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We construct a supersymmetric version of the critical nonrelativistic bosonic string theory [B. S. Kim,
Phys. Rev. D 76, 106007 (2007).] with its manifest global symmetry. We introduce the anticommuting bc
conformal field theory (CFT) which is the super partner of the �� CFT. The conformal weights of the b
and c fields are both 1=2. The action of the fermionic sector can be transformed into that of the relativistic
superstring theory. We explicitly quantize the theory with manifest SO�8� symmetry and find that the
spectrum is similar to that of type IIB superstring theory. There is one notable difference: the fermions are
nonchiral. We further consider noncritical generalizations of the supersymmetric theory using the
superspace formulation. There is an infinite range of possible string theories similar to the supercritical
string theories. We comment on the connection between the critical nonrelativistic string theory and the
lightlike linear dilaton theory.
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I. INTRODUCTION

Time-dependent backgrounds in string theory are hard to
analyze [1]. Perturbative string theory breaks down in
some spacetime regions due to a large string coupling,
and it appears that a full nonperturbative string theory
formulation is required. One clean example with the light-
like linear dilaton theory (LDT) is proposed in [2]. On the
other hand, there are some interesting developments which
emphasize the role of perturbative string theory in the
analysis of time-dependent backgrounds [3,4]. But the
complete understanding of time-dependent backgrounds
is still out of reach in string theory.

It turns out that many interesting cosmological solutions
have broken Lorentz symmetry. It is interesting to consider
these solutions with their manifest global symmetry.
Furthermore, fundamental issues related to time, especially
to ‘‘emergent time,’’ is not clear (see, e.g., [5]). Thus it is
interesting to consider alternative approaches, which can
shed light on time-dependent backgrounds and on funda-
mental issues of time.

Recently a bosonic string theory with manifest Galilean
symmetry in target space was constructed in an elementary
fashion [6], motivated by earlier works [7–9]. These non-
relativistic string theories clearly treat time differently than
relativistic string theory. In nonrelativistic string theories,
time in target space can be described by the first order
nonunitary �� conformal field theory (CFT), while second
order X0 CFT plays the role of time in the relativistic
theory. Thus we can hope to obtain some insights on the
issues of time-dependent backgrounds in string theory
from this very different approach. As we mention in the
final section of this paper, there are some intriguing pieces
of evidence that these nonrelativistic string theories can be
connected to known time-dependent backgrounds in string

theory. This possibility opens up a new framework for
addressing the issues related to time and to time-dependent
string solutions.

With these motivations, we briefly review the construc-
tion of the bosonic nonrelativistic string theory, which has
a manifest Galilean symmetry in target space. Compared to
earlier works, the theory does not assume a compact coor-
dinate and has a simpler action, a�� CFT in addition to the
usual bosonic X CFTs. The first order �� CFT is directly
related to time and energy in target space. Time in target
space is parametrized by a one-parameter family of selec-
tion sector and is explicitly realized through the general-
ized Galilean boost symmetry of the action. We quantize
the theory in an elementary fashion which reveals many
interesting features. The spectrum is very similar to the
relativistic bosonic string theory, except for the overall
motion of the string which is governed by a nonrelativistic
energy dispersion relation. The ground state has the energy

 E �
1

pp0

�
�0

4
kiki � 1

�
; (1)

where p and p0 are the parameters which specify the
selection sector and the ground state vertex operator, re-
spectively, and kis are the transverse momenta. The parti-
cle corresponding to the ground state is still ‘‘tachyonic’’
because it is possible to have negative energy for the range
�0
4 k

iki � 1. Thus it is desirable to remove this state from
the spectrum. The first excited state has 24 degrees of
freedom which transform into each other under SO�24�
rotations.

The world sheet constraint algebra imposes strong re-
strictions on the spectrum of string theories. We can en-
large the world sheet constraint algebra by adding the
supercurrents to construct nonrelativistic superstring theo-
ries. We start with the nonrelativistic superstring action in
terms of the component fields in the critical case, which*bskim@socrates.berkeley.edu
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reveals an interesting simplification in the fermionic sector.
The fermionic sector can be rewritten in the same form as
in the relativistic superstring theory with a simple trans-
formation. The rest of the quantization is very similar to
that of the relativistic superstring theory, except for a
different global symmetry structure. We explicitly con-
struct the vertex operators using the bosonization tech-
nique, then we quantize the theory and check the
modular invariance. We encounter a nonrelativistic ana-
logue of the Dirac equation in the ground state of the R
sector. By solving the equation we show that the fermionic
sector has eight physical degrees of freedom which trans-
form in the spinor representation 8 of SO�8�. But there is
one clear difference: the fermions in this theory are non-
chiral. We contrast this to the relativistic case. This is done
in Sec. II.

In Sec. III, we consider the ‘‘noncritical’’ version of
nonrelativistic superstring theories. We present the super-
space formulation of the new first order matter �� CFT in
detail. There exists an infinite range of possible string
theories for the general conformal weights of the ��
CFT. There are two different categories in the noncritical
theories distinguished by the conformal weight of the ��
CFT: those with integer weight and those with half-integer
conformal weight. The former case is similar to the case we
quantize in this paper. The latter case seems more exotic
and it is expected to give us a rather different view on the
geometric interpretation of target space.

Using the world sheet constraint algebra, we construct
all possible string theories with extended supersymmetry
in Sec. IV. The bosonic and supersymmetric nonrelativistic
string cases are presented here. We comment on some
immediate observations. We conclude in Sec. V. In
Sec. VI, we mention possible intriguing applications of
this nonrelativistic string theory to time-dependent string
backgrounds such as the lightlike linear dilaton theory.

II. CRITICAL NONRELATIVISTIC
SUPERSYMMETRIC STRING

A. New matter �� CFT and bc CFT

We start with a full nonrelativistic superstring action of
component fields in the conformal gauge

 S �
Z d2z

2�

�
� �@�� ��@ ���

1

�0
@Xi �@Xi � bg �@cg

� �bg@ �cg

�
�
Z d2z

2�

�
b �@c� �b@ �c�

1

2
� i �@ i

� � i@ � i� � �g �@�g � ��g@ ��g

�
; (2)

where i runs from 2 to 9 for Xi and  i for the critical
nonrelativistic superstring theory. The commuting matter
�� CFT has weights, h��� � 1 and h��� � 0, and has its
central charge, c�� � 2. The anticommuting matter bc

CFT, whose central charge is cbc � 1, has weight h�b� �
1=2 and h�c� � 1=2. In conventional notation for the su-
perstring case, the total central charge of the matter sector
is ĉm � 2

3 c
m � 2

3 �3�
3
2D�, which cancels the central

charge from the ghost sector ĉgh � 2
3 c

gh � 2
3 �

��26� 11� � �10. Thus this theory is anomaly free if
D � 8. This is indicated above by the spatial index iwhich
runs from 2 to 9. We consider the cases with general
conformal weights in the matter �� and bc CFTs in the
next section. The case with conformal weight of � as 1 is
rather special and we will call it the ‘‘critical’’ case as in
bosonic nonrelativistic theory.

