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2Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, United Kingdom
3Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania 19104ã 6395, USA
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We present the potential energy due to flux and gaugino condensation in heterotic M theory
compactifications with antibranes in the vacuum. For reasons which we explain in detail, the contributions
to the potential due to flux are not modified from those in supersymmetric contexts. The discussion of
gaugino condensation is, however, changed by the presence of antibranes. We show how a careful
microscopic analysis of the system allows us to use standard results in supersymmetric gauge theory in
describing such effects—despite the explicit supersymmetry breaking which is present. Not surprisingly,
the significant effect of antibranes on the threshold corrections to the gauge kinetic functions greatly alters
the potential energy terms arising from gaugino condensation.
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I. INTRODUCTION

In [1], the perturbative four-dimensional effective action
of heterotic M theory compactified on vacua containing
both branes and antibranes in the bulk space was derived.
That paper concentrated specifically on those aspects of the
perturbative low energy theory which are induced by the
inclusion of antibranes. Hence, for clarity of presentation,
the effect of backgroundG-flux on the effective theory was
not discussed. Furthermore, nonperturbative physics,
namely, gaugino condensation and membrane instantons,
was not included. However, all three of these contributions
are required for a complete discussion of moduli stabiliza-
tion, N � 1 supersymmetry breaking, and the cosmologi-
cal constant. Therefore, in this paper, we extend the results
of [1] to include the effects of flux and gaugino condensa-
tion. Another piece of the effective theory, that is, the
contribution of membrane instantons, will be presented
elsewhere [2]. There is of course vast literature on the
subject of moduli stabilization, flux, and gaugino conden-
sation in heterotic theories. Some recent discussions of
various aspects of these topics appear in [3–12].

A strong motivation for attempting to find stable vacua
in Calabi-Yau compactifications of heterotic theories
comes from the advantages that such constructions enjoy
in particle physics model building. For example, models
with an underlying SO�10� grand unified theory (GUT)
symmetry can be constructed where one right-handed neu-
trino per family occurs naturally in the 16 multiplet and
gauge unification is generic due to the universal gauge
kinetic functions in heterotic theories. Recent progress in
the understanding of nonstandard embedding models [13–
16] and the associated mathematics of vector bundles on
Calabi-Yau spaces [17–20] has led to the construction of
effective theories close to the minimal supersymmetric
standard model (MSSM), see [21–26]. This has opened

up new avenues for heterotic phenomenology. For ex-
ample, one can proceed to look at more detailed properties
of these models such as � terms [27], Yukawa couplings
[28], the number of moduli [29], and so forth. Other groups
are also making strides in heterotic model building, see for
example [30–35].

The addition of G-flux to the formalism described in [1]
is, as we will show in this paper, relatively straightforward.
In contrast, it is not at first obvious how to incorporate
gaugino condensation into this explicitly nonsupersym-
metric compactification of M theory. The reason is that
almost everything we know about this nonperturbative
phenomenon is based on the dynamics of unbroken N �
1 supersymmetric gauge theories. However, by carefully
analyzing the limit where the usual discussions of gaugino
condensation are applied, we will show that our nonsuper-
symmetric system reverts to a globally supersymmetric
gauge theory. This fact allows us to construct the conden-
sation induced potential energy terms in the presence of
antibranes using a component action approach similar to
that of [36].

The plan of this paper is as follows. In the next section,
we briefly review those aspects of [1] which are required
for the current work. In Sec. III, we review the subject of
flux in supersymmetric heterotic M theory. In Sec. IV, the
effects ofG-flux in heterotic M theory vacua which include
antibranes are explicitly computed. Gaugino condensation
in the presence of antibranes is then introduced in Sec. V.
We begin by describing how the potential energy terms
induced by this effect can be calculated in terms of the
condensate itself. It is then shown how one can explicitly
evaluate the condensate as a function of the moduli fields.
Finally, we conclude in Sec. VI by writing out, in full, the
effective potential energy we have obtained by compacti-
fying heterotic M theory in the presence of antibranes,
G-flux, and gaugino condensation.
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II. ANTIBRANES IN HETEROTIC M THEORY

The low energy effective Lagrangian of heterotic M
theory compactified on vacua containing bulk space branes
and antibranes, but ignoring G-flux and nonperturbative
effects, was constructed in [1]. In this section, we provide
a brief summary of the aspects of [1] which are important
in the current paper. The basic vacuum configuration which
we consider, as viewed from five dimensions, is depicted
in Fig. 1. We include an arbitrary number of three-branes
in the vacuum, but, for clarity of notation, restrict the
discussion to a single anti three-brane. Our results extend
almost trivially to the case where multiple antibranes are
present. The (anti) three-branes arise as the low energy
limit of (anti) M5-branes wrapped on holomorphic curves
in the internal Calabi-Yau threefold. We will often refer to
the (anti) three-branes simply as (anti)branes. A more de-
tailed discussion of this setup is provided in [1]. As shown
in Fig. 1, we label the extended objects with a bracketed
index (p) ranging from (0) to (N � 1). The values (0) and
(N � 1) correspond to the orbifold fixed planes, ( �p) labels
the antibrane, and the remaining (p) values are associated
with the branes. The bulk regions are labeled by the same
index as the brane which borders them on the left. Fields
associated with the world volume of a given extended
object or with a certain region of the bulk are often labeled
with the associated index.

In [1], our starting point was the five-dimensional action
describing the compactification of Hořava-Witten theory
on a Calabi-Yau threefold X in the presence of both M5
branes and an anti-M5 brane. The bosonic field content of
this theory is as follows. Let �;�; . . . � 0; . . . ; 4 be the
five-dimensional bulk space indices, �; �; . . . � 0; . . . ; 3
label the four-dimensional Minkowski space indices, and
y be the coordinate of the S1=Z2 orbifold interval.
Additionally, we let i; j; k; . . . � 1; . . . ; h1;1, a; b; . . . �
1; . . . ; h2;1, and A;B; . . . � 1; . . . ; h2;1 � 1, where h1;1 and
h2;1 are the dimensions of the H1;1�X� and H2;1�X� coho-
mology groups, respectively. Then, in the bulk space we

have the graviton, g��, h1;1 Abelian vector fields A�
k with

field strengths F ��
k, a real scalar field V, h1;1 real scalar

fields bk which obey the condition dijkbibjbk � 6 (the dijk
being the intersection numbers on the Calabi-Yau three-
fold) and, therefore, constitute h1;1 � 1 degrees of free-
dom, h2;1 complex scalar fields za, 2�h2;1 � 1� real scalar
fields �A, ~�B with their field strengths XA

�, XB�
and the

three-form C��� with its field strength G����. Of these
bulk fields, V, za, g��, gyy, bk, C��y, and Ak

y are even
under the Z2 orbifold projection, while g�y, �A, ~�B, Ak

�,
C��� are odd.

In addition, there are extra degrees of freedom living on
the extended sources in the vacuum. On each of the two
four-dimensional fixed planes, one finds N � 1 gauge
supermultiplets. These contain gauge fields A�p�� indexed
over the adjoint representation of the unbroken gauge
group H �p� � E8 for p � 0, N � 1. The associated fields
strengths are denote by F�p���. Furthermore, on the fixed
planes there are N � 1 chiral matter supermultiplets with
scalar components CRx

�p�, p � 0, N � 1 transforming in
various representations R, with components x, of this
gauge group. Details of the origin and structure of the
matter sector can be found in the appendix of [1]. The
world volume fields associated with the three-branes are as
follows. First, each brane (p) has an embedding coordi-
nate, that is, the brane position, y�p� and a world volume
scalar s�p�. Second, each brane supports an N � 1 gauge
supermultiplet with structure group U�1�g�p� where g�p� is
the genus of the curve wrapped by the brane (p). These
contain the Abelian gauge fields Au

�p��, where u �

1; . . . ; g�p�. The associated field strengths are denoted
by Eu�p�. In general, there will be additional chiral multip-
lets describing the moduli space of the curves around
which the M5 and anti-M5 branes are wrapped.
Furthermore, there may be non-Abelian generalizations
of the gauge field degrees of freedom when branes are
stacked. However, these multiplets are not vital to our

FIG. 1 (color online). The brane configuration in five-dimensional heterotic M theory.
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discussion and, therefore, we shall not explicitly take them into account.
Given this field content, the five-dimensional action describing Hořava-Witten theory compactified on an arbitrary

Calabi-Yau threefold in the presence of M5 branes and an anti-M5 brane is given by
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Here �5 and �GUT are given by

 �2
5 �

�2
11

v
; �GUT �

�4��2
11�

2=3

v
; (2)

where �5 and �11 are 5- and 11-dimensional Planck con-
stants, respectively, v is the reference Calabi-Yau volume,
and constant m is the reference mass scale

 m �
2�

v2=3

�
�11

4�

�
2=3
: (3)

The above expressions describe, in the order presented, the
bulk space, the fixed planes, and the world volumes of the
M5 and anti-M5 branes. The metrics Gkl�b�, Ka �b�z� as
well as the matrixMAB�z� appearing in the bulk space term
are defined in Appendix A of [1]. Their precise form is not
required in this paper. The dklm coefficients are the inter-
section numbers of the Calabi-Yau threefold. The integers

�p�k are the tensions of the branes, antibranes, and fixed
planes. Charges on individual branes are simply labeled by
��p�k and are equal to the associated tensions in the case of
branes and fixed planes and equal in magnitude, but oppo-
site in sign, in the case of the antibrane. The antibrane is
taken to be associated with a purely antieffective curve for
simplicity. The �̂k coefficients are the sum of the charges
on all extended sources to the left of where the bulk theory
is being considered. We will frequently denote quantities
associated with the antibrane by a bar. Hence, the tension
of the antibrane is denoted by �
k � 
� �p�k . The metrics
G�p�RS, the matter field superpotentials W�p�, and the
D-terms D�p� with p � 0, N � 1 appearing in the bound-
ary plane terms are defined in Appendix B of [1]. Again,

their precise form is not required for the analysis in this
paper. The quantities

 nk�p� �
��p�k

�h1;1

l�1�
�p�2
l

(4)

are the normalized version of the three-brane charges and
we have used the definition

 j�p�� �
��p�k

nl
�p��

�p�
l

�d�nk�p�s�p�� � Âk
�p���: (5)

Hats on field quantities denote pullbacks of the correspond-
ing bulk variable onto the extended object under consid-
eration. The matrix ��p�uw appearing in the world volume
brane terms is the period matrix of the curve on which the
pth brane or antibrane is wrapped. This is defined in
Appendix C of [1]. Finally, the quantities h�p� are the
induced metrics on the boundary planes, branes, and the
antibrane. It is important to note that despite the appear-
ance of an anti-M5-brane in the vacuum, action (1) is
N � 1 supersymmetric, both in the five-dimensional
bulk space and on all four-dimensional fixed planes and
branes. The reason for this is that the dimensional reduc-
tion was carried out with respect to the supersymmetry
preserving Calabi-Yau threefold, and did not explicitly
involve the anti-M5-brane. However, as we now briefly
discuss, the anti-M5-brane does enter the dimensional
reduction of the theory to four dimensions, explicitly
breaking its N � 1 supersymmetry.

