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On the basis of the three fundamental principles of (i) Poincaré symmetry of space-time,
(ii) electromagnetic gauge symmetry, and (iii) unitarity, we construct an universal Lagrangian for the
electromagnetic interactions of elementary vector particles, i.e., massive spin-1 particles transforming in
the (%, %) representation space of the homogeneous Lorentz group. We make the point that the first two
symmetries alone do not fix the electromagnetic couplings uniquely but solely prescribe a general
Lagrangian depending on two free parameters, here denoted by ¢ and g. The first one defines the
electric-dipole and the magnetic-quadrupole moments of the vector particle, while the second determines
its magnetic-dipole and electric-quadrupole moments. In order to fix the parameters one needs an
additional physical input suited for the implementation of the third principle. As such, one chooses
Compton scattering off a vector target and requires the cross section to respect the unitarity bounds in the
high-energy limit. As a result, we obtain the universal g =2 and & = 0 values which completely
characterize the electromagnetic couplings of the considered elementary vector field at tree level. The
nature of this vector particle, Abelian versus non-Abelian, does not affect this structure. Merely, a partition
of the g = 2 value into non-Abelian, g,,, and Abelian, g, =2 — g,,, contributions occurs for non-
Abelian fields with the size of g,, being determined by the specific non-Abelian group appearing in the
theory of interest, be it the standard model or any other theory.
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L. INTRODUCTION

In the forthcoming years, energies ranging from several
hundred GeV to a few TeVs are expected to become
accessible at the particle accelerators, a progress which
will facilitate testing various fundamental theoretical con-
cepts. In particular, it is quite possible that some of the
elementary high-spin particles predicted by supersymmet-
ric- or excited-lepton theories could be observed either as
gauge fields to some still unknown non-Abelian groups or
as matter fields. Additional effects may or may not come
from the more recently developed respective theories of
large extra dimensions, noncommutative space-time, etc.
In view of the theoretical uncertainties it appears quite
important indeed to single out the impact of the first
principles underlying the space-time on the properties of
the elementary high-spin fields and in first place on their
electromagnetic properties. As an example one may think
of the value of the gyromagnetic factor, g. In recent time,
voicing universality of the g = 2 value for particles of any
spin becomes stronger (see Ref. [1] and references therein
for a recent review). An indirect indication in favor of g =
2 is provided already by the Drell-Hearn-Gerasimov sum
rule [2] (generalized by Weinberg [3] to any spin) which
assigns to strong interactions the anomalous magnetic mo-
ment of the nucleon in terms of the (g — 2)e/2m differ-
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ence. Ferrara, Porrati, and Telegdi made the point [4] that
unitarity of the amplitude of Compton scattering off a
target of any spin s demands for the universal value of g =
2. Specifically for spin-3/2, they showed that g = 2 also
allows to avoid the pathology of acausal propagation [5] of
such particles within an electromagnetic environment as
suffered by the Rarita-Schwinger formalism. However, the
resolution of this so-called Velo-Zwanziger problem was
obtained at the cost of the introduction of nonminimal
electromagnetic couplings. In contrast to the Ferrara,
Porrati, and Telegdi approach, in the recently proposed
covariant projector formalism of Ref. [6], spin-3/2 causal
propagation and g = 2 were achieved by means of a
Lagrangian containing only minimal couplings but of sec-
ond order in the momenta. The latter formalism treats
high-spins as appropriate sectors of finite-dimensional
multispin valued homogeneous Lorentz group (HLG) rep-
resentations that behave as invariant eigensubspaces of the
two Casimir operators of the Poincaré group, the squared
four-momentum, p?, and the squared Pauli-Lubanski vec-
tor, W?2. It is the goal of the present study to apply the
covariant projector formalism to fields residing in the (%, %
irreducible representation of the HLG, the massive vector
fields, and explore consequences on their electromagnetic
couplings.
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The paper is organized as follows. In the following
section we briefly review the covariant projector frame-
work of Ref. [6] with the emphasis on the (%, %) represen-
tation of the HLG and work out the electromagnetic
interactions. In Sec. III we calculate the cross section for
Compton scattering off a vector target. In Sec. IV we
discuss our results within the light of the Abelian and
non-Abelian contributions to the tree-level electromag-
netic couplings of arbitrary gauge fields. The paper ends
with brief conclusions and has one Appendix.