We briefly comment on the new matter �� and bc CFTs.
Their operator product expansions (OPEs) are

 ��z1���z2� �
1

z12
����z1���z2�; (3)

 b�z1�c�z2� �
1

z12
� c�z1�b�z2�: (4)

The bosonic and the fermionic energy-momentum tensors
and their mode expansions are

 T��bcb � ��@����
1

2
c�@b� �

1

2
�@c�b �

X
m2Z

Lm
zm�2 ; (5)

 T��bcf �
1

2
c��

1

2
�@��b �

X
r2Z��

Gr

2 	 zr�3=2
: (6)

As is well known there are two possible sectors for the
fields with the half-integer conformal weight. These are
� � 0 and � � 1=2 cases corresponding to the R sector
and NS sector, respectively. We can also find mode ex-
pansions and their Hermiticity properties of the fields

 ��z� �
X
n2Z

�n
zn
; �yn � ��n;

��z� �
X
n2Z

�n
zn�1 ; �yn � ���n;

(7)

 c�z� �
X

r2Z��

cr
zr�1=2

; cyr � c�r;

b�z� �
X

r2Z��

br
zr�1=2

; byr � b�r:
(8)

The mode expansions for the energy-momentum tensors
are

 L��bcm �
X
n2Z

n�m�n�n �
X

s2Z��

�s�m=2�bm�scs

� a�m;0; (9)

 G��bc
r �

X
m2Z

�cr�m�m �m�mbr�m�: (10)
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There is a normal ordering constant for L0 in each sector

 a��bcR � 1
8; a��bcNS � 0: (11)

This is only from the new matter sector, �� and bc CFTs,
and is one part of the total normal ordering constant.1

B. Fermionic sector and its symmetry

The fermionic bc CFT is a new ingredient of this non-
relativistic superstring theory. There are immediate obser-
vations which are rather interesting. As we briefly
mentioned at the beginning of this section, the conformal
weights of the fields b, c and all the other fermionic fields
 i are equal and the value is 1=2. From this observation, we
can think about a transformation

 c � 1��
2
p � 1 �  0�; b � 1��

2
p � 1 �  0�: (12)

Combining these fields with the other fermionic fields  i,
we can see that the action of the fermionic sector is exactly
the same as that of the relativistic one

 SF �
Z d2z

2�

�
b �@c� �b@ �c�

1

2
� i �@ i � � i@ � i�

�

�
Z d2z

4�
� � �@ � � � �@ � ��; (13)

where� runs from 0 to 9. We can naively think that there is
SO�9; 1� invariance in the fermionic sector of this non-
relativistic superstring theory. But as is obvious from the
original action, there is no symmetry transformation which
connects the fields 0,  1 and the other transverse fields i.
The symmetry groups of the fermionic sector are the SO�8�
rotations among the  is as well as a one-parameter family
of superconformal symmetry which is related to rescaling
�! x� and �! �=x.2 The latter is actually realized as
the relative rescaling between k� and p0 in the bosonic
string case, related by rescaling k� ! xk� and p0 ! p0=x.
We can denote this zero-dimensional conformal symmetry
as ‘‘SO�1; 1�,’’ thus the symmetry group turns out to be
SO�1; 1� � SO�8�. This symmetry group becomes impor-
tant when we consider a nonrelativistic analogue of the
Dirac equation. Even though we know there is no relativ-
istic SO�9; 1� symmetry, we still use the relativistic nota-
tion to make the expression simple and to get some
intuitions from the relativistic results.

C. Vertex operators

Most of the vertex operators for this theory are already
known. The vertex operators of the Xi,  i CFTs and of the
superconformal ghost sector with the bgcg and �g�g CFTs
are already well understood and can be found in many
places (see, e.g., [10–12]). Constructing vertex operators
for the bosonic �� CFT is considered in [6,7].

Thus let us concentrate on the vertex operators of the
fermionic bc CFT. The fermionic matter sector, in terms of
the fermionic fields  �, � � 0 	 	 	 9, has well-understood
vertex operators in the relativistic string theory [10–12].
Thus we can just borrow the results from them with cau-
tion. In this section we will use both the notations  0,  1,
and bc.

For the Neveu-Schwarz (NS) sector, there is no r � 0
mode and we can define the ground state to be annihilated
by all r > 0 modes

  �r j0; k�; k ��; ~kiNS � 0; r > 0: (14)

This ground state is tachyonic. The vertex operator corre-
sponding to NS ground state is

 VNS;0�k
�; k ��; ki; z; �z� � e�’V0�k

�; k ��; ki; z; �z�; (15)

 V0�k
�; k ��; ki; z; �z� � g : eik

���ik �� ���ip0
R
z ��iq0

R
�z ���iki	Xi :;

(16)

where the field ’ comes from the bosonization of the
superconformal ghost fields and has nothing to do with
the selection parameter �. The bosonic ground state vertex
operator V0 was considered in [6,7] with k�, k ��, and ki

representing the overall continuous momenta along the
coordinates �, ��, and Xi, respectively.

The first excited state in the NS sector is a linear
combination of the fermionic excitations b�1=2, c�1=2,
and  i

�1=2.

 je; k�; k ��; ~kiNS � �ecc�1=2 � ebb�1=2

� ei 
i
�1=2�j0; k�; k ��; ~kiNS: (17)

We use two different notations for the fermionic sector
(i) e� � with � � 0; 	 	 	 ; 9 and (ii) eM M�1=2��ecc�1=2�

ebb�1=2�ei 
i
�1=2� with i � 2; 	 	 	 ; 9. The vertex operator

corresponding to the first excited state VNS;1�k�; k ��; ki; z; �z�
is

 e�’ MV0�k�; k
��; ki; z; �z� or e�’ �V0�k�; k

��; ki; z; �z�:

(18)

The modes with r < 0 for the fields  r act as raising
operators and each mode can be excited only once.

The Ramond (R) sector ground state is degenerate due to
the zero modes  �0 (or  M0 ). We can define the R ground
state to be those that are annihilated by all r > 0 modes.
The zero modes satisfy the Dirac gamma matrix algebra

1It is important to observe that the total normal ordering
constant for nonrelativistic superstring theory is the same as
that of the relativistic theory

 aR � 0; aNS � �
1
2;

because there are other contributions from the Xi CFTs and the
ghost CFT.