In [1], we described how the presence of an antibrane in
the bulk space of a heterotic M theory vacuum changes the
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warping in the extra dimensions. We showed that this
backreaction is manifested by a quadratic contribution to
the warping. It is interesting to note that this contribution
derives simply from the failure of the tensions of the
extended objects to sum to zero in the case where anti-
branes are present. This property of the source terms is
responsible for all of the major changes to the perturbative
theory. The only bulk fields involved in the generalized
domain wall solution including an antibrane are the metric
g��, the volume modulus V, and the Kähler moduli bk. We
take as our metric ansatz

 ds2
5 � a�x�; y�2g4���x

��dx�dx� � b�x�; y�2dy2: (6)

It turns out to be helpful to introduce a function which
encodes the standard linear warping functions of heterotic
M theory in a usefully normalized manner. It is given by

 h�p�k�z� �
Xp
q�0


�q�k �z� z�q�� �
1

2

XN�1

q�0


�q�k z�q��z�q� � 2�

� �k: (7)

The z which appears here is defined by z � y=��, where
�� is the reference length of the orbifold interval and y is
the coordinate of the fifth dimension. Each z�q� is the ��
normalized position modulus for the qth brane or anti-
brane. Note that the fixed planes are located at z�0� � 0
and z�N�1� � 1, respectively. In expression (7),

 �k �
1
2� �
k �

��k� � �
k: (8)

The quantity h�p�k has been defined so that its orbifold
average is zero. This property enables us to extract defini-
tions of the zero modes of the compactification which lead
to a four-dimensional action in a sensible form, without the
need to use field redefinitions.

Using these definitions and the equations of motion for
V and bk, we find the following nonsupersymmetric do-
main wall ansatz around which the theory will be reduced
to four dimensions. It is given by

 

a�p�
a0
� 1� 0

b0

3V0
bk0

�
h�p�k � �k

�
z2 �

1

3

��
; (9)

 

V�p�
V0
� 1� 20

b0

V0
bk0

�
h�p�k � �k

�
z2 �

1

3

��
; (10)

 

bk
�p� � bk0 � 20

b0

V0

��
hk
�p� �

1

3
h�p�lbk0b

l
0

�

�

�
�k �

1

3
�lb

k
0b

l
0

��
z2 �

1

3

��
; (11)

where

 0 � ��m (12)

with m defined in (3). The remaining notation is as ex-
plained earlier, with the one addition that the ‘‘0’’ subscript

on a0, b0, V0, and bk0 denotes quantities which are functions
of the four uncompactified coordinates only. It is these
functions that become the moduli when we dimensionally
reduce on this ansatz to obtain the effective four-
dimensional action. Note that we have not given an ex-
pression for the warping of the metric coefficient b. This is
because this y dependence can be removed by a coordinate
redefinition and, hence, does not enter the calculation of
the four-dimensional effective action.

We emphasize several points about this result which will
be important in this paper. First, the z independent factors
have been defined such that a0, b0, V0, and bk0 are simply
the orbifold averages of a, b, V, and bk, respectively. This
proves to be useful in performing the dimensional reduc-
tion around this configuration. Second, upon taking �k !
0 one recovers the conventional results for heterotic M
theory, given, for example, in [37]. In particular, the qua-
dratic pieces of the warping correctly disappear as we turn
the antibrane into an M5 brane in this manner. Note that in
each of the above expressions the warping occurs with the
same multiplicative factor, specifically 0

b0

V0
. In [1,38], it

was shown that the four-dimensional effective theory is an
expansion in the parameters S and R given by

 S � �
�
�11

4�

�
2=3 2��

v2=3

b0

V0
; R �

v1=6

��
V1=2

0

b0
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The first of these is the ‘‘strong coupling’’ parameter which
specifies the size of the warping in the orbifold dimension.
The second term is the expansion parameter which controls
the size of the Calabi-Yau Kaluza-Klein modes. Using (3)
and (12), we see that

 S � 0
b0

V0
; (14)

as it should be.
Further results from [1] will be reproduced as and when

required in the following sections.

III. FLUX IN SUPERSYMMETRIC HETEROTIC M
THEORY

In this section, we review the subject of flux in super-
symmetric Calabi-Yau compactifications of heterotic M
theory. Initially, we will consider heterotic theory from
an 11-dimensional perspective so that a complete under-
standing is obtained of all of the different fluxes present,
including those whose nature is somewhat obscured by the
five-dimensional description. Later on in this section, how-
ever, having gained this understanding, we revert to the
five-dimensional picture which is technically more conve-
nient for the discussion of the addition of antibranes. The
full 11-dimensional M theory indices will be denoted by
I; J; K; . . . � 0; . . . ; 9; 11, whereas ten-dimensional indices
orthogonal to the orbifold direction y are written as
�I; �J; �K; . . . � 0; . . . ; 9. Furthermore, the six-dimensional
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real coordinates on the Calabi-Yau manifold (CY3) will be
specified by A;B;C; . . . � 4; . . . ; 9. The associated holo-
morphic and antiholomorphic complex coordinates on the
threefold are then written as a; b; c; . . . � 1; 2; 3 and
�a; �b; �c; . . . � 1; 2; 3, respectively. Finally, the indices
î; ĵ; k̂; . . . � 4; . . . ; 9; 11 run over both the CY3 and orbifold
directions. The material on the nonzero mode of heterotic
M theory reviewed here was first presented in [38–41].

A. The components of G relevant to stable vacua

Let us find the components of the 11-dimensional back-
ground four-form flux GIJKL that can be nonvanishing in a
realistic, stable vacuum. To begin, note that there are three
possible types of index structure for the four-form G.

(1) One or more 4D indices: The possibilities are
G����, G���î, G��î ĵ, and G�î ĵ k̂.

(a) G���î, G��î ĵ, and G�î ĵ k̂ all obviously break
maximal space-time symmetry in four dimen-
sions (that is, Poincaré, de Sitter, or anti-de
Sitter symmetry) if present in the vacuum. As
such, they are not relevant for a discussion of
realistic stabilized vacua and will be set to
zero.

(b) A priori, G���� could have an expectation
value proportional to the four-dimensional
volume element without breaking maximal
space-time symmetry. However, G is intrinsi-
cally odd under the Hořava-Witten Z2 and so,
sinceG���� has no y index, this component is
also odd under the orbifolding. Given this, if
nonzero, G���� must jump at the orbifold
fixed planes. Were there to be such a discon-
tinuity, the exterior derivative �dG�y����
would be a delta function at each fixed plane
and, hence, require charges of the appropriate
index for global consistency. On the fixed
planes we have two options, either an �F ^
F����� or �R ^ R����� source. However, giv-
ing an expectation value to a four-
dimensional vector gauge field clearly breaks
our requirement of maximal space-time sym-
metry. Furthermore, it turns out that �R ^
R����� for a space of maximal space-time
symmetry vanishes. Therefore, a purely ex-
ternal component of the four-form in a real-
istic, stable vacuum must also be chosen to be
zero. We conclude that, if they are to be
nonvanishing, all indices of G must lie on
the internal seven-orbifold.

(2) All indices on the CY3: Written in terms of the
complex coordinates on the CY3, there are three
possible index structures for the GABCD compo-
nents; Gabc �d, G �a �b �c d, and Ga �bc �d. Since G is intrinsi-
cally odd and GABCD has no y index, all of these

components are odd under the Z2 orbifolding.
(3) One index on the orbifold and the rest on the CY3: In

this case there are four possible complex index
structures, Gabcy, G �a �b �c y and Gab �cy, G �a �b cy, for the
GABCy components. All of these are, however, even
under the Z2 due to the y index which they carry.

In summary, if we are interested in stable vacua of
heterotic M theory with maximal space-time symmetry,
we need only consider four-form fluxes with all indices
internal to the compactification seven-orbifold. Of these,
the GABCD are odd and the GABCy even under the Z2 action.

B. The Bianchi identity and its sources

The components of G are constrained by the require-
ment of anomaly freedom to satisfy the Bianchi identity of
11-dimensional heterotic M theory withN bulk M5 branes.
It follows from the above discussion that the nonvanishing
components of G are contained in the seven-dimensional
restriction of this identity given by
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The four-form charges localized on the orbifold fixed
planes and bulk M5 branes in this expression are
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respectively, where ��C�p�2 � is a delta-function four-form
localized on the curve C�p�2 wrapped by the pth M5 brane.
For any two-form �, we have

R
CY3

� ^ ��C�p�2 � �
R
C�p�2
�.