I1. DESCRIPTION OF VECTOR PARTICLES

A. General remarks on vector fields

Vector fields, V,,, have been previously studied by sev-
eral authors with the emphasis on their electromagnetic
properties. Recently, it was pointed out in [7] that g = 2 is
required to avoid appearance of divergent O(w ') terms in
the radiative decay interferences for polarized vector me-
sons, with @ standing for the photon energy. On the other
side, Proca’s theory goes with a fixed g = 1 value, and it is
not very clear how to reconcile it with g = 2 except for the
W boson, the gauge particle of the electroweak SU(2); X
U(1)y group.

The construction of the interacting (WTW™1y)
Lagrangian is quite intricate indeed. The minimally gauged
Proca Lagrangian is complemented by a Lagrangian of the
same Proca form but based on the non-Abelian field tensor
[1]. The contribution of g = 1 of the former is then en-
hanced precisely by the required one unit through the latter
after SU(2), X U(1)y/U,,(1) spontaneous symmetry
breaking, to give g = 2 (see Ref. [8] for a textbook pre-
sentation). Here, U,, (1) stands for the electromagnetic
gauge group. In this manner, the gyromagnetic ratio of
the W boson is equally partitioned into Abelian and non-
Abelian contributions. Such a symmetrical partition is not
likely to be universal, although in the special case of the W
boson some unification theories seem to preserve it [9].
However, for different vector gauge bosons, the new non-
Abelian theories throughout may provide larger or lesser
non-Abelian contributions to g. Within this context, it is
desirable to have a scheme for the description of vector
fields that goes beyond Proca’s formalism and allows to
end up with a g = 2 for any vector particle irrespective of
its nature, Abelian or non-Abelian.

In the present work we derive such a scheme and prove
that the electromagnetic couplings at tree level of any
massive elementary vector particle are completely fixed
by the three fundamental principles of (i) Poincaré sym-
metry of space-time, (ii) U(1),, gauge symmetry, and
(ii1) unitarity. Modifications to this picture can arise only
at one-loop level due to electromagnetic corrections or
diagrams involving interactions with other fields.

We first make the point that the Proca framework is
incomplete in observing that the Proca Lagrangian neglects
viable terms containing anticommutators, [p,, p,], of the
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four-momenta, which do not contribute to the free equation
of motion at all, but affect the electromagnetic moments in
the gauged one when they become proportional to the
electromagnetic field tensor, F,,,, according to [, 7,] =
ieF,, withm, = p, + eA,. We will show below that the
unique ¢ = 1 value in the Proca theory upon U(1),,,
gauging appears precisely as an artifact of the mentioned
shortcoming of the free Proca Lagrangian. This shortcom-
ing has been avoided within the framework of the covariant
projector formalism recently suggested in Ref. [6]. Within
this context, exploring the electromagnetic properties of
vector particles within the latter scheme is worthwhile.

In the following we shall obtain a general Lagrangian for
a vector particle whose interaction with an electromagnetic
field is consistent with Poincaré symmetry as implemented
by the covariant projection formalism of Ref. [6] and
U(1),,, gauge principle. In contrast to Proca’s framework,
we shall encounter not one but infinitely many equivalent
free particle theories which, upon gauging, begin differing
through their predictions on the values of the multipole
moments, only one of which corresponds to physical real-
ity. In order to fix these values, one then needs additional
physical input. As such we consider Compton scattering
off a vector target and demand finite total cross section in
the high-energy limit in order to respect the unitarity
bounds. Taking this path allows us to completely fix the
electromagnetic couplings of any elementary vector parti-
cle at tree level. In fact, there is no freedom left anymore in
the Lagrangian designed to account for all possible terms
containing [p,, p,] anticommutators, terms that are noto-
riously missed by the Proca theory.