2We realize that there exists this symmetry when we have
discussions with Professor Ori Ganor and with Professor Ashvin
Vishwanath. We thank them for their questions and comments
related to this.
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with �� 

���
2
p
 �0 . Since f �r ;  �0 g � 0 for r > 0, the zero

modes  �0 take ground states into ground states. Thus the
ground states form a representation of the gamma matrix
algebra. For the critical case with ‘‘10 dimensions’’ we can
represent this as jsi � js0i � j ~si � js0i � js1; s2; s3; s4i
with s0; sa � �1=2. Here we separate s0 from the others
to indicate that there is no symmetry transformation be-
tween s0 and ~s.

It is convenient to combine two fermions,  2 and  3 for
example, into a complex pair,  � 1��

2
p � 2 � i 3� and

 y � 1��
2
p � 2 � i 3�,3 to consider a more general periodic-

ity condition

  �w� 2�� � e2�i� �w�; (19)

for any real �. Here we concentrate on two cases � � 0 and
� � 1=2. The mode expansions are

  �z� �
X

r2Z��

 r
zr�1=2

;  y�z� �
X

s2Z��

 ys
zs�1=2

; (20)

with a commutation relation f r;  
y
s g � �r;�s.

We can define a reference state j0i� by

  n��j0i� �  yn�1��j0i� � 0; n � 0; 1; 	 	 	 : (21)

The first nonzero terms in the Laurent expansions are
related to the indices r � �1� � and s � ��. These
conditions can uniquely identify the state j0i�. Similarly
for the corresponding vertex operator A�, the OPEs

  �z�A��0� � O�z���1=2�;  y�z�A��0� � O�z��1=2�

(22)

can determine the vertex operator as

 A � ’ ei����1=2�H: (23)

This vertex operator has weight h � 1
2 ���

1
2�

2. The bound-
ary conditions are the same for � and �� 1, but the
reference states are not. The reference state is a ground
state only for 0 � � � 1. For the R sector with � � 0,
there are two degenerate ground states which can be iden-
tified as jsi 
 eisH with s � 1=2 and s � �1=2.

It is convenient to use bosonization to take care of the
branch cut which arises in the fields with the half-integer
conformal weight. The explicit bosonization expressions
are

 

1��
2
p � 1 �  0� � c 
 e�iH

0
; 1��

2
p � 1 �  0� � b 
 eiH

0
;

(24)

 

1��
2
p � 2a � i 2a�1� 
 e�iH

a
; a � 1; 	 	 	 ; 4; (25)

where H�z� fields are the holomorphic part of correspond-

ing scalar fields. Then the corresponding vertex operator
�s for an R sector ground state jsi � js0; ~si is

 �s 
 exp
is0H
0� � exp

�
i
X4

a�1

saH
a
�
: (26)

This spin field operator produces a branch cut in  � and
needs to be combined with an appropriate antiholomorphic
vertex operator.

Thus the R ground state vertex operators are

 VR;0�s0; ~s; k
�; k ��; ki; z; �z� � e�’=2�sV0�k

�; k ��; ki; z; �z�;

(27)

where ’ is related to the bosonization of the superconfor-
mal ghost fields and V0 is given in Eq. (16). Now we are
ready to quantize the theory.

D. Quantization

In the old covariant quantization procedure, we ignore
the ghost excitations and concentrate on the matter sector,
which has the Xi,  i, ��, and bc CFTs. We impose the
physical states conditions

 �Lm
n �a�n;0�j i � 0; n� 0; Gm

r j i � 0; r� 0;

(28)

where ‘‘m’’ denotes the matter sector. We can construct
spurious states which are orthogonal to all physical states
such as

 Lm
n j	i; n < 0; Gm

r j	i; r < 0: (29)

These states satisfy h jLm
n j	i � 0 and h jGm

r j	i � 0. If
these states satisfy the physical state conditions, then we
call them null states. We need to impose equivalence
relations to get a physical Hilbert space.

1. NS sector

The NS sector with � � 1=2 is simpler and we consider
this first. For the ground state (with simplified notation
j0; kiNS instead of j0; k�; k ��; ~kiNS), the physical state con-
dition �Lm

0 �
1
2�j0; kiNS � 0 gives us the mass shell equa-

tion

 

�0

4
~k2
� k�p0 �

1

2
� 0: (30)

The other physical state conditions, Lm
n j0; kiNS � 0 for

n > 0 and Gm
r j0; kiNS � 0 for r � 1=2, are trivial. Thus

there is one equivalence class, corresponding to a scalar
particle.

The first excited level (with simplified notation je; kiNS
instead of je; k�; k ��; ~kiNS) has 10 states

 je; kiNS � �ecc�1=2 � ebb�1=2 � ei 
i
�1=2�j0; kiNS: (31)

The nontrivial physical state conditions, �Lm
0 �

1
2�je; kiNS � 0 and Gm

1=2je; kiNS � 0, give us
3Note that we use different notation for the complex field

compared to [10].
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�0

4
~k2
� k�p0 � 0; (32)

 � p0ec � k�eb � ��0=2�1=2kiei � 0; (33)

while a spurious state

 Gm
�1=2j0; kiNS � ���0=2�1=2ki i;1=2 � k�c�1=2

� p0b�1=2�j0; kiNS (34)

is physical and null. Thus there is an equivalent relation

 �ec; eb; ei� 
 �ec � k�; eb � p0; ei � ��0=2�1=2ki�: (35)

Thus for the first excited state in the NS sector, there are
only 8 independent degrees of freedom.

The global symmetries are the conformal scaling and the
SO�8� rotation, SO�1; 1� � SO�8�, as we point out above.
At this stage, these symmetries are manifest in Eq. (32).
But we show in the previous work [6] that the energy
dispersion relation for the particle corresponding to this
level is actually

 E � pt �
1

pp0

�
�0

4
~k2
� 1

�
; (36)

where p and p0 are parameters specifying a selection sector
and the ground state vertex operator, respectively. Thus
nonrelativistic particles have SO�8� symmetry which is
smaller than SO�1; 1� � SO�8�. The explicit dependence
of energy on the parameter p0 breaks SO�1; 1� scaling
symmetry. Particularly, at the first excited level of the NS
sector, these 8 degrees of freedom transform into each
other in the vector representation of 8v of SO�8� similar
to the case of relativistic massless excitations.4

2. R sector

In the R sector, we have degenerate ground states
jv; u; kiR � js0; ~s; kiR�vs0

� u~s�, where v and u are ‘‘polar-
izations’’ along bc and  i, respectively. The nontrivial
physical conditions are

 0 � Lm
0 jv; u; kiR �

�
�0

4
~k2
� k�p0

�
jv; u; kiR; (37)

