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Within the frameworks of the light-front quark model (LFQM) and chiral perturbation theory (ChPT) of
O�p6�, we reevaluate the form factors of the K� ! � transition. We use these form factors to study the
decay of K� ! e��e�, which is dominated by the structure-dependent contribution. We show the
differential decay branching ratio as a function of x � 2E�=mK, where E��mK� is the photon energy
(kaon mass). Explicitly, we find that, in the standard model with the cut of x � 0:01 (0.1), the decay
branching ratio of K� ! e��e� is 1:54�1:44� � 10�5 and 1:57�1:47� � 10�5 in the LFQM and ChPT,
respectively.
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I. INTRODUCTION

Experimentally, both decays of K� ! e��e and ����
have been precisely measured with the decay branching
ratios being �1:55� 0:05� � 10�5 and �63:44� 0:14� �
10�2 [1], respectively. The smallness of the electron
mode can be easily understood as it is helicity suppressed
with the suppression factor of m2

e=m
2
� � 2� 10�5 in com-

parison with the muon mode. For the corresponding radia-
tive decays of K� ! ‘��‘��‘ � e;��, it is known that
they receive two types of contributions: ‘‘inner bremsstrah-
lung’’ (IB) and ‘‘structure-dependent’’ (SD) [2,3]. For the
decay of K� ! e��e�, while the IB contribution is still
helicity suppressed and contains the electromagnetic cou-
pling constant � as well, the SD part gives the dominant
contribution to the decay rate as it is free of the helicity
suppression. Similarly, the SD contribution is also impor-
tant to the decay of K� ! ����� [4].

In the standard model (SM), the decay amplitude of the
SD part involves vector and axial-vector hadronic currents,
which can be parametrized in terms of the vector form
factor FV and axial-vector form factor FA, respectively.
However, the experimental determinations on these form
factors are poorly given and model-dependent [5–7]. In
particular, the experimental results on the decay rate of
K� ! e��e� in Refs. [5–7] were based on the assumption
of FV and FA being some constant values in the chiral
perturbation theory (ChPT) at O�p4� [4]. In the ongoing
data analysis of the E949 experiment at BNL, more preci-
sion measurements on the decay of K� ! e��e� are
expected [8] and thus, the model-independent extractions
of the SD form factors are possible. Theoretical calcula-
tions of FV and FA in the K� ! � transition have been
previously done in the ChPT atO�p4� [4] andO�p6� [9,10].
However, the results of the ChPT at O�p6� [10] have not
been fully applied to the decay of K� ! e��e� yet.
Moreover, it is important if we could obtain information
on FV;A in some QCD model other than the ChPT. For this

purpose, in the present study we will also evaluate FV;A in
the light front quark model (LFQM). We will use the form
factors in both ChPT and LFQM to examine the decay of
K� ! e��e�.

This paper is organized as follows: We present the
relevant formulas for the matrix elements and form factors
for the decay of K� ! e��e� in Sec. II. In particular, we
study the transition form factors ofK� ! � in the ChPT of
O�p6� and LFQM. In Sec. III, we describe the differential
decay rate of K� ! e��e�. In Sec. IV, we show our
numerical results on the form factors and the decay branch-
ing ratio in both ChPT and LFQM. We will also illustrate
the differential decay branching ratio as a function of x �
2E�=mK, whereE� andmK are the photon energy and kaon
mass, respectively. We give our conclusions in Sec. V.

II. MATRIX ELEMENTS AND FORM FACTORS

In the SM, the amplitude of the decay K� ! e��e�
(K�e2�) can be written in terms of IB and SD contributions,
given by [3,4,11,12]
 

M � MIB �MSD; MIB � ie
GF���

2
p sin�cFKme�	�K�;

MSD � �ie
GF���

2
p sin�c�

	
�L�H

��; (1)

where
 

K� � �u�p���1� �5�

�
p�K

pK 
 q
�

2p�e � q6 �
�

2pe 
 q

�
v�pe�;

L� � �u�p�����1� �5�v�pe�;

H�� �
FA
mK
��g��pK 
 q� p

�
Kq

�� � i
FV
mK

�����q�pK�;

(2)

�� is the photon polarization vector, pK, p�, pe, and q are
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the four-momenta of K�, �e, e�, and �, and FK and FA�V�
are the K meson decay constant and the axial-vector (vec-
tor) form factor corresponding to the axial-vector (vector)
part of the weak currents, defined by