B. The covariant projector formalism

In Ref. [6], a formalism was proposed which describes
fields of mass m and spin s from a given finite-dimensional
and multispin valued representation of the homogeneous
Lorentz group in terms of simultaneous projection over the
eigensubspaces of the two Casimir operators of the
Poincaré group, the squared four-momentum, p?, and the
squared Pauli-Lubanski vector W2, In particular, in the
case of representations containing two different spin-
values differing in one unit, say, s and (s — 1), the free
particle equation obtained in this way reads

2 1 'W2

where capital Latin letters A, B, C, ... specify the HLG
representation of interest. The general expression for the
W2 operator can be found in [6] and reads

1
(WO W), = ZEApg;L(Mp”)ACP“fi‘g,,(MTf)CBPV
= TapurP"p". 2

From now onward we shall introduce as a new notation the
tensor I'yp,,, according to
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- 1
U aur = — Z(TABW +5(s = Doapgur) (3

Notice, that for the (, 1) representation space, the capital
Latin indices coincide with the Lorentz indices. A straight-
forward calculation (see Appendix I in [6]) yields

Faﬂ,u,l/ = gaﬁg,u,v - gavgﬁ,u,‘ (4)

Using this tensor, the free equation of motion for a vector
particle becomes

[T opun0#d” + m2g,, V" =0, (5)
where V” denotes the vector field. The tensor in Eq. (4) can

be decomposed into its symmetric and antisymmetric parts
as

f‘a,B,u,V = fiﬁuu + f‘/;,eﬂw (6)
with
D pun = %(faﬁﬂv + Tapup)
= 8ap8ur %(gwggu + 8au8pr) (D
f‘ﬁﬁw = %(f‘aﬂﬂll - faﬂyﬂ) = %(ga,u,gﬁv - 8(11/83#)-

®)
As discussed in [6] and also evident from Eq. (5), the
covariant mass and spin projector in Eq. (1) fixes uniquely
only the part of the tensor I, 5, that is symmetric in the
indices (u, v). Equation (5) is indisputably insensitive to
the antisymmetric part which acquires relevance exclu-
sively upon gauging when [p,,, p, ] become proportional
to the electromagnetic field tensor, F,,, according to
(7, 7,] =ieF,, with7, = p, + eA,.Indeed, it is pre-
cisely the T puv term which triggers the interactions with
multipoles higher than the electric charge. A complete
formalism is required to account for the most general
form of the antisymmetric tensor.

C. General Lagrangian for an elementary vector
particle in an electromagnetic background

In the vector case under investigation, the most general
tensor I'4 puv has to be constructed from the metric and the

Levi-Civita tensors and is given by

FA

1
aBuv = (g - §>(ga,u,gﬁv - gavgﬂy,) + fsaﬁ,u,w (9)

where g and ¢ are free parameters, so far. In what follows
we shall replace FQB uv in Eq. (8) by r4 puy from the last
equation. As a result, the most general tensor compatible
with the covariant mass and spin projector in Eq. (1)

becomes

Faﬁ/u/ = gaﬁg/u; + (g - ])ga,ugﬁv - ggozvgﬁ,u

+ e (10)

aBuv:

The corresponding gauged equation of motion is then
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obtained as

[Topu,DED” + m?g,, V" = 0. (11)

aBuv

It can be derived from the following Lagrangian:

L = —(D*V)T p,,D"VE + m>VeV,, (12)

where D* = 9* — jeA* and (—e) is the charge of the
vector particle. The hermiticity of the Lagrangian requires
the couplings g, £ to be real. Although the projection over
the eigensubspaces of the Casimir operators of the
Poincaré group studied here is well defined for massive
particles only, the free Lagrangian,