 0 � Gm
0 jv; u; kiR

�

��
�0

2

�
1=2
ki 0;i � k

�c0 � p
0b0

�
jv; u; kiR: (38)

The first equation is the usual mass shell condition. The
second equation is an analogue of the relativistic Dirac

equation. We can check that G2
0 � L0. So the G0 condition

implies the mass shell condition.
The second equation is particularly important for us to

investigate the difference between the spectrum of the
nonrelativistic theory and that of the relativistic one. To
make things more transparent, we can rewrite the equation
in terms of the fields  0 and  1, which reads

 

1

21=2
��01=2ki 0;i � �k� � p0� 0;0 � �k� � p0� 0;1� � 0:

(39)

This equation is the same as the relativistic one if we use
��
0

2 �
1=2k� 0;� � 0, with ��0�1=2k0 � �k� � p0 and

��0�1=2k1 � k� � p0. With an appropriate signature, we
can get

 k�k� �
�0kiki

2
�
�k� � p0�2

2
�
�k� � p0�2

2

�
�0

2
kiki � 2k�p0 � 0: (40)

Particularly there is no further constraint in the vertex
operators for the change of fields from bc to  0,  1, thus
the fermionic sector has SO�1; 1� � SO�8� symmetry,5

where there is no connection between  0,  1 and the other
 is. It is interesting to observe that the SO�1; 1� has boost
symmetry and is realized as the rescaling of the relative
magnitude of k� and p0 while keeping the magnitude of
their product k�p0 fixed.

We can think about the nonrelativistic Dirac equation
with manifest SO�8� symmetry structure. For the spinors of
SO�8�, we can impose the Majorana condition and the
Weyl condition simultaneously, and there are two inequi-
valent irreducible spinor representations, 8c and 8s. The
description of Dirac matrices for SO�8� requires a Clifford
algebra with eight anticommuting matrices, which are 16-
dimensional matrices corresponding to reducible 8c � 8s
representation of SO�8�. These matrices can be written in
the block form

 �i �
0 �ia _a
�i_bb 0

 !
; (41)

where the equations f�i; �jg � 2�ij are satisfied with
�ia _a�

j
_ab � �

j
a _a�

i
_ab � 2�ij�ab with i; j � 2; 	 	 	 ; 9. �i_aa is

the transpose of �ia _a and can be expressed in terms of
real components.

To apply these matrices to the nonrelativistic Dirac
equation (39), we can construct the 10-dimensional Dirac
matrices �� explicitly

 �0�
3�116; �1�
1�116; �0� i
2��i; (42)
4There is another way to think about the expression (32).

Rather than breaking SO�1; 1� symmetry, we can go to a frame,
ki � 0 for i � 2; 	 	 	 ; 8 and k9 � 0, which is similar to the
relativistic consideration and keeps the SO�1; 1� � SO�7� sym-
metry. For further explanation, please see the appendix.

5It is interesting to observe that the one-parameter family of
superconformal symmetry ‘‘SO�1; 1�’’ can be transformed into
SO�1; 1� Lorentz symmetry.
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where 116 is the 16� 16 identity matrix and i � 2; 	 	 	 ; 9.
Here all the Gamma matrices are real and thus it is possible
to impose the Majorana condition for all the spinor fields.
Using  �0 � ��=

���
2
p

, we can rewrite Eq. (39) as
�01=2

2 k��� � 0. To go further we can use the basis

 vs0
� u~s �

v�
v�

� �
2
�

ub

u _a

� �
16
: (43)

We can explicitly write the nonrelativistic Dirac equation

 

�����
�0
p

2

v�
�v�

� �
2
�

ki�ia _au
_a

ki�
i
_bb
ub

 !
16

�
k�v�
�p0v�

� �
2
�

ua
u _b

� �
16
�0:

(44)

To solve this problem we can go to a basis v� �
����
k�
p0

q
v�.6

Then we have the equations

 

�����
�0
p

2
ki�ia _au

_a �
����������
k�p0

q
ua � 0; (45)

 

�����
�0
p

2
ki�

i
_bb
ub �

����������
k�p0

q
u _b � 0: (46)

These equations are very similar to the relativistic Dirac
equation presented in [11] with a definite chirality in the
10-dimensional fermion.7 It is possible to satisfy the non-
relativistic Dirac equation with manifest SO�8� symmetry
by exploiting the superconformal rescaling symmetry.
Furthermore this equation tells that there is no chiral
property for the nonrelativistic fermions because these
two inequivalent irreducible spinor representations 8c and
8s are connected by the nonrelativistic Dirac equation.8 We
will denote this as 8. Thus we can summarize the particle

contents for the first two states in the NS sector and for the
ground state of the R sector in Table I.

3. Closed string spectrum

The closed string spectrum has two copies of the above
spectrum, each from holomorphic and antiholomorphic
sectors. Because of the level matching condition the NS0

sector can only combine with the other NS0 sector
� �0

4
~k2
� k�p0 � � �0

4
~k2
� k ��q0 � �1=2. This is a non-

degenerate state of the nonrelativistic closed string. This
state will be projected out due to the requirement of
modular invariance which requires at least one R sector.

Now it is rather straightforward to construct the closed
string spectrum at the next level because there is one copy
of the vector representation 8v and one copy of the spinor
representation 8 of SO�8�. The spinor representation 8 is
nonchiral and it is expected that the whole theory is non-
chiral. We can identify the spinor representation 8 as one of
the two chiral representations 8c or 8s of SO�8�. Then the
whole spectrum is similar to that of the relativistic type IIB
superstring theory, which has the same spinor representa-
tions in both the holomorphic and the antiholomorphic
sectors. This signals that the theory is modular invariant
and consistent even before we actually check the modular
invariance. We summarize the ground state and first ex-
cited states in Table II.

E. Partition function and modular invariance

To show that the theory is consistent, we need to check
the modular invariance. The bosonic part of the modular
invariance is already shown in the previous work [6]. Thus
we can concentrate on the fermionic sector. As explained
in the previous section, the field contents of the nonrela-
tivistic superstring theory is the same as those of the
relativistic IIB string theory. Thus the modular invariance
can be proved in a similar way. For completeness we
provide a very brief proof of the modular invariance of
the fermionic sector by closely following [10].

For the complex fermion  , we can introduce a general
periodicity � � 1� 2� with

  �!� 2�� � e�i�1��� �!�: (47)

TABLE I. Spectrum of the holomorphic sector for ground and
first excited level of the NS sector and ground state of the R
sector. 8v is the fundamental representation of SO�8� and 8 is
one copy of the spinor representation of SO�8�.