Note that since d�dG� � 0, it follows that the sources J�p�,
p � 0; . . . ; N � 1 are closed four-forms on the CY3.

Integrability conditions arise from the Bianchi identity
by integrating both sides of expression (15) over closed
five-cycles. Since the components of the Bianchi identity
have a y index, one of the dimensions of the cycle must be
the orbifold direction. The remaining dimensions form
some closed four-cycle in the Calabi-Yau threefold. The
left-hand side of (15), being exact, gives zero upon inte-
gration, whereas each term on the right-hand side becomes
a topological invariant. We thus obtain the well-known
cohomology condition of heterotic M theory for each
choice of four-cycle C4,
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1

16�2
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1
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The physical interpretation of this condition is simply that
the sum of the charges on the compact space must vanish
since there is nowhere for the ‘‘field lines’’ to go.

One can expand the charges (16) in terms of the eigen-
modes of the Laplacian on the CY3 [38]. Consider the two-
forms satisfying the eigenmode equation

 4!hmiAB � �	
2
hmi!hmiAB; (18)

where 4 is the Laplacian and the index hmi labels the
eigenmode on the threefold with eigenvalue �	2

hmi. Note
that eigenmodes with different values of hmi may have
identical eigenvalues. For example, consider the number of
two-form eigenmodes with 	2

hmi � 0, that is, the zero
modes of 4. Since by definition these two-forms are
harmonic, there are dimH2�X� � dimH�1;1� of them. We
will denote these harmonic modes by !k, where k �
1; . . . ; h1;1. Note that eigenmodes corresponding to a non-
vanishing eigenvalue �	2

hmi � 0 are neither harmonic nor,
in general, closed forms. The metric on the space of
eigenmodes,

 Ghmihni �
1

2v

Z
CY3

!hmi ^ C	Y3!hni; (19)

where C	Y3 is the Poincaré duality operator on the CY3,
and is used to raise and lower hmi-type indices.

Each of the four-form charges J�p�, p � 0; . . . ; N � 1 in
(16) can then be expanded as

 C	Y3J
�p� �

1

2v2=3

X
hmi

��p�
hmi!

hmi: (20)

Using metric (19), it follows that

 ��p�
hmi �

1

v1=3

Z
CY3

!hmi ^ J
�p�: (21)

In particular, for the coefficients ��p�k corresponding to the
zero modes one finds

 ��p�k �
Z
C4k

J�p�; (22)

where C4k, k � 1; . . . ; h1;1 are the four-cycles dual to the
harmonic (1, 1) forms !k. It then follows from the coho-
mology condition (17) that

 

XN�1

p�0

��p�k � 0 (23)

for each integer k. In general, as indicated in (20), the four-
form charges in (15) are built out of both harmonic and

nonharmonic modes on the CY3. There is no similar con-
dition on the sum of the coefficients of the nonharmonic
components of the charges.

The closed four-form charges in heterotic M theory have
a definite index structure in terms of the complex structure
of CY3. The gauge field in a supersymmetric compactifi-
cation is obtained by solving the killing spinor equations
for the gauginos—the so-called Hermitian Yang-Mills
equations [42]. This results in a field strength which is a
(1, 1) form. Thus F ^ F is a (2, 2) form. For the Ricci flat
metric on a CY3, R ^ R is similarly a (2, 2) form. Finally,
solving the killing spinor equations for the world volume
fermions on the bulk five-branes tells us that these object
wrap holomorphic curves. This implies that the J�p� four-
form charges of the bulk branes are also (2, 2) forms, via
the definition given in, and underneath, Eq. (16). It follows
that, written in terms of complex indices, Bianchi identity
(15) decomposes into two conditions given by

 �dG�ya �bc �d � 4�
�
�11

4�

�
2=3
�
��y�J�0� � ��y� ���J�N�1�

�
1

2

XN
p�1

J�p����y� y�p�� � ��y� y�p���
�
a �bc �d

(24)

and

 �dG�abc �dy � 0 (25)

and its Hermitian conjugate, respectively.
In summary, in complex coordinates we have two com-

ponents of the Bianchi identity (15). The first of these, (24),
contains closed (2, 2) form charges which are, in general,
composed of a series of harmonic and nonharmonic modes
on the CY3. The coefficients of the harmonic modes in the
expansion of these charges sum to zero, as shown in
Eq. (23). The remaining component of the Bianchi identity,
given in (25), has vanishing sources. We now turn to the
solutions to these two constraints.

C. Solving for the background flux

1. The nonzero mode

Let us begin by considering the first constraint, Eq. (24).
Expanding the left-hand side in components yields
@yGa �bc �d � 2@�aGj �bjc� �dy � 2@� �bGjacj �d�y. Recall from
subsection III B that the source terms in the Bianchi iden-
tity all involve delta functions with y in the argument. It
follows that the sources on the right-hand side of (24) can
only be obtained from a nonsingular, if discontinuous,G as
a y-derivative of Ga �bc �d. We now solve for the (2, 2)
component of G that saturates these charges.

The standard approach to finding this component is to
restrict attention to the harmonic modes in the expansion of
the charges (20). This is justified by the fact [38] that the
effects of the nonharmonic modes are suppressed relative
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to those of the harmonic ones by powers of the parameter
R. A solution to the Bianchi identity (24) in this approxi-
mation is given by having a nonzero expectation value for
Ga �bc �d which jumps at each extended object by an amount
proportional to that objects charge and is constant in y
everywhere else. These requirements are satisfied by

 G�nzm�
a �bc �d

� �
1

V1=3

Xh1;1

k�1

�k�y��
	CY3!k�� �bc �d; (26)

where
 

�k�y� �
2�

v2=3

�
�11

4�

�
2=3
�
��0�k ��y� � �

�N�1�
k ��y� ���

�
XN
p�1

��p�k ���y� y�p�� � ��y� y�p���
�
: (27)

Taking the y-derivative of this expression exactly reprodu-
ces the charges on the right-hand side of (24) in the
harmonic mode approximation. Note that G�nzm�

a �bc �d
in (26)

is a closed (2, 2) form on the CY3.
Now consider the (1, 2) and (2, 1) components of G,

G �bc �dy, and Gac �dy, respectively, within the harmonic ap-
proximation. For values of y in the bulk space, that is,
away from the extended sources, identity (24) becomes

 @yG
�nzm�
a �bc �d

� 2@�aGj �bjc� �dy � 2@� �bGjacj �d�y � 0: (28)

Since G�nzm�
a �bc �d

in (26) is constant between the sources, it

follows that @yG
�nzm�
a �bc �d

� 0 in (28) and, hence,

 2@�aGj �bjc� �dy � 2@� �bGjacj �d�y 
 �d
CY3G�a �bc �dy � 0; (29)

where dCY3 is the exterior derivative operator on the CY3.
Nontrivial solutions to Eq. (29) are both possible and
important, and we will discuss them in detail in the follow-
ing subsection. Here, however, we simply note that, in the
harmonic approximation to the sources, the nonvanishing
component G�nzm�

a �bc �d
is sufficient to satisfy the identity (24)

everywhere in the orbifold interval, both at each extended
source and in the bulk space.

We now examine the second constraint equation, given
in (25). In components, this becomes

 @yGabc �d � 3@�aGbc� �dy � @ �dGabcy � 0: (30)

As discussed previously, the (3, 1) component Gabc �d is odd
under the Z2 orbifolding. It follows that, if nonvanishing,
this component would require source charges on the right-
hand side of (30). Since none exist, we must set

 Gabc �d � 0: (31)

Equation (30) then becomes

 3@�aGbc� �dy � @ �dGabcy 
 �d
CY3G�abc �dy � 0: (32)

Combining (32) with (29) and their complex conjugates,
we see that the (2, 1) and (3, 0) components of G, Gbc �dy,
and Gabcy, respectively, and their conjugates are the com-

ponents of a closed three-form on the CY3. Again, these
closed forms are important, and will be discussed in detail
in the next subsection. Here, however, we simply note that
setting them to zero is sufficient to satisfy the Bianchi
identity (24) and (25).
G�nzm�
a �bc �d

in Eq. (26) is the famous nonzero mode of heter-
otic M theory—hence our choice of labeling superscript.
The fact that, in the harmonic approximation, there is no
GABCy component to the expectation value, together with
the lack of bulk y dependence of the nonzero mode, means
that if we compactify the 11-dimensional theory down to
five dimensions we will obtain an action in the bulk,
between any two extended objects, which does not depend
explicitly on y. This structure is the basis for the very
existence of 5D heterotic M theory [41]. In the low energy
limit, heterotic M theory further reduces to an effective,
four-dimensional, N � 1 supersymmetric theory. It is
well known that the harmonic part of the nonzero mode
does not give rise to a potential in four dimensions. This
has been shown many times by explicit dimensional re-
duction. The 4D superpotential contribution due to flux in
heterotic M theory takes the Gukov-Vafa-Witten form

 WGVW /
Z
M7

� ^G: (33)

Here � is the holomorphic three-form on the CY3. It is
obvious that if we substitute G�nzm�

a �bc �d
into this expression we

get zero, since neither the flux nor � carry a y index. Note
that this will continue to be the case for G�nzm�

a �bc �d
even when

nonharmonic modes are included.
Thus far, we have solved for the nonzero mode of

heterotic M theory in the approximation that the charges
C	Y3J

�p�, p � 0; . . . ; N � 1 in (24) are harmonic (2, 2)
forms. In the remainder of this subsection, we generalize
these results to include the effects of the nonharmonic
contributions to the charges. To balance the delta function
on the right-hand side of (24), one still requires the field G
to jump as it crosses each extended object in the y direc-
tion. Even including the nonharmonic components of the
charges, all of the four-forms on the right-hand side of (24)
have a (2, 2) index structure. Hence, it is the (2, 2) compo-
nent of the four-form field strength which must jump at the
extended sources, as it did in the harmonic approximation
(26). However, recall that while the sum of the harmonic
contributions to the charges is zero, Eq. (23), the same is
not true for the nonharmonic modes. Because of this, when
the nonharmonic modes are included, it no longer suffices
to simply have the (2, 2) component of G jump at the
extended objects and be constant everywhere else. It was
shown in [38] that to globally obey all of the boundary
conditions, the G�nzm�

a �bc �d
component of the four-form has to

evolve in y in the bulk space so that it may undergo the
correct jump at each charged object.

