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We discuss combining gravitational lensing of galaxies and the cosmic microwave background by
clusters to measure cosmographic distance ratios, and hence dark energy parameters. Advantages to using
the cosmic microwave background as the second source plane, instead of galaxies, include a well-
determined source distance, a longer lever arm for distance ratios, typically up to an order of magnitude
higher sensitivity to dark energy parameters, and a decreased sensitivity to photometric redshift accuracy
of the lens and galaxy sources. Disadvantages include higher statistical errors, potential systematic errors,
and the need for disparate surveys that overlap on the sky. Ongoing and planned surveys, such as the South
Pole Telescope in conjunction with the Dark Energy Survey, can potentially reach the statistical sensitivity
to make interesting consistency tests of the standard cosmological constant model. Future measurements
that reach 1% or better precision in the convergences can provide sharp tests for future supernovae
distance measurements.
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I. INTRODUCTION

Gravitational lensing depends on the distances between
the observer, lens, and source. These distances provide
geometric measurements of the expansion history of the
Universe in much the same way as distant supernovae.
Measurements of the same lens with multiple source
planes can be used to construct distance ratio estimates
that are, in principle, independent of the mass distribution
(e.g. [1–4]). In the weak lensing regime, where measure-
ment and projection errors on individual lenses are large,
these ratios can be measured statistically by stacking mul-
tiple lenses [5,6] or equivalently by measuring correlation
functions [7–9].

In this Brief Report we examine the use of recently
developed CMB (cosmic microwave background) cluster-
mass reconstruction techniques [10] (see also [11–18]) for
measuring distance ratios. We discuss the benefits and
drawbacks to using the CMB as a lensing source plane
and assess the impact future surveys may have on dark
energy parameter measurements. For illustrative purposes,
we describe the cosmology with the following parameters
(values in square brackets denote our adopted fiducial
choices). On the low redshift side: the dark energy density
in units of the critical density �DE�� 0:76�, dark energy
equation of state w�a� � w0 � �1� a�wa�� �1�, and
spatial curvature �K�� 0�. On the high redshift side:
matter density �mh

2�� 0:128�, baryon density �bh
2��

0:0223�, optical depth ��� 0:092�, tilt n�� 0:958�, and
scalar amplitude �� �� 4:52� 10�5� at k � 0:05 Mpc�1.

II. COSMOGRAPHIC DISTANCES

Gravitational lensing of galaxy images or the CMB at a
redshift zS by an object at redshift zL with comoving

surface mass density � can be phrased in terms of the
convergence

 ���; zL; zS� � 4�GDL
DLS

DS
�1� zL���DL�; zL�; (1)

where DL, DS, and DLS are the comoving angular diame-
ter distances from observer to lens, observer to source, and
lens to source, respectively. Here � denotes the angular
position on the sky.

In the idealization of perfect measurements at all angular
positions and of all the lensing being generated by a single
lensing plane, the ratio of the measured convergence for
two different source planes, zS for the galaxies and z	 for
the CMB, depends only on the distance ratio [1–5]:

 R�zL; zS� 

���; zL; zS�

���; zL; z	�
�

DLS

DL	

D	

DS
: (2)

One virtue of using the CMB for the second source plane is
that D	 is measured to high precision from the positions of
the acoustic peaks. For example, in the projections for the
Planck satellite (see below), the fractional error in distance
��lnD	� � 0:002.

The second virtue of using the CMB as a source plane is
that the large separation between it and typical galaxy
source planes boosts the sensitivity of the ratio to cosmo-
logical parameters. In Fig. 1 we show the sensitivity of R to
w0,wa, and �K, assuming that the high redshift parameters
and D	��DE� are fixed. A percent level determination of R
with zL < 1 and zS � 1 would provide interesting con-
straints on the dark energy and the curvature. Contrast
this with the sensitivity of the convergence ratio between
two galaxy source planes �z1; z2�:
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which is typically an order of magnitude less since it
requires a measurement of the much smaller change in R
with galaxy source redshift
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The insensitivity of R to galaxy source redshifts around
zS � 1 also implies that the requirements on measuring
galaxy photometric redshifts are much less stringent than
for G (cf. [6]). For example, the sensitivity of the ratio to
redshift around zL � 0:7 and zS � 1 is
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so that a measurement of R to a few percent requires
photometric redshifts that are unbiased to 1%.
Furthermore, given the weak dependence of R on redshift,
high precision in the photometric redshifts of individual
galaxies is not required.