Sector SO�8� spin � �0
4
~k2
� k�p0

NS0 1 �1=2
NS 8v 0
R 8 0

TABLE II. Closed superstring spectrum for the ground state
and the first excited state of the NS sector and the ground state of
the R sector. 8v is the fundamental representation and 8 is one
copy of the spinor representation of SO�8�.

Sector SO�8� spin Tensors Dimensions

(NS0, NS0) 1� 1 � 1
(NS, NS) 8v � 8v � 
0� � 
2� � �2� � 1� 28� 35
(NS, R) 8v � 8 � 8� 56
(R, NS) 8� 8v � 8� 56
(R, R) 8� 8 � 
0� � 
2� � 
4� � 1� 28� 35

6This condition is actually equivalent to use the symmetry
transformation of SO�1; 1� to rescale k� � p0.

7We thank Professor Petr Hořva for discussions and comments
on the nonrelativistic Dirac equation and interesting ideas related
to the nonrelativistic system.

8Then why are there two inequivalent propagating degrees of
freedom 8s and 8c in the relativistic case? These two inequiva-
lent degrees of freedom come from the 10-dimensional Weyl
conditions �11� � ��, which are not available for the non-
relativistic theory. For k0 � k9, it is possible to impose s0 � 1=2
and there is 8s spinor. For k0 � �k9, the other spinor 8c is
available. (These two equations k0 � �k9 satisfy k�k� � 0.)
This does not apply for the nonrelativistic theory. Because there
is no 10-dimensional Weyl condition and the bosonic dispersion
relation does not have two inequivalent choices for the relation
k� and p0.
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Then the raising operators can be written as  �m��1���=2

and  y
�m��1���=2 with positive integer m. In the bosonized

language given in (23), the weight of the vertex operator is
�2=8.9 Using this result we can calculate
 

Tr��q
L0�c=24� � q�3�

2�1�=24
Y1
m�1

�1� qm��1���=2�

� �1� qm��1���=2�: (48)

To accommodate this general boundary condition, we join
the fermions into complex pairs in (20). Then a fermion
number Q can be defined as �1 for  and �1 for  y. Q
corresponds to be H momentum in the bosonization for-
mula. The ground state has aQ charge as�=2. Thus we can
define the more general trace

 Z����� � Tr��qL0�c=24 exp��i�Q��

� q�3�
2�1�=24 exp��i��=2� (49)

 

�
Y1
m�1

�1� exp��i��qm��1���=2�

� �1� exp���i��qm��1���=2� (50)

 �
1


���
#

�=2
�=2

� �
�0; ��: (51)

Here � and � can have 0 and 1. We have the relevant traces
Z0

0, Z1
0, Z0

1, and Z1
1. The holomorphic part of the partition

function for the fermionic sector is

 Z ��� �
1
2
Z

0
0���

4 � Z0
1���

4 � Z1
0���

4 � Z1
1���

4�; (52)

where the first sign comes from the ghost contribution and
the last two signs come from the spacetime spin statistics.
The total partition function is

 Ztotal �
V8V��
2p0q0

Z
F

d2�

16�2�0�2
2

�Z8
XZ ���Z ���

��: (53)

This short explanation proves the modular invariance and it
is the same as that of the type IIB string.

III. GENERAL NONRELATIVISTIC
SUPERSYMMETRIC STRING

In this section we consider the �� and bc CFTs with
general conformal weights. First we explain the new matter
sector in the superspace formulation. Then we construct a
noncritical version of the nonrelativistic superstring
theories.

A. Matter �� CFT

Let us start with supersymmetric string theory action
with a matter �� CFT in addition to the usual Xi CFT and
the ghost BC CFT in the conformal gauge

 Ssusy �
Z d2zd2�

2�
�� �D ����: (54)

The equations of motion for the fields are �D ��� � 0 �
�D ���. There is a similar action and equations of motion
for the antiholomorphic part of �� and BC CFTs.

OPEs of new �� CFT are given by

 � �z1; �1���z2; �2� �
�12

ẑ12
���z1; �1���z2; �2�; (55)

where �12 � �1 � �2 and ẑ12 � z1 � z2 � �1�2. The super
energy-momentum tensor10 is a chiral superfield of dimen-
sion 3=2 with the ordinary energy-momentum tensor of
dimension 2 in it T�z� � TF�z� � �TB�z�

 T � ��� 1��@�� 1
2�D���D�� � ��� 1

2�@��: (56)

For the � � 1 case, the super energy-momentum tensor
simplifies further and has the form

 T ��1 �
1
2�D���D�� � 1

2@��; (57)

which is very simple and we concentrate on the previous
section as a critical case. It is simple to verify that this
reduces to the component forms of the energy-momentum
tensor (5) and (6), which are presented below. The case
with � � 1=2 also simplifies and corresponds to the critical
case in a sense we explain in the next subsection.

The super energy-momentum tensor is itself an anoma-
lous superconformal field
 

T�z1; �1�T�z2; �2� �
8�� 6

4ẑ3
12

�
3

2

�12

ẑ12
T�z2; �2�

�
1

2

1

ẑ12
D2T�z2; �2�

�
�12

z12
@2T�z2; �2�; (58)

which tells us the central charge of the super energy-
momentum tensor is ĉ � 2

3 c � 8�� 6 and the conformal
weight of the tensor is 3=2.

OPEs of the energy-momentum tensor with the super
fields can be calculated

9We can get the same result from the fermionic language,
where the normal ordering constant can be calculated by the zero
point mnemonic given in [10].

10This can be contrasted to the energy-momentum tensor of BC
super ghost CFT

 T BC
ghost � ���g � 1�C�D2B� � 1

2�DC��DB� � ��g � 1
2��D

2C�B:

The ghost energy-momentum tensor has the same form as that of
the matter �� CFT except the sign differences. The conformal
weights of the ghost super fields with �g � 2 are h�B� � �g �
1=2, h�C� � 1� �g. Those of the component fields are h��g� �
�g � 1=2, h�cg� � 1� �g, h�bg� � �g, h��g� � 3=2� �g.
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T�z1; �1���z2; �2� � �1���
�12

ẑ2
12

��z2; �2�

�
1

2

1

ẑ12
D2��z2; �2� �

�12

ẑ12
@2��z2; �2�;

T�z1; �1���z2; �2� � ���
1

2
�
�12

ẑ2
12

��z2; �2�

�
1

2

1

ẑ12
D2��z2; �2� �

�12

ẑ12
@2��z2; �2�:

(59)

These equations tell us that the new fields � and � have
conformal weights h��� � 1� � and h��� � �� 1=2,
respectively.

The dimensions of the component fields are

 � � ��� �c; h��� � 1� �; h�c� � 3=2� �;

(60)

 � � b� ��; h�b� � �� 1=2; h��� � �:

(61)

�, �, and � are commuting fields and b, c, and � are
anticommuting fields.