This observation has implications for the (1, 2) and (2, 1)
forms, G �bc �dy and Gac �dy. In between the extended sources,
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identity (24) is given by Eq. (28). Clearly, if G�nzm�
a �bc �d

is a
nonconstant function of y in the bulk, we require non-
vanishing G �bc �dy and Gac �dy components which are not
closed on the CY3. These components of G, which we
denote by G�nzm��bc �dy

and G�nzm�
ac �dy

, respectively, correspond in

the ten-dimensional theory to the H flux resulting from a
nonstandard embedding. The details of the solution of the
Bianchi identity (24) and the equations of motion for the
case where nonharmonic modes are included can be found
in [38]. The explicit functional form of G�nzm�

a �bc �d
, G�nzm��bc �dy

, and

G�nzm�
ac �dy

, including their exact y-dependence, is given in that

paper. The expressions are somewhat large and, since no
additional information beyond the comments made above
are required in this paper, we will not reproduce them here.

Can the new G�nzm��bc �dy
and G�nzm�

ac �dy
components of the non-

zero mode now give rise to a contribution to the heterotic
M theory 4D superpotential: WGVW �

R
M7

� ^G? Since
these forms have a y index, they can at least saturate the
interval part of the integral. However, recall that these
components are (1, 2) and (2, 1) forms on the CY3, re-
spectively. Since � is a holomorphic (3, 0) form, such flux
cannot give a nonvanishing contribution to the Gukov-
Vafa-Witten expression for the superpotential. In addition
to the argument presented here, based upon previous mi-
croscopic derivations of the superpotential, valid to some
order in the expansions of heterotic M theory, there are a
variety of macroscopic arguments based upon nonrenorm-
alization theorems of [42– 44]. These say that the nonzero
mode, including its nonharmonic pieces, should never
contribute to the superpotential of supersymmetric heter-
otic M theory at any order.

2. Harmonic flux

The G�nzm�
a �bc �d

and G�nzm��bc �dy
, G�nzm�

ac �dy
forms comprising the

nonzero mode are not the most general solution to the
Bianchi identity (24) and (25), and the equations of motion.
Recall that the components of G�nzm� with a y index, when
evaluated using both harmonic and nonharmonic contribu-
tions to the charges, are not closed on the CY3. As dis-
cussed above, one may add to G any closed forms with
index structure

 Ga �b �c y; G �abcy; Gabcy; G �a �b �c y; (34)

that is, any element of dimH3�X� � dimH1;2 � dimH2;1 �
dimH3;0 � dimH0;3, and still satisfy the Bianchi identity.
By choosing these forms to be not just closed but also
harmonic in seven dimensions, they continue to satisfy the
equations of motion. For this to be the case, one must
choose the harmonic representative in each CY3 cohomol-
ogy class and restrict these to be constant in y. We denote
this harmonic flux contribution to G by GH. That is, the
components of GH are the y-independent harmonic repre-

sentatives of the 2�h2;1 � 1�-dimensional cohomology
space H3�X�. It is these closed forms that we will refer to
as the flux contributions to heterotic vacua.

This GH contribution to G does give rise to a super-
potential in the four-dimensional theory; specifically, for
the complex structure moduli of the CY3. We will repro-
duce the derivation of this, and present, for the first time, its
extension to the case where antibranes are present, in the
next section. For now, we simply note that the harmonic
flux includes a (0, 3) form component G �a �b �c y, which can
give a nonzero contribution to a superpotential WGVW /R
M7

� ^G when combined with the holomorphic (3, 0)
form �. The reader should not think that the above index
structure considerations imply that only one of the 2�h2;1 �
1� flux parameters, that corresponding to the H0;3 compo-
nent, contributes to the superpotential. The superpotential
depends, in general, on the complex structure moduli. As
these change their values, the component of the flux which
corresponds to the ‘‘(0, 3)’’ piece also changes. For ex-
ample, as is well known and will be shown again below, in
the large complex structure limit
 

Wflux �

���
2
p

�2
4

0
v1=6

����2

�
1

6
~dab czazbzcn0 �

1

2
~dabczazbnc

� zana � n0

�
: (35)

Here n0, n0, na, and na are the flux parameters and the ~d are
the intersection numbers on the mirror CY3. For any given
value of the complex structure fields za, we obtain a super-
potential depending upon a single combination of the
parameters. However, as the za change, the combination
of parameters which appears in the above expression also
changes. The superpotential then, as a function on field
space, depends on all 2�h2;1 � 1� parameters. Henceforth,
we will label the GH contribution to the Gukov-Vafa-
Witten 4D superpotential as Wflux.

3. Flux quantization and the derivation of the 4D
potential

To summarize: within the context of supersymmetric
heterotic M theory we have considered two contributions
to the vacuum expectation value of G. The first is the
nonzero mode G�nzm�

a �bc �d
and G�nzm��bc �dy

, G�nzm�
ac �dy

; that is, the

form-flux sourced by the extended objects in the theory.
The nonzero mode is, in general, composed of both har-
monic and nonharmonic modes on the CY3. The second
contribution to Gwe refer to as the harmonic fluxGH. This
is a ‘‘free field’’ background flux which is composed ex-
clusively of the 2�h2;1 � 1� harmonic forms Ga �b �c y, G �abcy,
Gabcy, G �a �b �c y on the internal manifold. Of these two con-
tributions to G, only the harmonic flux gives rise to a
superpotential, and so a potential, in four dimensions. In
this section, we show that the 2�h2;1 � 1� forms in GH are
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quantized and derive the four-dimensional potential which
the harmonic flux gives rise to.

As shown in [45,46] and generalized here, the four-form
vacuum expectation value G obeys a quantization condi-
tion derived by demanding that the supermembrane path
integral be well defined in the background under consid-
eration. This condition is found to be
 �

4�
�11

�
2=3 Z

C4

G
2�
�
Z
C4

	
2
�

1

16�2

X2

i�1

Z
@C�i�4

!YM�i�

�
XN
p�1

Z
C4

!�p�3 ���y� y
�p��� � n; (36)

where C4 is any four-cycle in M7 and n is an arbitrary
integer. The four-form 	 is half of the first Pontryagin class
of the compactification manifold. It is associated with the
form 1

16�2 R ^ R and locally can be written as 	 � d!L,
where !L is the Lorentz Chern-Simon three-form.
Similarly, !YM�i� is the Yang-Mills Chern-Simon term on
the ith orbifold fixed plane and the three-form !�p�3 is
defined locally by d!�p�3 � J�p� on the pth M5 brane.

We begin by choosing the cycle C4 to lie entirely in the
CY3. Since such a cycle has no boundary in the Calabi-Yau
threefold and no component in the orbifold y direction, it
follows that condition (36) simplifies to

 

�
4�
�11

�
2=3 Z

C4

G
2�
�
Z
C4

	
2
� n: (37)

Recall that the G�nzm�
a �bc �d

component of the nonzero mode is
the only background component ofGwith all indices in the
CY3. Fixing the Pontryagin class of the CY3, we conclude
that G�nzm�

a �bc �d
is quantized as in (37).

Now choose the cycle C4 in (36) to be composed of a
three-cycle in the CY3 and a component in the y direction.
Clearly this singles out the G�nzm��bc �dy

and G�nzm�
ac �dy

components

of the nonzero mode, as well as the harmonic formsGa �b �c y,
G �abcy, Gabcy, and G �a �b �c y. First consider the nonzero mode

G�nzm��bc �dy
, G�nzm�

ac �dy
. As was shown in [46,47], Bianchi identity

(15) guarantees that these two components satisfy

 

�
4�
�11

�
2=3 Z

C4

G
2�
� �

Z
C4

	
2
�

1

16�2

X2

i�1

Z
@C�i�4

!YM�i�

�
XN
p�1

Z
C4

!�p�3 ���y� y
�p���: (38)

That is, for fixed background CY3 and Yang-Mills gauge
connection the nonzero mode components G�nzm��bc �dy

and

G�nzm�
ac �dy

are determined and cancel out of quantization con-

dition (36). This condition now simplifies to

 

�
4�
�11

�
2=3 Z

C4

GH

2�
� n: (39)

A more explicit expression for the quantization of the
harmonic flux GH can be found by expanding its compo-
nents (34) in terms of the a basis of the associated coho-
mology groups. Specifically, let �A and�B be a basis of the
cohomologyH2;1 �H3;0 andH1;2 �H0;3 of the Calabi-Yau
threefold. Written, for simplicity, in terms of the real
indices on the CY3, one has

 GABCy � X
A
y�AABC � ~XyB�

B
ABC: (40)

By definition, as was discussed explicitly in [37], these
coefficients are related to the fields �A and ~�B in the five-
dimensional theory through the y-component of their field
strengths

 X A 
 X
A
y � @y�A; ~XB 


~XBy � @y ~�B: (41)

In our application, we must take

 X A � constant; ~XB � constant (42)

in order for the associated GABCy to be harmonic in the
seven-dimensional sense.