L e = —(3*V)IT 15,,0"VE + m?VeV,, (13)

possesses a smooth massless limit. In this limit the free
Lagrangian reveals as a symmetry the invariance under the
Uy(1) gauge transformations

Vo= Vo + 9,A (14)

The mass term can now be generated through the conven-
tional Higgs mechanism [6] in reference to this symmetry.
A straightforward calculation yields the following interact-
ing Lagrangian:
Ly = _l‘e[(va)’r[‘
+ 2(Vv)tr

9"VE — (9" VT, VPIA#
VBAFAY. (15)

aBuv
aBuv
The respective VA(p)V(p')A*(k), and Ve (p')VB(p)X
A#(k)A” (k') vertex functions extracted from Eq. (15) read

Vapu = 1€(Copunp” = Tapypup”)
Bu Bur Bru (16)

Va,B,uV = _iez(raﬁ,u,v + Fa,BV,u,):

with all incoming particles. Explicitly,

Vapu = i€(8ap(p = Py — aulgk + plg
+ gpulp + gkly + E84pun(p + P (A7)
This vertex describes the electromagnetic interactions of a

particle with magnetic (electric) dipole moment w (&) and

quadrupole electric (magnetic) moment Q(Q) given by
(see, e.g., Ref. [10])

m m
(18)
1 5_ _&¢
b om 0 m?’

It satisfies the Ward identity
(p+ PV, = —ielAZL(P) — AZL(P)L (19)

where A,z(p) is the propagator of the massive vector
particle which in the unitary gauge (with respect to the
gauge freedom in the massless case, see [6]) we are using
here reads
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_ PaPp

gaﬁ + 2
A = _——m 20
aB(p) p2 — mz +ie ( )

Notice that Poincaré and gauge invariance alone allow the
vector particle to carry any arbitrary magnetic- and
electric-dipole moments, which then enter the definition
of the electric- and magnetic-quadrupole moments, respec-
tively. As long as the electric-dipole and the magnetic-
quadrupole moments are CP violating, the ¢ value is
expected to be rather small. Nonetheless, we will keep
this term for the sake of completeness of our Poincaré
covariant projector and will fix it from unitarity arguments
together with g. The Proca theory corresponds instead to a
fixed unphysical g = 1 value and, in being incomplete, as
mentioned in the introduction, fails to predict a
quadrupole-electric moment.

A Lagrangian for vector particles containing g as a free
parameter has earlier been considered by Corben and
Schwinger [11] and used later by Lee and Yang [12]. In
contrast to our approach, Poincaré invariance is not made
manifest in the Corben-Schwinger paper, but is somehow
hidden in the restriction of all derivatives to second order,
and (},1) to spin-1. In our formalism the restriction of
derivatives to second order is dictated by the squared
Pauli-Lubanski operator in Eq. (2) around which the
Poincaré projector is constructed. Compared to [11], the
advantage of our scheme lies in its generality. Consciously
putting first principles at work sheds light on the path for
obtaining the most general Lagrangian for a particle of spin
s transforming in a specific representation of the HLG.
Moreover, in the next section we will add another funda-
mental principle to the first two, namely, unitarity, which
will allow us to completely fix the electromagnetic cou-
plings of an elementary vector particle at tree level.

Our interacting Lagrangian with the unspecified value
for the gyromagnetic ratio and the electric-dipole moment
(and the related quadrupoles as shown above) appeared as a
consequence of the fact that Poincaré invariance provides
not one but infinitely many equivalent free particle
Lagrangians according to Eq. (12) in combination with
Eq. (10). These Lagrangians become distinguishable only
upon gauging precisely through the different values for the
respective gyromagnetic ratio, and the electric-dipole mo-
ment predicted by them. Obviously, only one of the g(&)
possible values corresponds to physical reality. In order to
fix these values, one needs additional physical information.
In the present work we shall demand finite total cross
section of Compton scattering off a vector target in the
high-energy limit and determine g and ¢ accordingly.