Using the component fields we can rewrite the super-
symmetric action

 S1 �
Z d2z

2�
�� �@�� ��@ ��� b �@c� �b@ �c�: (62)

Given the conformal weights of the component fields, the
central charge of the �� CFT and the bc CFT are 3�2��
1�2 � 1 and �3�2�� 2�2 � 1, respectively. Thus the total
central charge is c � 12�� 9, which agrees with the result
from the OPE of the energy-momentum tensor.

The OPEs of the component fields are

 ��z1���z2� �
1

z12
����z1���z2�; (63)

 b�z1�c�z2� �
1

z12
� c�z1�b�z2�: (64)

The energy-momentum tensor in the component form can
be written
 

Tb �
�
��

3

2

�
c�@b� �

�
��

1

2

�
�@c�b� ��� 1���@��

� ��@��� �
X
m2Z

Lm
zm�2 ; (65)

 Tf � ���� 1���@b� �
1

2
c��

�
��

1

2

�
�@��b

�
X

r2Z��

Gr

2 	 zr�3=2
: (66)

As is well known, the fields with the half-integer con-
formal weight have both NS and R sectors. To make the
expressions simple, we concentrate on the case of integer
�. The mode expansions and the Hermiticity properties are

 ��z� �
X
n2Z

�n
zn�1�� ; �yn � ��n;

��z� �
X
n2Z

�n
zn��

; �yn � ���n;
(67)

 c�z� �
X

r2Z��

cr
zr�3=2��

; cyr � c�r;

b�z� �
X

r2Z��

br
zr���1=2

; byr � b�r:
(68)

There are two possible values for �. For the NS sector � �
1=2 and for the R sector � � 0. The mode expansions for
the energy-momentum tensors are
 

L��bcm �
X
n2Z

�n� �1� ��m��m�n�n

�
X

s2Z��

�s� �3=2� ��m�bm�scs � a�m;0; (69)

 G��bc
r �

X
n2Z

�cr�n�n � �n� 2r��� 1���nbr�n�: (70)

There is a normal ordering constant in each sector, a��bcR �
4��3

8 and a��bcNS � ��1
2 .

B. Possible nonrelativistic superstring theories

It is interesting to construct a noncritical version of the
nonrelativistic superstring theory. The central charge of the
ghost part is ĉBC � �10 and that of the matter CFT is
ĉ�� � 8�� 6. Thus to be consistent the dimension D of
the spatial directions in target space is

 D � 8�2� ��: (71)

We summarized the interesting portion of theories in
Table III.

Here we comment on the immediate observations of
these possible consistent noncritical nonrelativistic super-
string theories. These theories have the same actions and
the SO�1; 1� � SO�D� symmetries in addition to Galilean
symmetry. There exists an infinite range of possible con-
sistent theories with geometric interpretation, for which we
mean it is possible to have a positive number of spatial
coordinates.

It will be interesting to quantize them explicitly. We can
divide them in two categories, (i) with integer � cases and
(ii) with half-integer � cases, because there are two sectors
for the fields with half-integer conformal weight. For the
integer � cases (i) with D � 0; 8; 16; 	 	 	 , the bosonic
commuting �� CFT has only one bosonic coordinate.
From the explicit quantization of the previous section
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and from [6], we know that it is relatively easy to quantize
and establish the spacetime interpretation. On the other
hand, there are two commuting bosonic sectors, NS and R,
for the half-integer � cases (ii) with D � 4; 12; 20; 	 	 	 . Of
course, in case (ii) the zero modes of the R sector of the ��
CFT have a space and time interpretation. The case (ii)
seems rather peculiar and it looks harder to quantize them.
But these theories are expected to provide a different
perspective for a space and time interpretation.

The challenges of establishing the zero modes of ��
CFT in the new matter sector can be easily seen by the total
normal ordering constant. As usual, the normal ordering
constant for the R sectors is 0 due to the cancellation
between the bosonic contribution and the fermionic con-
tribution. Those of the NS sectors are

 a�i�NS �
�� 2

2
; a�ii�NS �

2�� 3

4
: (72)

Thus the total normal ordering constant for the NS sector
depends on the parameter � and there is nontrivial mapping
between the unit vertex operator 1 and the corresponding
state. We can see that the case with � � 1, we considered
in the previous section, is critical in the sense that the
normal ordering constants a�i�NS � �

1
2 recover those of the

critical relativistic string theory. It is interesting to com-
ment that there is another critical case for the case (ii) with
� � 1

2 . Thus the cases with � � 1 and � � 1
2 tie together in

a sense and we expect that the space and time interpretation
is rather similar. This observation extends to all the other
cases. The case with � � n and � � n� 1

2 tie together for
integer n. Quantization of the theory with � � 1

2 and com-
parison to the critical case with � � 2 will be very
interesting.

In the case � � 2 with D � 0, there are only �� CFT
and BC CFT. Upon quantization, only the zero modes are
present without oscillator excitations. The theory is topo-
logical. Furthermore there is a possible unification of these
CFTs in a simple fashion. We comment on this at the end of
this section. As explained in the previous paragraph, this
case is tied with the � � 3

2 case in a sense that the normal
ordering constant is the same and thus the zero modes have
similar roles. But this is not a ‘‘topological’’ case because
there are an additional 4 spatial coordinates.

Unification of all the first order CFTs

There is a curiosity related to a possible interesting Z2

graded algebra involving the nonzero conformal weight,
the U�1� ghost number, and the U�1� number of the matter
�� CFT. We can make a table for basic properties of the
first order matter CFT and the ghost CFT

From Table IV we can imagine that there are two grand
supermultiplets V and W with new field �gh which carries
conformal weight, U�1� ghost charge, and U�1� matter
charge

 V � ���ghB � b� ����gh��g � �bg�

� b��gh�g � �����ghbg�; (73)

 W � C��gh� � cg � ��g ��gh���� �c�

� cg ��gh�� ���g ��ghc�: (74)

If one investigates these grand multiplets a little further one
can read off that �gh is the anticommuting field with
conformal weight �� �g, matter U�1� charge �1, and
ghost number 1. V is an anticommuting multiplet with
the conformal weight �� 1=2, the U�1� matter charge
�1, and the ghost U�1� number 0, whereas W is an anti-
commuting multiplet with the conformal weight 1� �g,
theU�1�matter charge 0, and the ghostU�1� number 1. We
comment on two cases with immediate interest. One is the
� � 1 case with the conformal weight of the field �gh as
�1. Then all the fields have uniform gaps of their confor-
mal weights. This is the case we quantized in the previous
section. For � � 2, the field �gh has no conformal weight.
This is a topological case with these two multiplets only
without another matter sector.