 

h0j �s���5ujK
��pK�i � �iFKp

�
K;

h��q�j �u���5sjK�pK�i � e
FA
mK
��p 
 q��	� � ��	 
 p�q��;

h��q�j �u��sjK�pK�i � ie
FV
mK

"�����	�q�p�; (3)

respectively, with p � pK � q being the transfer momen-
tum. We note that MIB in Eq. (1) is suppressed due to the
small electron mass me. In the decay of K� ! e��e�, the
form factors FA;V in Eq. (3) are the analytic functions of

p2 � �pK � q�
2 in the physical allowed region, given by

 m2
e  p2  m2

K: (4)

In the following discussion, we will first summarize the
formulas for FV;A in the ChPT and then study these form
factors in the LFQM. We note that similar calculations for
the P! ��P � K0; D; B� transitions in the LFQM have
been performed in Refs. [13–15].

A. Chiral perturbation theory

The chiral Lagrangians contain both normal and anoma-
lous parts. At orders of pm, the nonanomalous and anoma-
lous Lagrangians of L�m�n and L�m�a relevant to the K�e2�

decay are given by [10]

 

L�2�n �
F2

4
Tr�D�UD�Uy� �

F2

4
Tr��Uy �U�y�;

L�4�n � L1�Tr�D�UD�Uy��2 � L2Tr�D�UD�Uy�Tr�D�UD�Uy� � L3Tr�D�UD�UyD�UD�Uy�

� L4Tr�D�UD
�Uy�Tr��Uy �U�y� � L5Tr�D�UD

�Uy��Uy �U�y�� � L6�Tr��Uy �U�y��2

� L7�Tr��yU�Uy���2 � L8Tr��Uy�Uy �U�yU�y� � iL9Tr�L��D�UD�Uy � R��D�UyD�U�

� L10Tr�L��UR��U
y�;

L�6�n � y17h��h��h
��i � y18h��ihh��h

��i � y81h��f���f
��
� i � y82h��ihf���f

��
� i � iy83hf���f��; u

�u�gi

� iy84h��ihf���u
�u�i � iy85hf���u

���u
�i � iy100hf����f

�	
� ; h

�
	 �i � y102h��f���f

��
� i

� y103h��ihf���f
��
� i � y104hf����f

��
� ; ���i � y109h5	f��� 5

	 f��� i � y110h5	f����h
�	; u��i � . . . :; (5)

and [16,17]

 

L�4�a ��
1

16
2�
����Tr�U@�U�@�U@�U�l�

�U�@�U@�U
�@�Ur��

�
i

16
2�
����Tr�@�U�@�l�Ur��@�U@�r�U�l��

�U@�U
��l�@�l��@�l�l��;

L�6�a � iC7�����h��f���f���i

� iC11�
����h���f���;f����i

�C22�
����hu�f5�f���;f���gi� . . . :; (6)

respectively, where F is the meson decay constant in the
chiral limit, Li, yj and Ck are unrenormalized coupling
constants, U is the unitary matrix, parametrized by

 U � exp

26664i
���
2
p

F


0��
2
p � ���

6
p 
� K�


� � 
0��
2
p � ���

6
p K0

K� K0 � 2���
6
p

0BBB@
1CCCA
37775; (7)

L�� and R�� are the field-strength tensors of external
sources, given by

 L�� � @�‘� � @�‘� � i�‘�; ‘��;

R�� � @�r� � @�r� � i�r�; r��;
(8)

and the definitions of all other fields can be found in
Ref. [10].

From the chiral Lagrangians in Eqs. (5) and (6), one
obtains the tree and loop contributions to FV at O�p6� for
the K�e2� decay to be [9,10]
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 FV�p2� �
mK