III. FORECASTS

In practice, due to measurement errors and projection
effects, cosmographic distances for individual objects like
clusters of galaxies are too noisy to be useful. Instead
multiple clusters can be stacked in order to measure a
cluster-mass correlation function or average profile [5–
7]. Projection effects from mass along the line of sight
that is not associated with the cluster, which can introduce
�30% scatter in the mass estimates of individual clusters
(e.g. [19]), average away in this measurement. For ex-

ample, for 1000 clusters, scatter due to such projections
would be reduced to �1% provided that the cluster selec-
tion is not biased by projections. This reduction has been
explicitly tested in cosmological simulations at the percent
level [9].

Given the weak sensitivity of R to the lens and source
redshift distribution compared with expected photometric
redshift measurements, we can treat this statistical mea-
surement as providing the average � at the median lens and
source redshifts for forecasting purposes. Furthermore,
dividing up the distribution into multiple lens and source
planes does not provide much leverage for parameter esti-
mation (see Fig. 1). For simplicity we will thus treat each
pair separately.

With upcoming weak lensing surveys such as the Dark
Energy Survey (DES), the expected statistical errors on R
will be dominated by the CMB measurements. Hu, DeDeo,
and Vale [10] estimate that the statistical errors for clusters
above a mass of 1014:2h�1M� at z  0:7 equate to a�10%
rms error for � at the �10 scale radius per 1000 clusters.
This assumes a survey with 10 �K0 instrument noise,
comparable to the statistical sensitivity of the ongoing
South Pole Telescope (SPT) experiment, but with no fore-
ground contamination from the cluster. With an expected
yield of �104 clusters, the statistical precision can reach
�3% in � or R. Furthermore, with longer integration times
an experiment can improve on these numbers by a factor of
3–4 as the sample variance limit of temperature based
estimators is reached. Lower mass objects such as the
luminous red galaxies selected in DES can also serve as
lenses. Finally, polarization measurements with sensitivity
in the �1–3 �K0 range, comparable to South Pole
Telescope polarization survey (SPTpol), can provide the
means for achieving further improvements and checks for
systematic errors [10,20].

Since an actual measurement will likely be dominated
by systematic errors and foregrounds, we will phrase our
forecasts in an experiment-independent manner. Given a
measurement of R to a certain fractional precision ��lnR�,
the information on a set of parameters pi is quantified by
the Fisher matrix

 FRij �
@ lnR
@pi

1

�2�lnR�

@ lnR
@pj

: (6)

The inverse of the Fisher matrix provides an estimate of the
covariance matrix between the parameters such that
��pi�  �F�1�ii. Given multiple cosmological parameters
and a single R, the Fisher matrix is degenerate, and only
one direction in the parameter space can be constrained.
While multiple lens and source planes provide some op-
portunity to break the degeneracies, it is more useful to
examine how a measurement of R will complement other
measurements in the future.

We first combine the measurement of Rwith those of the
CMB power spectrum expected from the Planck satellite.
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FIG. 1 (color online). Sensitivity to cosmological parameters
of the convergence ratio R between the CMB last scattering
surface and a galaxy source redshift zS. Utilizing the CMB as a
source plane can boost the sensitivity to parameters typically by
up to an order of magnitude.
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These measurements are also required to fix the distance to
last scattering D	 in Eq. (2). Details for the construction of
the Planck Fisher matrix are given in [21]; we assume 80%
sky and 3 channels: full width half maximum 5:00 with
temperature noise �T � 51 �K0 and polarization noise
�P � 135 �K0; 7:10 with �T � 43 �K0, �P � 78 �K0;
and 9:20 with �T � 51 �K0, �P � 1.