With these observations we can rewrite the superstring
action in a very simple form for the holomorphic part

 SVW �
Z d2zd2�

2�
d�gh�V �D ��W�

�
Z d2zd2�

2�
�� �D ���� B �D ��C�: (75)

TABLE IV. Table for the various properties of the first order
matter CFT and the ghost CFT. We list the conformal weight,
U�1� charge of the matter �� CFT, and U�1� charge of the ghost
CFT.

Field Weight U�1�m U�1�gh

bg �g 0 �1
�g �g � 1=2 0 �1
� � �1 0
b �� 1=2 �1 0
cg 1� �g 0 1
�g 3=2� �g 0 1
� 1� � 1 0
c 3=2� � 1 0

TABLE III. Table for the superstring case. Conformal weight
of the supersymmetric �� CFT and the number of spatial
dimensions of target space are presented. For � > 2, the geo-
metric interpretation is not possible. As the parameter � is
decreasing, the number of spatial dimensions is growing indef-
initely and linearly.

� 	 	 	 2 3
2 1 1

2 0 � 1
2 �1 	 	 	

ĉ�� � 8�� 6 	 	 	 10 6 2 �2 �6 �10 �14 	 	 	

D � 8�2� �� 	 	 	 0 4 8 12 16 20 24 	 	 	
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Note that this action has still the derivative of the form
�D �� � @ �� � ��@ �z and we did not gauge the field �gh. It will
be interesting if we can gauge the field �gh.

IV. NONRELATIVISTIC STRINGS WITH HIGHER
SUPERSYMMETRY

Following Polchinski [10], we would like to survey
possible superconformal algebras and their related non-
relativistic superstring theories. The basic idea is to find
the sets of holomorphic and antiholomorphic currents,
whose Laurent coefficients form a closed constraint alge-
bra. This is motivated by the idea of enlarging the world
sheet constraint algebra with supercurrents TF�z� and
�TF��z�. Here the constraint is part of the symmetry singled
out to be imposed on physical states in the old covariant
quantization (OCQ) or Becci-Rouet-Stora-Tyupin (BRST)
sense.

Here we assume that there is only one (2, 0) constraint
current because the sum of the ��, bc, and Xi energy-
momentum tensors have geometric interpretation in terms
of conformal invariance. This is similar to the relativistic
case. Thus the result of the constraint current algebra in the
world sheet is the same as the relativistic case.
Concentrating on the holomorphic current with conformal
weight as a multiple of a half-integer and less than and
equal to 2,11 there are very limited possible algebras and it
is given in Table V.

The cases I and II are explained already in the bosonic
string theory [6] and in the previous section, respectively.
These theories are explicitly quantized and have the non-
relativistic dispersion relation. The cases III, IV, and VI are
rather different from the other cases because both the
supersymmetric ghost BC CFT and the �� CFT have the
central charges independent of �, which are the same in

magnitude with opposite sign. Thus there is no room for
the spatial coordinates. But it is still possible to have some
geometric interpretation from the matter �� CFTs.

In addition to the II case, there are two possible cases
with an infinite number of possible string theories, the
cases V and VII. Both cases have 4 super charges in the
world sheet CFT. For case V, the central charge of the
superconformal ghost CFTs is 0 and the central charge of
the matter �� CFTs is 24��� 2�. Thus for � � 2 cases, it
is possible to have spatial X CFTs. In the last case, VII, the
central charge has positive contribution from the ghost
CFTs. On the other hand, there are negative contributions
from the matter �� CFTs. We can make the parameter �
large and there is corresponding string theory. It will be
interesting to quantize these sets of theories.

V. CONCLUSIONS

In this paper we construct a supersymmetric version of
the recently constructed nonrelativistic string theory. The
nonrelativistic superstring theory has a first order �� super
conformal field theory (SCFT) on top of the usual eight
second order X SCFTs. The fermionic sector has an anti-
commuting matter bcCFT in addition to the eight  i fields.
The component fields, b and c, have the conformal weights
1=2. These can be transformed into the  0 and  1 fields,
and the fermionic action is the same as that of the relativ-
istic superstring theory. The symmetry group is SO�1; 1� �
SO�8�.

We quantize the theory in an elementary fashion. In
addition to the physical state conditions imposed by the
energy-momentum tensor, there exist other conditions
from the super current. These give us a nonrelativistic
analogue of the Dirac equation in the ground state of the
R sector. This equation can be solved with the manifest
SO�8� symmetry by exploiting SO�1; 1� symmetry. The
fermionic spectrum is nonchiral because the nonrelativistic
Dirac equation connects the two irreducible spinor repre-
sentations 8c and 8s for the SO�8� group. For the closed
string spectrum, modular invariance requires to project out

TABLE V. Survey of possible string theory. The first five columns represent the number of
reparametrization currents with corresponding spins as indicated in the subscript of nspin. n3=2

represent the number of supersymmetry. cgh is the total central charge of the supersymmetrized
ghost CFT and cm

��;bc;			 is the total central charge of the supersymmetrized �� CFT. The last two
columns represent the symmetry and the representation of the supercharge.

n2 n3=2 n1 n1=2 n0 cgh cm
��;bc;			 Symmetry TF Rep.

I 1 0 0 0 0 �26 2�6�2 � 6�� 1�
II 1 1 0 0 0 �15 12�� 9
III 1 2 1 0 0 �6 �6 U�1� �1
IV 1 3 3 1 0 0 0 SU�2� 3
V 1 4 7 4 0 0 24��� 2� SU�2�2 �U�1� (2; 2; 0)
VI 1 4 6 4 1 0 0 SU�2�2 (2; 2)
VII 1 4 3 0 0 12 36� 24� SU�2� 2

11For the ghost CFT, there are restrictions as we mentioned. But
there is no restriction for the matter �� or bc CFT because they
are part of the (2, 0) constraint current and they are a consistent
part of the algebra as long as all the matter conformal weight
sums up to satisfy the physical state conditions.
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the ground state in the NS sector. The spectrum of this
theory is very similar to that of the type IIB superstring
theory, except for the chiral property and the energy dis-
persion relation. The one loop consistency check is
straightforward and the theory is modular invariant.

We present a noncritical version of the nonrelativistic
superstring theories by generalizing the conformal weight
of the first order �� SCFT. It turns out that there is an
infinite range of possible nonrelativistic superstring theo-
ries. We present some immediate observations related to
these possible consistent string theories. We further survey
possible nonrelativistic string theories with extended su-
persymmetry utilizing the world sheet constraint algebra.
The matter �� CFT (and its supersymmetric partners)
combined with the X CFT (and its partners) form a (2, 0)
constraint current (and its partners) to have a geometric
interpretation. Thus the matter first order CFTs are not
constrained severely compared to the ghost sector. There
are three infinite series of possible string theories: two with
the four super charges and one with the one super charge,
which is considered in the present work. It will be interest-
ing to quantize these noncritical nonrelativistic string
theories.