4
���
2
p

2FK

�
1�

256

3

2m2

KC
r
7 � 256
2�m2

K �m
2

�Cr11 �

64

3

2p2Cr22 �

1

16
2�
���
2
p
FK�

2

�
3

2
m2
� ln

�m2
�

�2

�

�
7

2
m2

 ln

�
m2



�2

�
� 3m2

K ln
�
m2
K

�2

�
� 2

Z
�xm2


 � �1� x�m
2
K � x�1� x�p

2�

� ln
�
xm2


 � �1� x�m2
K � x�1� x�p

2

�2

�
dx� 2

Z
�xm2

� � �1� x�m
2
K � x�1� x�p

2�

� ln
�xm2

� � �1� x�m2
K � x�1� x�p

2

�2

�
dx� 4

Z
m2

 ln

�
m2



�2

�
dx
��
; (9)

where the wave function and decay constant renormalizations have been included and Cri are the renormalized coefficients.
From Eq. (5), the tree and loop contributions to FA of O�p6� lead to [10]
 

FA�p2� �
4
���
2
p
mK

FK
�Lr9 � L

r
10� �

mK

6F3
K�2
�

8 �142:65�m2
K � p

2� � 198:3� �
mK

4
���
2
p
F3
K


2

�
�4Lr3 � 7Lr9 � 7Lr10�m

2

 ln

�
m2



m2
	

�

� 3�Lr9 � L
r
10�m

2
� ln

�m2
�

m2
	

�
� 2�8Lr1 � 4Lr2 � 4Lr3 � 7Lr9 � 7Lr10�m

2
K ln

�
m2
K

m2
	

��
�

4
���
2
p
mK

3F3
K

f2m2

�18yr18 � 2yr81

� 6yr82 � 2yr83 � 3yr84 � y
r
85 � 6yr103� � 2m2

K�18yr17 � 36yr18 � 4yr81 � 12yr82 � 4yr83 � 6yr84 � 4yr85 � 3yr100

� 6yr102 � 12yr103 � 6yr104 � 3yr109� �
3

2
�m2

K � p
2��2yr100 � 4yr109 � y

r
110�

�
; (10)

where Lri and yri are the renormalized coupling constants.
Note that the first terms in Eqs. (9) and (10) correspond to
FV and FA at O�p4� [4,18], respectively. We remark that
the expressions of Eqs. (9) and (10) have not been explic-
itly shown in the literature [9,10].

B. Light front quark model

In the framework of the LFQM [13–15], the physical
accessible kinematics region is 0  p2  M2

K due to the
timelike momentum transfers. The general structure of the
phenomenological light front (LF) meson wave function is
based only on the q �q Fock space sector. It can be expressed
by an antiquark �s and a quark u with the total momentum
�p� q� such as:
 

jK�p� q�i �
X
�1�2

Z
�dk1��dk2�2�2
�33�p� q� k1� k2�

���1�2
K �z; k?�b��s �k1; �1�d�u �k2; �2�j0i; (11)

where ��1�2
K is the amplitude of the corresponding �s�u� and

k1�2� is the on-mass shell LF momentum of the internal
quark. The LF relative momentum variables �z; k?� are
defined by

 k�1 � z1�p� q��; k�2 � z2�p� q��;

z1 � z2 � 1; k1? � z1�p� q�? � k?;

k2? � z2�p� q�? � k?;

(12)

and
 

��1�2
K �z; k?� �

�
k�1 k

�
2

2�M2
0 � �ms �mu�

2�

�
1=2

� �u�k1; �1��5v�k2; �2���z; k?�; (13)

with ��z; k?� being the space part of the wave function,
which depends on the dynamics. The amplitude of��z; k?�
can be solved in principles by the LF QCD bound state
equation [19,20]. However, we use the Gaussian type wave
function in this study:

 ��z; k?� � N

��������
dkz
dz

s
exp

�
�

~k2

2!2
K

�
: (14)

From Eqs. (11)–(14), the hadronic matrix elements in
Eq. (3) are found to be
 

h��q�j�s���1� �5�ujK�p� q�i

�
Z d4k01
�2
�4

�K

�
�5

i��k6 02 �mu�

k022 �m
2
u � i�

ieu 6�
i�k6 1 �mu�

k2
1 �m

2
u � i�

� ���1� �5�
i�k6 01 �ms�

k021 �m
2
s � i�

� �u$ s; k01�k1� $ k02�k2��

�
; (15)

where �K is a vertex function related to the u �s bound state
of the K meson, k2 � q� k1 and k01 � �p� q� � k

0
2 �

k1 � p. After integrating over the LF momentum k�1 in
Eq. (15), we get
 

h��q�j�s���1� �5�ujK�p� q�i

�
Z p�q

q
�d3k01�

�
1

k�1 � k
�
1on

�I��jk0�1on
�

�P

k0�2 � k
0�
2on

� �u$ s; k01�k1� $ k02�k2��

�
; (16)

where
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�d3k01� �
dk�1 dk1?

