronic loop amplitudes have important contributions to
the isospin violation and they produce crucial interferences
with the EM transitions though their exclusive contribu-
tions are relatively smaller than the EM ones in �! !�0

decay.
We also study the hadronic loop contributions to the

isospin-violating decay of J= � 0� ! !�0, and find that
they are negligibly small. This is consistent with our
previous study of the EM transitions in J= � 0� ! VP,
where we argued that the isospin-violating channels, such
as !�0, ��, ��0, and ��0, were dominated by the EM
transitions [11,12]. However, a caution should be given
that in J= � 0� ! VP the s dependence of the intermediate
vector meson widths turns out to be a sensitive factor in
account of contributions from light intermediate vector
mesons. A coherent study of e�e� ! !�0 over a broad
range of s is thus strongly desired.
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