Inserting expression (40) into condition (39) gives rise to
the quantization of the 2�h2;1 � 1� constants in Eq. (42)
when one integrates over the appropriate cycles. Let us
define the three-cycles aA and bB in the Calabi-Yau three-
fold by

 

Z
X
�B ^ �A � v1=2

Z
aA
�B � v�AB;Z

X
�A ^ �B � v1=2

Z
bB
�A � �v�AB;

Z
aA
�B � 0;

Z
bB
�A � 0:

(43)

They form a basis for the homologyH1;2 �H0;3 andH2;1 �
H3;0 which is dual to �A and�B. First consider a four-cycle
C4 composed of three-cycle aA and the orbifold direction.
When the harmonic component of the flux given in
Eq. (40) is integrated over this four-cycle, condition (39)
becomes, using (43),

 

�
4�
�11

�
2=3 Z

aA

XB�B��

2�
� nA: (44)

Referring to (43) again to perform the final integral, as well
as to the definitions in Eqs. (3) and (12), we find that

 

1

0

����2

v1=6
XA � nA: (45)

Here the nA’s are arbitrary integers for each A. A similar
calculation, where the aA part of the four-cycle is replaced
by bB, demonstrates that the ~X’s are quantized in a similar
manner. That is,
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1

0

����2

v1=6
~XB � nB; (46)

where the nB are arbitrary integers for each B.
Let us now consider the dimensional reduction from the

five- to the four-dimensional supersymmetric theory in-
cluding this quantized flux, using the methods introduced
in [1]. The starting point is the five-dimensional action
given in (1) with N M5-branes but no anti-M5-branes. We
see from (1) that there are only two terms in the five-
dimensional action which contain the scalar fields �A and
~�B. These are

 

�
1

2�2
5

Z
d5x

�������
�g
p

��V�1� ~X�B � �MBC�z�X
C
��

� ��Im�M�z����1�BA� ~X�A �MAD�z�X
D
� ��

�
1

2�2
5

Z
�2G ^ ��A ~XA � ~�AX

A��: (47)

To find the terms in the four-dimensional theory which
depend on the fluxes, therefore, it suffices to study the
dimensional reduction of these two terms. The quantiza-
tion conditions (45) and (46) show that the fluxes them-
selves are already first order in the �2=3

11 expansion. This
makes the first term in (47) second order in this expansion.
In counting these orders, one should ignore, as usual [48],
the overall prefactor of the action proportional to ��2

11 .
Explicit calculation reveals that the terms involving flux
in the second component of (47) will also be at least second
order in �2=3

11 and, even at this order, contain at least one
four-dimensional derivative. Since we are interested here
in obtaining potential energy terms only, we discard these
contributions henceforth.

A straightforward dimensional reduction of the first term
of Eq. (47), using the reduction ansatz described in [1,49],
gives the following as the flux-dependent contribution to
the potential energy in four dimensions.

 �
1

2�2
4

Z
d4x

����������
�g4
p

�
�

1

b3
0V0

� ~XA � �MAB�z�X
B�

� ��Im�M�z����1�AC� ~XC �MCD�z�X
D�

�
: (48)

Here �4 is the four-dimensional Planck constant defined by
�2

4 � �2
5=��, and X, ~X are the quantized quantities de-

scribed in (45) and (46). An examination of the parameters
appearing in this action, and the quantized quantities
therein, reveals that these terms are of order 2

S
2
R. The

fact that they are already second order in the strong cou-
pling parameter S, means that we will not consider higher
order corrections to this flux potential arising from the
warping. Such contributions are small and beyond the
order to which we calculate the four-dimensional effective
theory in this paper.

It is well known that flux potentials in supersymmetric
theories should be derivable from a Gukov-Vafa-Witten

type superpotential of the form

 Wflux �

���
2
p

�2
4

1

��v1=2

Z
X�S1=Z2

� ^G: (49)

Substituting (40) into this expression gives

 Wflux �

���
2
p

�2
4

�XAGA �
~XBZ

B�; (50)

where the complex structure moduli space is parametrized
by the periods �ZB;GA�Z�� defined as1

 Z B �
Z
aB

�; GA�Z� �
Z
bA

�: (51)

It is now necessary to show that the term (48) in the four-
dimensional action is actually of this form. Applying the
usual supergravity formalism, using the Kähler potential
found in [1] and reproduced in (A3) of Appendix A, we
find that this is indeed the case. However, we postpone a
proof of this until the next section and Appendix B, where
we also include anti-M5-branes. Here, instead, we will
assume that (49) is the correct four-dimensional flux super-
potential and use (50) and (51) to calculate its explicit form
in terms of the affine complex coordinates za in the large
complex structure limit.

We proceed as follows. It is a well-known fact (follow-
ing from an examination of the large Kähler modulus limit
of the mirror compactification) that the prepotential, G,
takes the following form in the large complex structure
limit:

 G � �
1

6

~dab cZ
aZbZc

Z0 : (52)

Note here we are splitting up the index A into an index a
and the remaining possible value 0. Substituting this ex-
pression into (50) we find the following:
 

Wflux �

���
2
p

�2
4

�
1

6

~dab cZ
aZbZc

�Z0�2
X0 �

1

2

~dab cZ
aZb

Z0 Xc

� ~XaZ
a � ~X0Z

0

�
: (53)

We now use the definition of the affine coordinates, za �
Za

Z0 . We also use the scale invariance of the physical theory
under rescalings of the homogeneous coordinates Z to set
Z0 to 1.
 

Wflux �

���
2
p

�2
4

�
1

6
~dabcz

azbzcX0 �
1

2
~dab cz

azbXc

� ~Xaza � ~X0

�
: (54)

1Note that the ZB denote a set of projective coordinates on the
complex structure moduli space. One can obtain a set of affine
coordinates by the usual procedure of picking one nonvanishing
homogeneous coordinate and dividing the others with respect to
it: that is, za � Za=Z0, a � 1; . . . ; h2;1 when Z0 is not zero. It is
this set of affine coordinates that appears in action (1).
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Using Eqs. (45) and (46) we obtain, finally, (35) which we
repeat here:

 

Wflux �

���
2
p

�2
4

0
v1=6

����2

�
1

6
~dab czazbzcn0 �

1

2
~dab czazbnc

� zana � n0

�
: (55)

The results in this section were derived implicitly as-
suming two important constraints on the magnitude of the
G-form expectation values. The first of these concerns the
value of the nonzero mode, G�nzm�

a �bc �d
. The smallness of the S

and R parameters ensures that the backreaction of this flux
is adequately described by the warping it induces along the
orbifold direction. Hence, one can continue to perform the
analysis on a Calabi-Yau threefold, despite the presence of
this component of the background flux, although the ge-
ometry of this space does change along the orbifold direc-
tion. This assumption is standard in the discussion of all
strong coupling heterotic vacua. The second assumption
concerns the magnitude of the G-flux corresponding to the
various nonvanishing GABCy harmonic components. For
these components, we are making the standard ‘‘weak
flux’’ approximation. That is, we assume that, despite the
presence of these G-fluxes, one can still compactify on a
Calabi-Yau threefold and does not require a more general
manifold of SU�3� structure. This approximation is par-
ticularly easy to control from the point of view of the five-
dimensional theory. The fluxes are expectation values of
the y-derivative of certain five-dimensional moduli. Thus,
the Calabi-Yau approximation is valid whenever the five-
dimensional y-derivatives of the associated moduli are
small compared to the Calabi-Yau compactification scale.
This will be the case whenever the number of units of flux
is chosen to be sufficiently small and the moduli take
appropriate values.

Finally, one may ask about the effect of the diffuse
source of curvature, which the flux represents, on the
bulk warping. The above discussion makes it clear that,
for the case where we have a small number of units of flux
quanta, this warping modification can only come in at
second order in S. This, as was explained in [1], is at a
higher order than is needed to calculate the action of the
theory to the orders we consider here. Therefore, we can
consistently neglect this contribution to the warping.2

Having completed our review of flux in supersymmetric
heterotic M theory let us now proceed to examine how the
above discussion changes in the presence of antibranes.

IV. FLUX IN HETEROTIC M THEORY WITH
ANTIBRANES

In this section, the explicit contributions of flux to the
four-dimensional effective action of heterotic M theory
with anti-M5-branes will be derived. As in the previous
section, we find it most transparent to begin the discussion
in the 11-dimensional context. The role of flux in five and
four dimensions is then derived by dimensional reduction.
The exposition is similar to that given in the supersym-
metric case. Hence, we use Sec. III as a template, explicitly
showing how anti-M5-branes alter the conclusions therein.
As discussed in Sec. II, we will assume there are N � 1
M5-branes and a single anti-M5-brane indexed by ( �p) in
the bulk space. The extension of these results to an arbi-
trary number of antibranes is straightforward.

To begin, note that the discussion of the components of
background four-form flux G that are relevant to stable
vacua with maximal space-time symmetry,
Subsection III A, is unchanged by the addition of anti-
branes. However, an anti-M5-brane located in the bulk
space does alter the Bianchi identity and its sources dis-
cussed in Subsection III B. Consider Bianchi identity (15).
The right-hand side is sourced by the four-form charges
localized on the orbifold fixed planes and N M5-branes
given in (16). In the case of N � 1 M5-branes and a single
anti-M5-brane, the form of expression (15) remains un-
changed. However, the sum on the right-hand side now
includes an anti-M5-brane charge J� �p�. The charges on the
two orbifold planes and the N � 1 M5-branes given in (16)
remain unchanged. However, the anti-M5-brane four-form
charge is given by

 J� �p� � ���C� �p�2 �: (56)

Note that C� �p�2 remains a holomorphic curve on which the
anti-M5-brane is wrapped, the reverse orientation of the
brane being expressed by the minus sign. As with all the
other four-forms in (16), J� �p� is closed on the CY3. With the
proviso that J� �p� be given by (56) rather than the last line in
(16), every expression and conclusion of Subsection III B
remains unchanged.