III. COMPTON SCATTERING OFF A VECTOR
TARGET

The differential cross section for vy(k, €)V(p, {) —
v(k', €)V(p’, ') in the laboratory frame is given as
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do 1 = 1
a0 _ M2 ,
dQ  4(4m)? M (m + w(1 — cosh))?

where w stands for the energy of the incoming photon. The
invariant amplitude can be written as

M=M,+M,+ M, (22)

21

where M, M, and M, denote in turn the contributions
of the s- and u- channel exchange, and the contact term.
The explicit forms of these amplitudes are

M& = [Va-ﬁy,(p’ 2 k)Aop(P + k)Vosz(pl + K, _Pl)]
X [Per e, (23)

Mu = [VO'BV(p’ -pr + kI)AUp(p - k/)Vap,u(pl - kl: _P/)]
X [Perilve, (24)

M. =VupPer e (25)

As a check, replacing e* by k* and using the Ward identity
we obtain

MS(EM - k'u) = ez(raﬁv,u(p + k)ﬂ
+ Faﬁ,u,upl#)gﬁg/aely) (26)

‘MM(GM - k,u) = _82(FanMpM
+ Lapun(p’ — M) PT* e, (27)

M (e — k+) = Va,,ﬁﬂfﬂg“'“k“e“’. (28)

Upon summing up the three contributions one sees that
gauge invariance is satisfied

M(e—k)=0. (29)

A similar calculation for the outgoing photon confirms
once again gauge invariance to be satisfied. Using the
conditionsk-e =k'-&'=p-{=p'-{ =0, we calcu-
lated M explicitly in Eq. (A1) in the Appendix. Inspection
of the latter expression shows that the divergent terms in
the high-energy limit come from the 1/m? terms which are
proportional to (g — 2), &, their product and their second
power, thus, they vanish for g = 2 and ¢ = 0. Another and
perhaps easier way to see that such cancellation occurs
only for the mentioned values is to calculate the cross
section. A straightforward calculation of the squared am-
plitude yields Eq. (A4) from the Appendix. The latter
expression shows that in the classical limit, n — 0, the
differential cross section is independent of g and ¢, as it
should be,

do(g, &)

2
_To 2

=—(1+ x°), 30
20 o 2( ) (30)

and the total cross section coincides with the Thompson
result,
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87 ,

U'(g:f)|n—»o:?”ozo'r- (31)

More interesting is the high-energy limit,  >> 1, in which
case we find

do(g, r2
% n>>1:m[80+g4(21+(—8+x)x)

+8g3(— 10+ (—1+x)x) +88&2 + 214
—8x&* + X2 (—4+ E2)? +2g%(4(17
+x(4+x)+ 21+ (-8 +x)x)&?)
+8g(—4(4+x+x?)

+(—10+ (=1 +x)x)&2)]. (32)

In general, for arbitrary g and &, the angular distribution of
the emitted photon is sharply peaked in forward direction
and the total cross section diverges violating the unitarity
bounds [4,13,14]. In order to check the values of g and &
avoiding this ultraviolet catastrophe we integrate the dif-

ferential cross section in Eq. (32) fromx = —1 + etox =
1 — €, with € — 0O to obtain
877'r% 1

o(g f)ln»l 3 128

+2((g =2+ &)(7g*> — 12¢g + 12

S e R Ry

=— —[2(1 —€)(g>+4g—4+ &)

X (3g>+8g—4+ 352)10g<§ - lﬂ
(33)

The latter equation makes manifest that the only values
of g and ¢ preventing the violation of unitarity at high
energies are indeed g = 2 and ¢ = 0, respectively.

Using the first principles of (i) the covariant projection
on the mass-m and spin-1 eigensubspace of the Casimir
operators of the Poincaré group in the (%, %) representation
space of the HLG in combination with the most general
form of the antisymmetric part of the corresponding tensor
(not fixed by the projection), (ii) U(1),,, gauge principle,
and (iii) unitarity in the high-energy limit, we were able to
uniquely fix the electromagnetic couplings of any elemen-
tary vector particle at tree level. Any massive spin-1 par-
ticle described by means of a four-vector field must have a
magnetic-dipole moment of u =e/m, an electric-
quadrupole moment of Q = —e/m?, and vanishing
electric-dipole and magnetic-quadrupole moments at tree
level. This is the prime result of this work.