Figure 2 shows the errors in the equation of state at the
best measured redshift wpiv in a flat cosmology (see e.g.
[7]) and �K in a w � �1 �CDM cosmology as a function
of��lnR� for zL � 0:7 and zS � 1:0. These two parameters
benchmark how well the standard flat �CDM cosmology
can be tested or excluded. Note that improvements in
parameter estimation begin with 10% measurements of
R. Strong consistency checks are possible with 1% mea-
surements. To utilize 0.1% measurements, improvements
beyond Planck on the high redshift parameters will be
required.

Other choices of lens and source redshifts in this range
provide similar results. Increasing the source redshift to
zS � 1:2 degrades the errors on wpiv by 12%. Decreasing
the lens redshift to zL � 0:6 with zS � 1 degrades them by
9%. Increasing the lens redshift to zL � 0:8 with zS � 1
improves the measurement of wpiv by 6%.

In Fig. 2 we assumed that the redshifts of lens and source
were perfectly determined. To assess the precision with
which they need to be measured, we add them as parame-
ters in the Fisher matrix. In Fig. 3 we show the degradation
of errors on wpiv with imperfect knowledge of the mean of
the source photometric redshifts. To fully utilize 1% mea-

surements ofR, one requires a redshift accuracy of��zS� �
0:003, whereas 3% requires only �0:01 accuracy. Source
redshifts are more problematic than lens redshifts due to
the large number density of sources and their higher red-
shift. Furthermore, with cluster lenses, multiple red galaxy
cluster members can be used to estimate the redshifts.
Nonetheless, sensitivity to lens redshift measurements
can also be inferred from Fig. 2 by rescaling with the ratio
of derivatives in Eq. (5).
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FIG. 2 (color online). Impact on parameter errors given Planck
CMB power spectrum prior for (a) the equation of state at the
best constrained redshift wpiv in a flat cosmology and (b) the
spatial curvature in a cosmological constant (�CDM) cosmol-
ogy. Lens and source redshifts here are zL � 0:7 and zS � 1.
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FIG. 3. Requirements on photometric redshift accuracy im-
posed by demanding that wpiv measurements not degrade sub-
stantially for 1% (solid line) and 3% (dashed line) measurements
of R at zL � 0:7 and zS � 1. A flat w0–wa cosmology is
assumed.
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FIG. 4 (color online). Impact on the inverse area statistic A�1
w

of the error ellipse for the equation of state parameters w0, wa
given SNAP supernova and Planck priors with curvature margi-
nalized. Solid line: R measurement only. Dashed line: including
CMB B-mode power spectrum measurements of gravitational
lensing comparable to SPTpol.
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Finally we assess how well CMB lensing measurements
complement the combination of future supernovae (SNe)
distance measures and Planck. For the SNe, we assume a
sensitivity comparable to the proposed SNAP satellite and
adopt the prescription described in [21]; we take 2800 SNe
distributed in redshift out to z � 1:7 according to [22], 300
local supernovae uniformly distributed in the z �
0:03–0:08 range, statistical magnitude errors of �m �
0:15 per SN, and a systematic floor of �sys � 0:02�1�
z�=2:7 per �z � 0:1.

In Fig. 4 (solid curve) we show the impact on the area
statistic of the w error ellipse, Aw � ��wpiv���wa� [23],
with �K marginalized. Until errors reach below 1%, R
measurements do not provide significant parameter error
improvements. Nonetheless, R measurements in the �1%
range do provide strong, purely geometrical consistency
tests on supernovae measurements.

CMB lensing can improve Aw more significantly, but the
leverage comes mainly from lensing by large-scale struc-
ture. With the dashed line we show the further improve-
ment by including the forecasted constraints from B-mode
polarization power spectrum measurements by SPTpol
[21]. With both sets of lensing information combined, the
improvement in Aw can ultimately reach a factor of 5.5.