A. The nonzero mode

Now reconsider Subsection III C, where we solve for the
background flux, in the presence of an anti-M5-brane. Let
us begin with the nonzero mode discussed in
Subsection III C 1. As above, all expressions and equations
in this subsection remain unchanged with the proviso that
J� �p� be given by (56) everywhere. Be that as it may, the
physical conclusions for the four-dimensional theory
change dramatically. To see this, first consider the har-
monic approximation to the nonzero mode given in (26)
and (27), where, now, ��k � �� �p�k is defined by expressions
(22) and (56). It was stated in [1] that, when the 11-
dimensional theory is dimensionally reduced on the CY3

2It is interesting to note that this correction to the warping is of
the same size as the potential term we are keeping. This is
consistent because of the normalization we choose for our
moduli fields. This normalization ensures that the correction to
the action, which comes from terms linear in this warping,
vanishes and only the quadratic and higher contributions are
present.
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in the background of this nonzero mode, the effective five-
dimensional theory is given by the action in Eq. (1). As
discussed in Sec. II, theN � 1 M5-branes and the anti-M5-
brane contributions to the nonzero mode enter action (1)
through the coefficients ��p�k which appear in �̂k, nk�p�, and
j�p��. It is important to note that despite the appearance of
an anti-M5-brane in the vacuum, action (1) is N � 1
supersymmetric, both in the five-dimensional bulk space
and on all four-dimensional fixed planes and branes. The
reason for this is that the dimensional reduction was carried
out with respect to the supersymmetry preserving Calabi-
Yau threefold, and did not explicitly involve the anti-M5-
brane. However, as discussed in [1] and Sec. II of this
paper, the dimensional reduction to four dimensions does
involve the anti-M5-brane. Hence, one expects the four-
dimensional effective action to explicitly break N � 1
supersymmetry. This is indeed the case, as was shown in
[1]. Remarkably, the effect of the antibrane was found to
appear in only two specific places in the action, to the order
at which we calculate. First, the four-dimensional theory
exhibits a potential energy for the moduli. Second, the
kinetic energy functions for the gauge fields, specifically,

the coupling of their field strengths to moduli, is modified
to include nonholomorphic terms. Both of these effects
explicitly break supersymmetry and both vanish if the
anti-M5-brane is removed from the theory. In this section,
we will discuss the first of these, that is, the supersymmetry
breaking potential energy. We defer the discussion of the
modified gauge couplings to the following section on
gaugino condensation, where it becomes relevant.

The explicit form of the supersymmetry breaking mod-
uli potential energy for an arbitrary number of Kähler and
complex structure moduli, N � 1 M5-branes and one anti
M5-brane was given in Sec. 5 of [1]. The potential, written
in terms of the complex scalar components of the moduli
superfields, was found to be

 V � V 1 �V 2; (57)

where

 V 1 �
0�

�2
4

����2
�Tk � �Tk��ke

�2
4�KT�KD� (58)

and

 V 2 � ��2
4

2
0

����2
e�

2
4�KT�2KD�K �kl

T �l

�X�p�1

p�0


�p�k
Z� �p� � �Z� �p�

�
m�T
m � �Tm�

�
XN�1

p� �p�1


�p�k
Z� �p� � �Z� �p�

�
m�T
m � �Tm�

�
X�p�1

p�0


�p�k
Z�p� � �Z�p�


�p�m �Tm � �Tm�

�
XN�1

p� �p�1


�p�k
Z�p� � �Z�p�


�p�m �Tm � �Tm�
�

XN�1

p�0


�p�k

�
1�

Z�p� � �Z�p�


�p�m �Tm � �Tm�

� Z�p� � �Z�p�


�p�n �Tn � �Tn�
�

2

3
�k

�
(59)

are the �2=3
11 and �4=3

11 contributions, respectively. The com-
plex scalar fields Tk, k � 1; . . . ; h1;1 and Z�p�, p �
0; . . . ; �p; . . . ; N � 1, corresponding to the Kähler moduli
and the location moduli of the M5-branes and anti-M5-
brane, respectively, are defined, along with the complex
dilaton scalar S, in Eq. (A1) of Appendix A. Similarly, the
Kähler potentials KT and KD are given in (A4) of that
appendix. The key point is that both contributions (58) and
(59) to V are proportional to the anti-M5-brane tension

 �k �
1
2� �
k �

��k� � �
k; (60)

where we have used the notation, introduced earlier, that
�
k � 
� �p�k and ��k � �� �p�k . Hence, the nonvanishing of this
potential is due entirely to the existence of the anti-M5-
brane. We conclude that when sourced by an anti-M5-
brane, the harmonic contribution to the nonzero mode
G�nzm�
a �bc �d

, together with a series of other contributions such
as the sum of the tensions of the extended objects, does
induce a nonvanishing supersymmetry breaking potential
energy in the four-dimensional theory.

Were the anti-M5-brane to be removed and replaced by
an M5-brane, all �k ! 0 and, hence, V would vanish. This
result is completely consistent with the statement given in
Subsection III C 1 that in the supersymmetric case with no

anti-M5-brane, the nonzero mode component G�nzm�
a �bc �d

can-
not contribute to the Gukov-Vafa-Witten superpotential
(33) and, hence, leads to vanishing potential energy for
the moduli fields in the four-dimensional theory. The van-
ishing of (57) in the case of no anti-M5-brane and, hence,
�k ! 0, constitutes an explicit proof by dimensional re-
duction of this conclusion. Note, however, that when an
anti-M5-brane is present, the potential energy is nonsuper-
symmetric and need not be derived from a superpotential.

Let us now include the nonharmonic contributions to the
four-form charges of the orbifold planes, the N � 1 M5-
branes and the anti-M5-brane. The effect of this is to add an
additional contribution to the G�nzm�

a �bc �d
component of the

nonzero mode. Furthermore, as discussed in
Subsection III C 1, the nonharmonic modes will induce
nonvanishing values for the (1, 2) and (2, 1) components,
G�nzm��bc �dy

and G�nzm�
ac �dy

, respectively. One expects these addi-

tional nonharmonic contributions to the nonzero mode to
induce corrections to the four-dimensional supersymmetry
breaking potential (57). This is indeed the case. However,
as discussed in [38] such additional contributions are sup-
pressed relative to the harmonic contributions by powers of
the parameter R. For that reason, we do not display their
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explicit form here. Suffice it to say that these terms remain
proportional to the anti-M5-brane tension �k � �
k. Once
again, if the anti-M5-brane is removed and replaced with
an M5-brane, then �k ! 0 and these terms vanish. Again,
this is completely consistent with the statement in
Subsection III C 1 that neither G�nzm��bc �dy

nor G�nzm�
ac �dy

can con-

tribute to the Gukov-Vafa-Witten superpotential (33).

B. Harmonic flux and flux quantization

Having discussed the nonzero mode, let us now recon-
sider Subsection III C 2 and Subsection III C 3, the har-
monic flux and its flux quantization and contribution to
the 4D effective action, respectively, in the presence of an
anti-M5-brane. This is easy to do since, remarkably, the
antibrane does not alter any of the conclusions of those
subsections. First, consider Subsection III C 2. Since they
are closed on the CY3, the 2�h2;1 � 1� harmonic forms
Ga �b �c y, G �abcy, Gabcy, G �a �b �c y in GH are not sourced by the
fixed planes, N � 1 M5-branes, or the anti-M5-brane.
Hence, the addition of the anti-M5-brane does not affect
the harmonic flux in any way. Nor does it affect the con-
clusions about the Gukov-Vafa-Witten superpotential and
expression (35) in that subsection. Since supersymmetry is
broken in the four-dimensional effective theory by the anti-
M5-brane, this last statement requires further discussion,
which we will return to shortly.

Now consider Subsection III C 3. First note that the flux
quantization condition (36), as well as the constraint
Eq. (38) for the nonzero mode components G�nzm��bc �dy

and

G�nzm�
ac �dy

, remain unchanged in the presence of an anti-M5-

brane, with the proviso that the three-form !� �p�3 associated
with the antibrane is defined locally by d!� �p�3 � J� �p� where
J� �p� is given by (56). It follows that the quantization
condition (37) for the nonzero mode G�nzm�

a �bc �d
and the quan-

tization condition (39) for the harmonic modesGH are also
unchanged. Furthermore, the presence of the anti-M5-
brane does not alter the definitions of the four-dimensional
flux constants XA, ~XB or their quantization conditions
given in (45) and (46), respectively.

One must now consider the dimensional reduction of the
five- to the four-dimensional theory including this quan-
tized flux. Here, however, this must be carried out in the
presence of an anti-M5-brane. Again, the starting point is
the five-dimensional action given in (1), now, however,
withN � 1 M5-branes and an anti-M5-brane. As discussed
earlier, the form of this action does not change when an
antibrane is included in the vacuum. Hence, the two terms
in the five-dimensional action containing the scalar fields
�A and ~�B are still given by expression (47). As discussed
previously, only the first term in this expression can con-
tribute to the potential energy. We now perform a dimen-
sional reduction of the first term in (47) with respect to the
supersymmetry breaking vacuum described in [1] and

Sec. II of this paper. Remarkably, despite the fact that
this background contains an anti-M5-brane, we find that
the flux-dependent contribution to the potential energy in
four dimensions is given by

 �
1

2�2
4

Z
d4x

����������
�g4
p

�
�

1

b3
0V0

� ~XA � �MAB�z�X
B�

� ��Im�M�z����1�AC� ~XC �MCD�z�X
D�

�
; (61)

that is, the same expression (48) as in the supersymmetric
case, up to the order in our expansions which we work to.
Hence, although the anti-M5-brane does give rise to ex-
plicit supersymmetry breaking terms in the four-
dimensional theory, the flux sector of the effective theory
remains N � 1 supersymmetric.