2�2
�3k0�1 k
0�
2 k
�
1

;

I��jk�1on
� Trf�5��k6

0
2 �mu�ieu 6��k6 1 �mu��

��1� �5�

� �k6 01 �ms�

�
; k�ion �

m2
i � k

2
i?

k�i
;

k0�1�2� � p�on � k0�2�1�on; k�1 � q� � k�2on; (17)

with fong representing the on-shell particles. For the kaon,
the vertex function �P in Eqs. (15) and (16) is given by
[21,22]:

 

�P

k0�2 � k
0�
2on

!

��������������
k0�1 k

0�
2

q
���
2
p

~M0

��z0; k?�: (18)

To calculate the right hand part of Eq. (16), we choose a
frame with the transverse momentum p? � 0 so that p2 �
p�p� � 0 covers the entire range of the momentum trans-
fers. Here, we have used the LF momentum variables
�x; k?�. Hence, the relevant quark momentum variables
in Fig. 1 are

 k0�1 � �1� z
0��p� q��; k0�2 � z0�p� q��;

k01? � �1� z
0�q? � k0?; k02? � z0q? � k0?;

k�1 � �1� z�q
�; k�2 � zq�;

k1? � �1� z�q? � k?; k2? � zq? � k?:

(19)

By considering the good component as ‘‘� � �,’’ the

hadronic matrix elements in Eq. (3) can be rewritten as:

 h��q�js���5u�jK�p� q�i � �e
FA

2mK
��	? 
 q?�p

�;

h��q�js��u�jK�p� q�i � �ie
FV

2mK
�ij�	i qjp

�:
(20)

Using Eq. (19), the trace part I�� in Eq. (17) can be carried
out. By comparing Eq. (16) with Eq. (20), we obtain the
form factors FV;A to be:

 FA�p
2� � 4mK

Z dzd2k?
2�2
�3

��z0; k2
?�

1

1� z0

�
2

3

mu � Ak2
?�

m2
u � k2

?

�
1

3

ms � Bk2
?�

m2
s � k2

?

�
;

FV�p2� � 8mK

Z dzd2k?
2�2
�3

��z0; k2
?�

1

1� z0

�
2

3

mu � z
0�ms �mu�k

2
?�

m2
u � k

2
?

�
1

3

ms � �1� z
0��ms �mu�k

2
?�

m2
s � k

2
?

�
;

(21)

where

 A � �1� 2z�z0�ms �mu� � 2zmu; B � �1� 2z�z0ms �ms � �1� 2z��1� z0�mu;

��z; k2
?� � N

�
z�1� z�

2�M2
0 � �ms �mu�

2�

�
1=2

��������
dkz
dz

s
exp

�
�

~k2

2!2
K

�
; � �

1

��z; k2
?�

d��z; k2
?�

dk2
?

; z0 � z
�

1�
p2

M2
K

�
;

~k � � ~k?; ~kz�; N � 4
�



!2
K

�
3=4
; kz �

�
z�

1

2

�
M0 �

m2
s �m

2
u

2M0
; M2

0 �
k2
? �m

2
u

z
�
k2
? �m

2
s

1� z
:

(22)

III. DIFFERENTIAL DECAY RATE

In the K� rest frame, the partial decay rate for K� !
e��e� is given by [1]

 d� �
1

�2
�3
1

8mK
j M j2 dE�dEe; (23)

where E� and Ee are photon and electron energies, respec-
tively. To describe the kinematics of K� ! e��e�, we
introduce two dimensionless variables, defined by x �

2E�=mK and y � 2Ee=mK, with their physical allowed
regions being

 0  x  1� re; 1� x�
re

1� x
 y  1� re; (24)

where re � m2
e=m2

K. The relation between the transfer
momentum p2 and x is given by:

 p2 � m2
K�1� x�: (25)

FIG. 1. FV�p
2� as a function of the transfer momentum p2.
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From Eqs. (1) and (23), we obtain the double differential decay rate of K� ! e��e� as

 

d2�

dxdy
�

m5
K

64
2 �G
2
Fsin2�c�1� ��A�x; y�; (26)

where � � �x� y� 1� re�=x and

 A�x; y� � AIB�x; y� � ASD��x; y� � ASD��x; y� � AINT��x; y� � AINT��x; y�;