These are precisely the parameter values that enter the
description of the electromagnetic properties of the W
boson in the standard model. However, our results, being

|

87rd 2m(9 + 54m + 1299 + 1687n° + 140n* + 48%°) — 3(1 + 21)3(3 + 379 + 479?) log(1 + 27)
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1 do
1‘02 dQ
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041

o] 03 0 05 [
X

FIG. 1. Differential cross section normalized to the classical
squared radius as a function of x = cos@ for different values of
the energy of the incident photon in the laboratory frame: n = 0
(thick line), 7 = 1 (long dashed line), n = 10 (short-dashed
line), » = 100 (dotted line), and n = o (dot-dashed line),
where 1 = w/m.

based on first principles, are valid for any elementary spin-
1 particle described by a four-vector field. Notice that in
our derivation no assumptions have been made about other
interactions of the vector particle and its Abelian or non-
Abelian nature. In the following section we discuss our
results in the context of non-Abelian gauge theories.
Before this, and for the sake of completeness, we present
our results for Compton scattering off any elementary
massive vector particle in terms of the dimensionless vari-
able 7). The full angular distribution for the case g = 2,
&E=0,is
do(2,0) r3
dQ) 6(1 + n(1 — x))*
+4n* + x*n’(B + 49%) — 2x39(3 + 37
+ 41>+ 8n%) — 2xn(3 + 119 + 1292
+87°) + x2(3 + 6m + 149 + 247’
+ 24n%)]. (34)

[3+6m+ 119>+ 87n°

At high energies we obtain it flat according to

d0'(2,0) _2 2

= -7y, 35
dQ) 1 31”0 )

and the total cross section coincides with the Thompson
one. Integrating Eq. (34) we obtain the total cross section
as

o(2,0) = 3

129%(1 + 29)}

(36)

014009-5



M. NAPSUCIALE et al.

095

09 ¢

0.85

0.8

0.75

0.7 ¢

0.65

n

FIG. 2. Total cross section normalized to the Thompson value
as a function of the energy of the incident photon in the
laboratory frame, where n = w/m.

In Fig. 1 we display the differential cross section as a
function of x = cos# for different values of the energy of
the incident photon. Starting from the classical angular
distribution the radiation slightly peaks in forward direc-
tion at intermediate energies, but this effect is rapidly
damped and the angular distribution becomes flat at high
energies. In Fig. 2 we show the total cross section as a
function of the energy of the incoming photon. It decreases
from the Thompson value at = 0 as the energy increases
in the low-energy region, reaches its minimum at n = 1,
and from there onward it smoothly rises approaching again
the Thompson value in the high-energy limit, n > 1.

IV. PARTITION OF g = 2 INTO ABELIAN AND
NON-ABELIAN CONTRIBUTIONS FOR NON-
ABELIAN VECTOR GAUGE PARTICLES

With the g = 2 value for an elementary massive vector
particle, the covariant projector formalism exploited here
has predicted for a second time a universal gyromagnetic
ratio for a high-spin particle. Earlier, the same number was
obtained for spin-3/2 in Ref. [6]. There, and upon prohib-
iting spin-3/2 to spin-1/2 conversion, the electromagneti-
cally gauged spin-3/2 Lagrangian was obtained to depend
on g alone. The demand for causal spin-3/2 propagation
within an electromagnetic environment restricted then g to
g = 2. In this way the so called Velo-Zwanziger problem
of superluminal propagation of spin-3/2 fields within an
electromagnetic environment as suffered by the Rarita-
Schwinger formalism [5] was resolved and the solution
related to the value of the gyromagnetic factor. Also in this
case, the nature of the particle, Abelian versus non-
Abelian, was irrelevant to the solution. On the other side,
it is well known that non-Abelian gauge theories contain
“nonminimal” electromagnetic interactions (see [4] and
references therein) which contribute to the net electromag-
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netic couplings of gauge bosons. In order to understand our
results within the latter context let us consider the case of
the electroweak W= bosons for which the partition of its
gyromagnetic ratio into Abelian and non-Abelian contri-
butions is well known [1]. In that respect it is important to
recall that the photon field, A, is not among the four gauge
bosons, W = {W*, W3}, and B, of the SU(2), X Uy(1)
group but partakes both B and W? according to