IV. DISCUSSION

We have assessed the potential of joint cluster gravita-
tional lensing measurements from the CMB and weak
galaxy lensing surveys for determining distance ratios.
These distance ratios are in turn sensitive to dark energy
parameters and can be used to test the flat �CDM model.

Benefits to using the CMB as a source plane include a well-
determined source distance, a longer lever arm and thus
higher signal, and a decreased sensitivity to photometric
redshift errors of the lens and galaxy sources.

We show that if convergence ratios can be measured at
percent level accuracy, the dark energy equation of state
can be measured to �6% when combined with CMB
information from Planck in a flat universe. Such a mea-
surement would provide an interesting consistency check
on inferences from supernovae distance measures.
Statistical errors of a few percent should be achievable
with existing and planned cluster surveys, such as the
SPT in combination with DES. However, the measurement
will likely be limited by systematic errors, mainly on the
CMB side. Minimum requirements include a high signal-
to-noise CMB map of at least 100 resolution that is cleaned
of the thermal Sunyaev-Zel’dovich effect in clusters [24].
Although a full assessment is beyond the scope of this
Brief Report, we have shown that the combination of
galaxy and CMB source planes has the potential to provide
strong constraints on cosmological distance ratios, and thus
make interesting contributions to our knowledge of the
dark energy.

ACKNOWLEDGMENTS

We thank Eric Linder, Michael Mortonson, and Amol
Upadhye for useful conversations. W. H. was supported by
the DOE, the Packard Foundation, and the KICP under
NSF PHY-0114422. D. E. H. acknowledges support from
LANL. C. V. was supported by the U.S. Department of
Energy and by NASA Grant No. NAG5-10842.

[1] R. Link and M. J. Pierce, Astrophys. J. 502, 63 (1998).
[2] L. Gautret, B. Fort, and Y. Mellier, Astron. Astrophys.

353, 10 (2000).
[3] G. Golse, J.-P. Kneib, and G. Soucail, Astron. Astrophys.

387, 788 (2002).
[4] M. Sereno, Astron. Astrophys. 393, 757 (2002).
[5] B. Jain and A. Taylor, Phys. Rev. Lett. 91, 141302 (2003).
[6] G. M. Bernstein and B. Jain, Astrophys. J. 600, 17 (2004).
[7] W. Hu and B. Jain, Phys. Rev. D 70, 043009 (2004).
[8] J. Zhang, L. Hui, and A. Stebbins, Astrophys. J. 635, 806

(2005).
[9] D. E. Johnston et al., Astrophys. J. 656, 27 (2007).

[10] W. Hu, S. DeDeo, and C. Vale, arXiv:astro-ph/0701276
[New J. Phys. (to be published)].

[11] U. Seljak and M. Zaldarriaga, Astrophys. J. 538, 57
(2000).

[12] W. Hu, Astrophys. J. Lett. 557, L79 (2001).
[13] C. M. Hirata and U. Seljak, Phys. Rev. D 67, 043001

(2003).
[14] C. Vale, A. Amblard, and M. White, New Astron. Rev. 10,

1 (2004).
[15] M. Maturi, M. Bartelmann, M. Meneghetti, and L.

Moscardini, Astron. Astrophys. 436, 37 (2005).
[16] A. Lewis and L. King, Phys. Rev. D 73, 063006 (2006).
[17] A. R. Cooray, Astrophys. J. 596, L127 (2003).
[18] G. P. Holder and A. Kosowsky, Astrophys. J. 616, 8

(2004).
[19] C. A. Metzler, M. J. White, M. Norman, and C. Loken,

Astrophys. J. 520, L9 (1999).
[20] W. Hu and T. Okamoto, Astrophys. J. 574, 566 (2002).
[21] W. Hu, D. Huterer, and K. M. Smith, Astrophys. J. Lett.

650, L13 (2006).
[22] G. Aldering et al., arXiv:astro-ph/0405232.
[23] D. Huterer and M. S. Turner, Phys. Rev. D 64, 123527

(2001).
[24] C. Vale and W. Hu (unpublished).

BRIEF REPORTS PHYSICAL REVIEW D 76, 127301 (2007)

127301-4