Since this term appears in a four-dimensional N � 1
supersymmetric action (in the situation without anti-
branes), it must be possible to express the Lagrangian
density of (61) in the form

 Vflux � e�
2
4Kmod�Ki �j

modDiWfluxDjWflux � 3�2
4jWfluxj

2�;

(62)

where Kmod is the Kähler potential of the moduli and Wflux

is the holomorphic superpotential generated by the har-
monic flux. This is indeed the case. The proof, as originally
given in [37], is somewhat intricate, so we relegate it to
Appendix B. The result is that the Lagrangian density of
(61) can be written in the form (62) where the Kähler
potential Kmod is given in expression (A3) of
Appendix A and Wflux is the Gukov-Vafa-Witten super-
potential

 Wflux �

���
2
p

�2
4

1

��v1=2

Z
X�S1=Z2

� ^G

�

���
2
p

�2
4

�XAGA �
~XBZ

B�; (63)

where the complex structure moduli space is parametrized
by the periods (ZB, GA�Z�) defined by

 Z B �
Z
aB

�; GA�Z� �
Z
bA

�: (64)

This conclusion is valid for both the supersymmetric case
and when there is an anti-M5-brane in the vacuum. It is
consistent with, and proves, the form of the flux super-
potential presented in (49) and (50) at the end of
Subsection III C 3. Similarly, the expression given in
Subsection III C 3 for the superpotential in the large com-
plex structure limit,
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Wflux �

���
2
p

�2
4

0
v1=6

����2

�
1

6
~dab cz

azbzcn0 �
1

2
~dab cz

azbnc

� zana � n0

�
; (65)

remains unchanged in the presence of an anti-M5-brane.

V. GAUGINO CONDENSATION IN HETEROTIC M
THEORY WITH ANTIBRANES

In this section, we discuss gaugino condensation in the
presence of antibranes. Our exposition will proceed in
several steps. First, we show that the form of the potential
energy terms arising from gaugino condensation, when
written in terms of the condensate itself, are unchanged
from the result one obtains without antibranes. Second, we
argue that a gaugino condensate will indeed occur in this
nonsupersymmetric setting, despite the fact that most of
our knowledge of this effect is based on the structure of
unbrokenN � 1 supersymmetric gauge theory. Finally, we
compute the condensate as an explicit function of the
moduli fields. We conclude that the significant changes
that antibranes induce in the gauge kinetic functions of the
orbifold gauge fields lead, via the gaugino condensate, to
important modifications of the potential energy.

A. The potential as a function of the condensate

We begin by reviewing how gaugino condensates are
included in the dimensional reduction of five-dimensional
heterotic M theory, as was first presented in [50]. We then
show that, when written in terms of the condensate itself,
the presence of antibranes does not alter the form of the
potential. Unlike the flux contribution to the potential
energy, which is most naturally described in terms of the
2�h2;1 � 1� real scalar fields �A and ~�B, the gaugino con-
densate contribution is most simply expressed in terms of
the flux of a single complex scalar field �. These fields are
related by

 

�A
~�B

 !
�

ZA fAa
GB haB

 !
�
�a

� �
� H:c:; (66)

where the periods �ZA;GB� were defined in (51) and the

expressions for fAa and haB are found in the Appendix of
[37]. The field � supplies two of the four bosonic compo-
nents of the ‘‘universal’’ hypermultiplet in five dimensions,
whereas the complex scalar fields �a are half of the bo-
sonic components of the remaining h2;1 hypermultiplets.
The relevant quantity for gaugino condensation is X� �
@��, the five-dimensional field strength associated with �.

As obtained by dimensional reduction from 11 dimen-
sions, the five-dimensional action of heterotic M theory,
where the fields �A, ~�B are written in terms of �, �a using
(66), contains a term, consisting of �-flux and gaugino
bilinears, which is a ‘‘complete square.’’ This specific

term is familiar from both the 11-dimensional theory and
the ten-dimensional weakly coupled heterotic string
[36,51]. The first step in including gaugino condensates
in the reduction of the five-dimensional theory is to define
a new set of fields. This avoids the appearance of squares of
delta functions in the discussion. In five dimensions, the
relevant field redefinitions are

 X� � X�; (67)

 Xy � Xy �
1

32�
�2

5

�GUT
���0���y� ���N�1���y� ����;

(68)

where the quantities ��0� and ��N�1� are the condensates,
that is, the fermion bilinears, themselves. For complete-
ness, we have introduced a condensate on each orbifold
plane. One of these can always be set to zero, if so
required.3

In terms of these new quantities, the complete square in
the five-dimensional action simply becomes a kinetic term
for X�, as can be seen using Eq. (1). Therefore, the only
place where the condensate explicitly appears is in the
Bianchi identity of X�. This is given by [50]
 

�dX�y� � �
�2

5

32��GUT
��4J�0�� � @���0����y�

� �4J�N�1�
� � @���N�1����y� ����; (69)

where J�i�� is proportional to @�W�i�, the derivative of the
matter field superpotential on the ith orbifold plane. Note
that, in deriving (69), it is essential to realize that the
condensate can depend on the four-dimensional moduli.
Otherwise, one would have @���i� � 0 and the source
terms in the Bianchi identity would be condensate inde-
pendent. This would lead to vital terms in the dimensional
reduction being missed. It is also important to note that the
antibranes do not appear in Bianchi identity (69). As was
discussed in [1], antibranes simply do not source the bulk
fields involved in the present discussion. This is one of the
essential features of antibranes. It ensures that the potential
due to flux and gaugino condensation is of the same form
when antibranes are present as it is in the supersymmetric
case.

To take into account the presence of a gaugino conden-
sate, we simply have to solve the above system and then
perform a dimensional reduction about the result. A solu-
tion for X� has, in fact, several contributions. There is one
contribution induced by matter field fluctuations on the

3It should be noted that the gauge groups which appear on
various stacks of branes and antibranes in the bulk could also
give rise to condensation in situations where they are strongly
coupled and non-Abelian. We will ignore this possibility here,
although it should be kept in mind in a detailed discussion of
moduli stabilization.
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boundaries, as indicated in the above by the source terms
J�i�� in the Bianchi identity. Next there is a contribution due
to whatever harmonic flux we may choose to turn on, as
described in the previous section. Finally, there is the
contribution obtained from the magnetic charges for this
field proportional to the derivative of the condensate. Since
all of these contributions are small in our approximations,
we can treat each of them separately, simply adding the
results to obtain the full expression for X�. In this section,
we discuss the last of these, that is, the contribution to X�
due to the condensate. This contribution will be denoted by
X�
� . We find that

 X�
y �

�2
5

64�2��GUT

���0� ���N�1��; (70)

 X�
� � �

�2
5

64��GUT
@�

�
��0� �

y
��
���0� ���N�1��

�
:

(71)

Having found the complex �-flux induced by gaugino
condensation, we would like to reexpress it in the same
field basis as in the previous section, that is, in terms of the
flux XA and ~XB of the real scalar fields �A and ~�B. This is
easily done using relation (66). Differentiating this rela-
tion, we find that the gaugino condensate makes the fol-
lowing contributions to these fluxes:

 X A� � ZAX�
y �

�ZA �X�
y ; ~X�

B � GBX�
y �

�GB
�X�
y :

(72)

This result uses the fact that the warping in the complex
structure moduli is first order in our expansions. Therefore,
since the condensate contribution to the �-flux is already
small, this warping can be neglected here.

Let us insert this contribution to the X flux, along with
the contributions discussed in the previous section, into
(61). This gives us the four-dimensional potential energy
due to both gaugino condensation and harmonic flux. The
result is
 

�
1

2�2
4

Z
d4x

����������
�g4
p

�
�

1

b3
0V0

�� ~XA �
~X�
A �

� �MAB�z��X
B �XB�����Im�M�z����1�AC

� �� ~XC �
~X�
C � �MCD�z��X

D �XD���

�
: (73)

Note that, as in the previous section, the corrections to the
warping of the bulk fields due to the presence of antibranes
do not change the form of the above expression from the
supersymmetric result. This is due to (1) the order at which
the above terms appear in the expansion parameters of
heterotic M theory and (2) the low scale of the condensate.
These considerations make such corrections outside of the
approximations to which we work.

This result can be processed into a more user friendly
form by employing the results on special geometry given in
Appendix B. Using (72), identities (B16) and (B17), the
fact that M�z� is a symmetric matrix and the definitions of
the flux superpotential and Kähler potentials given in (63),
(A3), and (A4), respectively, we find that the potential
energy is

 Vc�c=f�f �
1

2�2
4

e�
2
4�KD�KT ��2e��

2
4K�z�jX�

y j
2

� iX�
y

���
2
p
�2

4Wflux � i
���
2
p
�2

4
�Wflux

�X�
y �

� e�
2
4Kmod�Ki �j

modDiWfluxD �j
�Wflux

� 3�2
4jWfluxj

2�: (74)

Note that, as in the pure flux potential discussed in the
previous section, the pure gaugino condensation and flux-
gaugino condensation cross term contributions to the po-
tential for the moduli are independent of both the M5-
branes and anti-M5-branes in the vacuum, up to second
order in S and the small condensate scale. Hence, the
functional form of expression (74) is the same whether or
not antibranes are present.

How, then, does the action for theories with and without
antibranes differ. The answer lies in the explicit form of the
condensates ��0� and ��N�1� when expressed in terms of
the moduli fields. It follows from (70) that these conden-
sates determine X�

y , which we must now specify. Before
doing this, first notice from (70) that X�

y is proportional to
the sum of the two condensates. It turns out that one can
calculate X�

y for each condensate separately, simply adding
the results at the end of the computation. We can, therefore,
restrict the discussion to a single boundary wall.