W3 = cosOyZY + sinfyA,,

B,, = cosOyA, — sinfyZ0,

(37)

in standard notations. As long as the Abelian field B
belongs to U(1)y, while the non-Abelian isovector field
W is associated with SU(2),, the Abelian contribution to
the electromagnetic interactions of the W take their origin
from U(1)y gauging while the non-Abelian ones arise from
the SU(2); gauging, both in combination with e =
gw sinfy, (gw stands for the universal electroweak cou-
pling). The three physical massive gauge bosons W=
and Z° emerge only after spontaneous SU(2), X
U(1)y/U,,(1) breaking, and it is only at this level that
one can identify their corresponding electromagnetic in-
teractions. What one observes is a partition of the gyro-
magnetic ratio in two sectors, the non-Abelian one,
&na = 1, as provided by the non-Abelian field tensor, and
the Abelian one, g, = 2 — g,,, coming from the Abelian
U(1)y gauging. The g, = 1 value required by the specifics
of the electroweak gauge group coincides by chance with
the one provided by Proca theory, so that using Proca’s
Lagrangian in the standard model is of no harm. However,
for any other gauge group, that provides a g,, # 1, this
concept will necessarily collapse. For a general non-
Abelian theory, based on a group, call it G, and different
from the electroweak one, U(1),,, will manifest itself only
after the spontaneous G/U,,,(1) breaking at low energies.
Concerning physics beyond the standard model both as-
pects are completely unknown, so far. Apparently, the
respective g,, value will depend both on the U(1),,, em-
bedding in G and on the details of the spontaneous sym-
metry breaking and can be lesser or bigger than 1. It is
obvious that Proca’s theory is not applicable to this case.
Instead, one can make use of the Lagrangian with the free g
parameter as defined by Eqgs. (10) and (12) and employ it,
this time at the level before the spontaneous symmetry
breaking. Fixing g, to g, = 2 — g,,, guarantees g = g, +
&na = 2 for any needed partition of the net gyromagnetic
ratio at the final stage.

What after all should be abundantly clear is that what-
ever the unknown group G, the U,,,(1) embedding in it, or
the mechanisms for the spontaneous symmetry breaking
might be, with the Lagrangian defined by Eqs. (10) and
(12) one can always end up with a net gyromagnetic ratio
of g, + g,. = 2 for a vector gauge boson. At any rate, the
three first principles mentioned above must be respected by
the final form of the interaction of the vector particle with
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the electromagnetic field and the respective electromag-
netic properties concluded here will always hold valid.

V. CONCLUSIONS AND PERSPECTIVES

In this work we studied the structure of the Lagrangian
of an elementary vector particle (massive particle trans-
forming in the (3, J) representation of the HLG ) interacting
with an electromagnetic field. The Lagrangian’s derivation
was based on the three fundamental principles of
(i) Poincaré invariance of space-time, (ii) U(1),,, gauge
symmetry of electromagnetism, and (iii) unitarity bounds
for the Compton scattering cross section. The first two
principles lead to a general Lagrangian depending on two
free parameters, g and £, both required in the definition of
the four electromagnetic multipoles characterizing a vector
particle. Requiring the total cross section for Compton
scattering off a vector target to respect the unitarity bounds
in the high-energy limit allows to fix the free parameters to
g = 2, ¢ = 0 and thereby to determine the tree-level elec-
tromagnetic properties of any vector particle, be it Abelian
or non-Abelian. It must have a magnetic-dipole moment of
u = e/m (a gyromagnetic ratio of g = 2), an electric-
quadrupole moment of Q = —e/m?, and vanishing
electric-dipole and magnetic-quadrupole moments at tree
level. Modifications to this picture can arise only at one-
loop level either through higher-order electromagnetic ef-
fects, or, through electromagnetic corrections induced by
interactions with other particles. For gauge vector bosons
the electromagnetic couplings are partitioned into non-
Abelian (g,,) and Abelian (g,) contributions obeying the
restriction, ¢ = g, + g,. = 2. The specific respective g,
and g,, values depend on the gauge group G, the embed-
ding of U(1),,, in it, and the details of the spontaneous
symmetry breaking G — U,,,(1) at low energies.