VI. FUTURE DIRECTIONS

Understanding cosmological singularities such as the
big bang is an interesting and outstanding problem. It
requires understanding time-dependent backgrounds in
string theory, which are very difficult to analyze [1].
Perturbative string theory breaks down in some spacetime
regions where the string coupling becomes large. One
clean example with the lightlike linear dilaton theory was
recently proposed in [2].12 The dilaton is proportional to a
light cone coordinate,�X�, and the theory is defined as an
exact CFT that describes string propagating in flat space-
time with the string coupling, gs � e�QX

�
. Thus the space-

time is free at late times and strongly coupled at early
times. At early times, there is a true singularity happening
at a finite affine parameter, which requires a matrix string
description as explained in [2]. It appears to be necessary to
have a complete nonperturbative description of string the-
ory to understand time-dependent backgrounds in string
theory. There is an interesting nonperturbative formulation
of noncritical M theory in (2� 1) dimensions using the
nonrelativistic Fermi liquid and its time-dependent solu-
tions [14]. Earlier work with time-dependent background
with closed string tachyon condensation can be found in
the (1� 1) noncritical string theory [15].

On the other hand there are very interesting develop-
ments which emphasize the role of perturbative string
theory in the analysis of time-dependent backgrounds. It

is claimed that a certain spacetime singularity can be
replaced by a tachyon condensate phase within perturba-
tive string theory [3]. Very recent papers [4] argue, using
alternative gauge choices to free world sheet gravitino, that
spacetime decay to nothing in string and M theory should
be addressed at weak string coupling, where the nonper-
turbative instanton instability is expected to turn into a
perturbative tachyon instability. See also [16]. Similar
considerations in supercritical string theories can be found
in [17,18].

It turns out that many interesting cosmological solutions
have broken Lorentz symmetry. It is interesting to consider
these solutions with their manifest global symmetries.
Furthermore fundamental issues related to time, especially
to ‘‘emergent time,’’ is not clear (see, e.g., [5]). Thus it is
interesting to consider alternative approaches, which can
shed light on time-dependent backgrounds and on funda-
mental issues of time.13 Our current work and a previous
paper [6], motivated by earlier works [7–9], provide ex-
amples for these alternative approaches.

As we saw in the main body, the nonrelativistic string
theory shares many features with relativistic string theory.
The difference between these two theories comes from the
replacement of the X0 and X1 CFTs by�� CFT. This effect
is minimal because these matter CFTs are part of the (2, 0)
constraint current, which makes a geometric interpretation
possible. As a result, the spectrum is very similar to that of
type IIB superstring theory. On the other hand, these non-
relativistic string theories provide a very different perspec-
tive on time. Thus these nonrelativistic string theories
appear to be ideal for investigating general issues related
to time-dependent backgrounds with broken Lorentz sym-
metry, such as the lightlike linear dilaton theory and su-
percritical string theories.

We would like to comment on a few preliminary results
for the correspondence between the critical nonrelativistic
string theory and the lightlike LDT.14 These two theories
have the same set of global symmetries, which can be
checked with the identification X� � t in the lightlike
LDT case. In the light cone gauge, the spectrum of the
lightlike LDT can be checked to be the same as that of the
nonrelativistic string theory. These equivalences are

12There are some direct generalizations of this simple solution
[13]. We thank Professor Nobuyoshi Ohta for drawing our
attention for these solutions.

13An example which motivates a different approach for time
can be seen in the low energy limits of open string theory with
magnetic and electric NS� NS B-field. In the appropriate
limits, the theory with electric NS� NS B-field is reduced to
noncommutative open string theory while the theory with mag-
netic NS� NS B-field reduces to the noncommutative Yang-
Mills theory. This suggests that time is rather different from
space. This is motivated to consider nonrelativistic string theo-
ries in [6].

14This correspondence between the nonrelativistic string theory
and the lightlike linear dilaton theory was pointed out by
Professor Petr Hořava. We are grateful for his careful and
extensive suggestions on this correspondence and on various
references.
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enough for us to be serious about investigating the exact
mapping between these two theories. We hope to report
these results in the near future.
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APPENDIX: PHYSICAL SPECTRUM WITH SO�7�
SYMMETRY

In this appendix, we consider a relativistic approach to
investigate the spectrum of this nonrelativistic string the-
ory. It is interesting to compare these results with those in
the main text.

We have SO�1; 1� � SO�8� symmetry and we want to
analyze the nonrelativistic mass shell condition (32) and
the nonrelativistic Dirac equation (39)

 

�0

4
~k2
� k�p0 � 0; (A1)

 

1

21=2
��01=2ki 0;i � �k� � p0� 0;0 � �k� � p0� 0;1� � 0:

(A2)

Rather than breaking the SO�1; 1� symmetry, we can go
to a frame, ki � 0 for i � 2; 	 	 	 ; 8 and k9 � 0, which
preserves the SO�1; 1� � SO�7� symmetry, to solve these
two equations (A1) and (A2). From the quantization pro-
cedure we know that there are 8 physical degrees of free-
dom. There is only the SO�7� manifest symmetry in the
first excited level of the NS sector, which has a vector
representation 7 of SO�7�. Then where is one extra degree
of freedom? It is a ‘‘Dilaton’’ originated from the confor-
mal rescaling SO�1; 1�, which transforms as a singlet under

SO�7�. Thus the first excited level has 8 degrees of freedom
which transform as 1� 7 under the SO�7� rotation.

Then we can solve the nonrelativistic Dirac
equation (A2) by using the SO�1; 1� symmetry by picking
particular values of k� and p0. Then the remaining sym-
metry group SO�1; 1� � SO�7� is broken to SO�7�. The
irreducible spinor representation of the SO�7� group is 8 as
is well known. Thus there are actually 8 independent
degrees of freedom in the ground state of the R sector. It
is obvious that there is no chance for the fermions to have
any chiral property. We present the holomorphic spectrum
with SO�7� symmetry in Table VI.

It is straightforward to construct the nonrelativistic
closed superstring spectrum. They are presented in
Table VII. We would like to have a few comments.
Comparing the approach with the manifest SO�8� symme-
try, the SO�7� symmetry is not efficient to describe the
physical spectrum. Furthermore it is not clear how we can
demonstrate the modular invariance at all. The field con-
tents are very similar to the relativistic string theory with a
circle compactification. But in that case there are discrete
momentum modes and discrete winding modes in the
twisted sector. On the other hand, we have just continuous
momentum without compact coordinate or twisted sector.
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