AIB�x; y� �
4rejFKj2

m2
K�x

2

�
x2 � 2�1� re�

�
1� x�

re
�

��
; ASD��x; y� � jFV � FAj

2 x
2�2

1� �

�
1� x�

re
�

�
;

ASD��x; y� � jFV � FAj
2x2�y� ��; AINT��x; y� � �

4re
mK

Re�FK�FV � FA�
	�

�
1� x�

re
�

�
;

AINT��x; y� �
4re
mK

Re�FK�FV � FA�
	�

1� y� �
�

:

(27)

By integrating out the y variable in Eq. (26), we obtain the differential decay rate as a function of x to be

 

d�

dx
�

m5
K

64
2 �G
2
Fsin2�cA�x� (28)

where
 

A�x� � AIB�x� � ASD��x� � ASD��x� � AINT��x� � AINT��x�;

AIB�x� �
4reF

2
K

m2
K

�
�x� re � 1��x2 � 4�1� re��1� x��

1� x
�
x2 � 2�1� re��1� x� re�

x
ln

re
1� x

�
;

ASD��x� � jFV � FAj
2x3

�
1� x

3
�
re
2
�

r3
e

6�1� x�2

�
;

ASD��x� � jFV � FAj
2x3

�
1� x

3
�
re
2
�

r3
e

6�1� x�2

�
;

AINT��x� �
4re
mK

Re�FK�FV � FA�	�x
�

1� x
2
�

r2
e

2�1� x�
� re ln

re
1� x

�
;

AINT��x� �
4re
mK

Re�FK�FV � FA�	�x
�
�1� 3x

2
�
r2
e � 2xre
2�1� x�

� �x� re� ln
re

1� x

�
: (29)

It is clear that the contributions to the decay rate from the
IB and INT� parts are suppressed due to the small electron
mass.

IV. NUMERICAL RESULTS

The numerical values of FA;V�p2� in the ChPT of O�p6�
have been shown in Figs. 5 and 6 of Ref. [10]. To compare
these values with those in the LFQM, we plot the results in
Figs. 1 and 2. In these figures, we have also included the
results in the ChPT at O�p4�. For the calculations of the
ChPT [10], we have taken mK � 0:495, m
 � 0:14, m� �

0:55 and m	 � 0:77, FK � 0:112 GeV and the renormal-
ized coefficients of �Lr1; L

r
2; L

r
3; L

r
9; L

r
10�, �C

r
7; C

r
11; C

r
22� and

�yr100; y
r
104; y

r
109; y

r
110� to be �0:53; 0:71;�2:72; 6:9;�5:5� �

10�3 [23], �0:013;�6:37; 6:52� � 10�3 GeV�2 [24] and
�1:09;�0:36; 0:40;�0:52� � 10�4=F2

K [25], respectively.
For some other possible sets of coefficients, see Ref. [10]
as well as the recent review in Ref. [26]. We note that we FIG. 2. FA�p

2� as a function of the transfer momentum p2.

ANALYSIS OF K� ! e��e� IN . . . PHYSICAL REVIEW D 77, 014004 (2008)

014004-5



have ignored the contributions from p2-nondependent
terms involving yri . On the other hand, the
p2-dependence of FA�p2� for the ChPT at O�p6� are in-
sensitive due to the small contributions related to yri [10].
We emphasize that as illustrated in Figs. 1 and 2, the form
factors FV;A at O�p4� in the ChPT are constants [4]. To
evaluate the form factors of FV;A from Eq. (21) in the
LFQM, we have used mu � 0:26, ms � 0:37, and !K �
0:382 in GeV. In Table I, we explicitly display the values of
FV;A�p2 � 0�.