|

M=

PHYSICAL REVIEW D 77, 014009 (2008)

The results obtained here are valid for elementary vector
particles i.e., massive spin-1 particles transforming in the
2, 2) representation of the HLG as is the case of the W
boson. This is certainly not the only possible HLG repre-
sentation for the description of spin-1 though the one of the
widest spread, and it would be interesting to check validity
of the concepts presented here for spin-1 fields transform-
ing in other representations such as the totally antisym-
metric second-rank tensor, (1,0) @ (0, 1), (considered in
[15]), or the totally symmetric one, (1, 1) (considered,
among others, in [16]). Although we expect the calculation
to evolve similarly to the one presented here, the new
problems need to be worked out anew, a task that is beyond
the scope of the present study. Finally, another challenge
for future research would be to explore within the context
of the covariant projector formalism the link between g =
2 and the renormalizability of an effective field theory as
found in Ref. [17].
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APPENDIX

The explicit expression for the invariant amplitude in the
Compton scattering off a vector target is a bit cumbersome
and given by

e } [(s [0 )(‘;2 ”/,',j)

(e[ A1 p'sl_
(e-[¢¢] k)(p_k, o
g§

2

e oLek) = ekds K |+ %[ﬁ[k- R I R
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Here we used Holstein’s notation [1]
S-[Q,R]-T=S-QR-T—S-RQ-T, (A2)
and defined

(@ABCYaA'B'C') = €,5,,APBA-C"€®,,, ABBLC". (A3)

aBuv

The resulting cross section is then obtained as

do(g, &) _ s
dQ) 96(1 + n(1 — x)

+ 38+ 28 + 6£2)) + 2m*(104 — 48g + 3g* + 2487 + 3£ + g2(8 + 6£%)) + n*(80 — 80g° + 21g*

+ 882 + 21&* — 16g(8 + 5£2) + 2g%(68 + 21£2)) — 2x3n[48 + 481 — p*(—16 + 48g + g* + 82 + &*
+2g%(=20 + &%) + p3(16 + 12g3 + 5g% — 8E2 + 5&* + 4g(—4 +38%) + 2g%(—4 + 58%))]

+ 2x%[24 + 48 — n*(—64 + 48g + g* + 8E% + £+ +2g%(—20 + £2)) — n(—80 — 168> + g* + 8&2 + &4
+ 28%(—20 + £%) — 16g(—5 + £2)) + n*(48 — 28g> + 19g* + 40£% + 19&* — 4g(12 + 7&?)

+ g2(40 + 38£2))] — 2x[48 + 16m(7 + > + g(—2 + £%)) + n3(80 — 76g> + 25g* + 88£% + 25¢*

+ 10g%(12 + 5£2) — 4g(28 + 19£2)) + n*(16g> + 3g* + 16g(—5 + £%) + g%(8 + 6£?)

+3(48 + 8£% + £Y)1, (A4)

7 {48 +96m + x*n>(48 + p?(—4 + 4g + g% + £%)?) +2n3(80 — 48g + 3g* + 24¢?

where ry = % stands for the classical radius, 7 = w/m, x = cosf, and we used

f w
Tt el -0y (A5

for the energy of the final photon w'.
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