By integrating out the variable x in Eq. (28), in Table II
we give the decay branching ratio of K� ! e��e� in
(a) the ChPT at O�p4�, (b) the ChPT of O�p6� and (c) the
LFQM. Here, as the IB term diverges at the limit of x! 0
corresponding to p2 ! p2

max � m2
K, we have used the cuts

of x � 0:01 and 0.1, respectively. With the cuts, from
Table II we see that both IB and INT� contributions are
much smaller than the SD� ones, which are insensitive to
the cut. We remarks that in Table II, our results for the SD�

contribution to the decay branching ratio in the ChPT of
O�p6� and LFQM are 1.15 and 1:12� 10�5, which are
smaller than that of 1:52� 0:23� 10�5 [5,6] quoted by
the PDG [1], respectively. Note that the value in the PDG
was based on the combination of the data in Refs. [5,6], in
which large constant values of FA � FV � 0:150�0:018

�0:023 and
0:147� 0:011 were used, respectively. It is clear that to
compare the data with the theoretical predictions, proper
form factors should be used in the data analysis.

To show the behaves of the various contributions in the
ChPT and LFQM, we present the IB and SD� parts of the
differential decay branching ratio as functions of x in
Fig. 3. Here, we do not plot the INT� contributions in
Fig. 4 as they are vanishingly small. As shown in the figure,
in the small x region there is an enhancement for the IB
part, whereas those from the SD� parts are close to zero. In

Fig. 4, we also display the spectrum of the differential
decay branching ratio vs x in the ChPT at both O�p4� and
O�p6� and the LFQM.

TABLE I. The form factors of FV�0� and FA�0� in (a) the ChPT
at O�p4� [4], (b) the ChPT of O�p6� and (c) the LFQM.

Model FV�0� FA�0�

(a) 0.0945 0.0425
(b) 0.082 0.034
(c) 0.106 0.036

TABLE II. The decay branching ratio of K� ! e��e� (in units of 10�5) in (a) the ChPT at O�p4�, (b) the ChPT of O�p6� and (c) the
LFQM with the cuts of x � 0:01 and x � 0:1, respectively.

Model Cut IB SD� SD� INT� INT� Total

(a) x � 0:01 1:65� 10�1 1.34 1:93� 10�1 6:43� 10�5 �1:10� 10�3 1.70
x � 0:1 0:69� 10�1 1.34 1:93� 10�1 6:43� 10�5 �1:10� 10�3 1.60

(b) x � 0:01 1:65� 10�1 1.15 2:58� 10�1 6:22� 10�5 �1:21� 10�3 1.57
x � 0:1 0:69� 10�1 1.15 2:58� 10�1 6:22� 10�5 �1:21� 10�3 1.47

(c) x � 0:01 1:65� 10�1 1.12 2:59� 10�1 4:33� 10�5 �1:29� 10�3 1.54
x � 0:1 0:69� 10�1 1.12 2:59� 10�1 4:33� 10�5 �1:29� 10�3 1.44

FIG. 3. The IB and SD� parts of the differential decay branch-
ing ratio as functions of x � 2E�=mK.

FIG. 4. The differential decay branching ratio as a function of
x � 2E�=mK.
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From Fig. 4, we see that in the region of x < 0:7 or E� <
173 MeV, the decay branching ratio in the LFQM is much
smaller than that in the ChPT at O�p6�. On the other hand,
in the region of x > 0:7 the statement is reversed. However,
if we only consider the contributions in the ChPT at O�p4�,
the conclusion is weaker. In Table III, we illustrate the
decay branching ratio in the regions of 0:1< x< 0:7 and
0:7< x< 1 from the various approaches, respectively. The
main reasons for the differences are due to the form factors.
The form factors of the ChPT at O�p4� are constant and
straight lines at O�p6�, whereas in the LFQM they are the
overlap between the wave functions of the K meson and
photon and become zero when x! 0 or p2 ! p2

max � m2
K.

It is clear in the future data analysis such as the one at the
experiment BNL-E949 [8], one could concentrate on these
two regions to find out which model is preferred.

V. CONCLUSIONS

We have studied the axial-vector and vector form factors
of theK� ! � transition in the LFQM and ChPT ofO�p6�.
Based on these form factors, we have calculated the decay
branching ratio of K� ! e��e�. We have demonstrated
that the SD part gives the dominant contribution to the
decay in the whole allowed region of the photon energy
except the low endpoint. Explicitly, we have found that, in
the SM with the cut of x � 0:01 (0.1), the decay branching
ratio of K� ! e��e� is 1:54�1:44� � 10�5 and
1:57�1:47� � 10�5 in the LFQM and ChPT, respectively.
Future precision experimental measurements on the decay
spectrum [8] should give us some useful information to
determine the SD contribution as well as the vector and
axial-vector form factors.
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