B. Condensate scales I: Supersymmetric case

In this subsection, we review the computation of the
condensate X�

y for the supersymmetric case without anti-
branes. Let the gauge bundle in this sector have structure
group G. Then the low energy theory contains a super
Yang-Mills connection with structure group H, where H
is the commutant of G in E8. For simplicity, we will
assume that H is a simple Lie group. This Yang-Mills
theory is coupled in the usual way to supergravity.
Therefore, the gauge coupling is determined by the values
of certain moduli. There can also be matter multiplets in
this sector. However, they are irrelevant to the discussion in
this paper and, with the exception of their contribution to
the beta function, we will ignore them. Such a theory is
known to undergo gaugino condensation under certain
conditions [52].

Gaugino condensation induces a superpotential for the
moduli fields entering the gauge coupling. This superpo-
tential has been calculated, in [53] for example, using an
effective low energy field theory where the condensate
itself is the lowest component of a superfield. For the
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simple case where the gauge coupling depends on the
dilaton modulus S only, this superpotential is found to be

 Wgaugino � Ae�S; (75)

where, at tree level, A is a constant of order v��1=2�,

  �
6�

b0�GUT
(76)

and b0 is the beta-function coefficient for the effective
gauge theory. The dilaton field S is defined in our context
in (A1) of Appendix A. For example, for H � E8 there are
no matter fields and

 b 0 � 90: (77)

Adding Wgaugino to Wflux, and inserting them into the
usual supergravity formalism, yields the complete moduli
potential energy induced by gaugino condensation and
flux. To evaluate the condensate X�

y , one need only com-
pare this potential energy to expression (74). This is most
easily done at low energy and for large values of the
moduli. We will refer to this as the ‘‘gaugino condensation
limit.’’ In this limit, we find that the leading terms for the
pure gaugino and gaugino/flux contributions to the super-
gravity potential simplify to the following result:
 

Vc�c=f � e�
2
4Kmod�2�S� �S�2�2

4jAj
2e��S� �S�

� �2
4�S� �S��Ae�S �Wflux � H:c��: (78)

This expression is precisely reproduced by Eq. (74) if one
chooses the leading order contribution to the condensate to
be

 

�X �
y � ie�

2
4K�z�

A���
2
p �2

4�S� �S�e�S: (79)

Note that it is perfectly consistent for the chiral condensate,
which is the lowest component of a chiral superfield in the
effective theory, to take a nonholomorphic form. This is
because this relation simply describes the value of the field
in vacuum and is not an identity on field space.

Expression (79) was computed in the gaugino conden-
sation limit. Can one find an expression for X�

y at any
energy and for arbitrary moduli expectation values? To
do this, the complete supergravity moduli potential in-
duced by Wgaugino and Wflux must be compared to expres-
sion (74) and the functional form of the condensate
inferred. One finds that the condensate continues to be
proportional to the same exponential factor of the gauge
kinetic function as in the gaugino condensation limit.
However, in general, the prefactor is now a very compli-
cated function of the moduli.

That it is difficult to reproduce the lower order terms in
the large moduli expectation values, as was first noted
within the context of the weakly coupled heterotic string
in [36], should not come as a surprise. First, parts of this
potential correspond to gravitational corrections to the

global supersymmetry result. One should, therefore, also
introduce gravitational corrections to the value of the con-
densate once we include these terms. Gravitationally, of
course, the condensate is coupled to everything in the
theory and so it will take a very complicated form at this
level. Second, component analyses of the kind performed
in the previous subsection and [36] are somewhat naive.
We should also include the effects of integrating out the
strongly coupled non-Abelian gauge fields and so forth.
This could also introduce new terms which would contrib-
ute to the problematic polynomial prefactor.

From a physical point of view, the inability to reproduce
the polynomial prefactor for arbitrary moduli expectation
values is not very important. In any regime of moduli space
which is well described by effective supergravity, the real
parts of the moduli fields, in particular, the dilaton and
Kähler moduli, should be much greater than unity (taking
the relevant reference volumes to be string scale in size). In
this regime, one need only keep the leading terms in an
expansion in the inverse of the real parts of these moduli.
This is precisely the gaugino condensation limit. As dis-
cussed above, the component action approach can then
successfully reproduce the supersymmetric potential en-
ergy using the simple form for the condensate given in
(79).

The above result was derived assuming the gauge cou-
pling depends on the dilaton S only. In this case, the gauge
kinetic function is given by

 f � S: (80)

It will be useful to rewrite superpotential (75) as

 Wgaugino � Ae�f: (81)

We now want to extend this result to the cases where there
are threshold corrections, including those due to super-
symmetric five-branes. In these circumstances, it is well
known [37,49,54] that the gauge kinetic functions on the
(0) and (N � 1) boundary walls generalize to

 f�0� � S� 0

�

�N�1�
k Tk � 2

XN
p̂�1

Z�p̂�

�
; (82)

 f�N�1� � S� 0�

�N�1�
k Tk�: (83)

Here Tk are the h1;1 Kähler moduli, the p̂ index runs over
all N � 1 supersymmetric five-branes but excludes the
antibrane, and Z�p̂� are the location moduli of these five-
branes. The complex fields Tk and Z�p̂� are defined in (A1)
of Appendix A. The generalization of the gaugino conden-
sate superpotential is now straightforward. It is simply
given by expression (81), where f takes the form (82)
and (83) on the (0) and (N � 1) boundary walls,
respectively.

One can now find the gaugino condensate in the pres-
ence of threshold effects by comparing expression (74)
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with the complete potential energy derived from this modi-
fied superpotential. As above, this turns out to be difficult
in the general case of arbitrary moduli expectation values.
Once again, the problem greatly simplifies in the gaugino
condensate limit of low energy and large moduli values.
The threshold corrections do, however, further complicate
the polynomial prefactor. Happily, in the physically inter-
esting region of moduli space further simplification is
possible. Note, using the definition of the superfields Z�p̂�
in Eq. (A1) of Appendix A, that each of the two types of
threshold corrections in Eqs. (82) and (83) is suppressed
relative to the leading dilaton term by factors of S, as
defined in (3), (12), and (14). Therefore, since we require
S  1 for the validity of the four-dimensional effective
theory, we find that

 S > 0�

�N�1�
k Tk�; (84)

 S > 0

�
2
XN
p̂�1

Z�p̂�

�
: (85)

It follows that, in the polynomial prefactor, it is a very good
approximation to simply ignore the threshold corrections,
yielding the same prefactor as discussed previously. Note,
however, that even though conditions (84) and (85)
strongly hold, the values of the right-hand sides of these
expressions are generally much larger than unity. Hence,
one should never drop the threshold and five-brane correc-
tions to f in the exponential.

Putting this all together, we conclude that in the gaugino
condensate, S  1 limit, the gaugino condensate is given
by

 

�X �
y � ie�

2
4K�z�

A���
2
p �2

4�S� �S�e�f; (86)

where the gauge kinetic function f is

 f�0� � S� 0

�

�N�1�
k Tk � 2

XN
p̂�1

Z�p̂�
�
; (87)

 f�N�1� � S� 0�

�N�1�
k Tk� (88)

for a condensate on the (0) and (N � 1) boundary walls,
respectively.

C. Condensate scales II: Antibrane case

Let us now turn to the case of heterotic M theory in the
presence of antibranes. At first glance, it is not obvious
how to proceed. As we have just seen, the arguments used
in a discussion of gaugino condensation are firmly rooted
in the assumption that the theory is supersymmetric. How,
then, does one proceed when supersymmetry is broken by
antibranes? The key observation we will make is that when
one takes the low energy, large modulus limit of a theory
with antibranes, the system returns to a supersymmetric
form. Hence, one can continue to apply the usual argu-
ments for gaugino condensation.

In the gaugino condensation limit, two types of terms
survive in the Yang-Mills sector of the low energy effective
action. These are the kinetic terms for the gauge fields and
those for the gauginos. We presented the gauge field kinetic
terms, including the contribution of the antibrane, in [1].
These are of the same form as in the supersymmetric case.
However, the gauge kinetic functions for the (0) and (N �
1) boundary walls are now given by
 

f�0� � S� 0

�

�N�1�
k Tk � 2

XN
p�1

Z�p� �
2

3
�k�Tk � �Tk�

� �k�T
k � �Tk�

�� Z� �p� � �Z� �p�
�
k�Tk � �Tk�

�
2

� 2
Z� �p� � �Z� �p�
�
k�T

k � �Tk�

��
; (89)

 

f�N�1� � S� 0

�

�N�1�
k Tk �

1

3
�k�Tk � �Tk�

� �k�T
k � �Tk�

� Z� �p� � �Z� �p�
�
k�Tk � �Tk�

�
2
�
; (90)

respectively. Similarly, we find that the gaugino kinetic
terms are of the same form as in the supersymmetric case,
but with the gauge kinetic functions replaced by expres-
sions (89) and (90).

The reason the gaugino kinetic terms retain their super-
symmetric form is the following. In the five-dimensional
theory, there is only one set of kinetic terms for the
gauginos. These are localized on the appropriate orbifold
fixed plane. Upon dimensional reduction, there are three
possible sources of four-dimensional kinetic terms for
these fields. The first is the direct dimensional reduction
of the five-dimensional kinetic terms. The second arises
when the contribution to the warping of the bulk fields,
which is proportional to the gaugino kinetic term, is sub-
stituted into the tension terms of the various extended
objects. Finally, a contribution arises when the warping
terms due to the tension of the extended objects and the
gaugino fluctuations on the fixed planes are substituted into
the bulk action. A simple argument reveals that two of
these contributions always cancel.

Consider the simple system of just the bulk action and
the tension terms on the extended objects. This action has a
reduction ansatz given by the warped antibrane back-
ground presented in [1] and in expressions (9)–(11) above.
Now add, as a perturbation, the gaugino terms in the action
and the correction they give rise to in the reduction ansatz.
Substituting the reduction ansatz into the action and inte-
grating, we obtain the same four-dimensional action as
before plus the new four-dimensional gaugino kinetic
terms. The term which arises from substituting the new
warping piece into the zeroth order action clearly vanishes.
This is because, by definition, the zeroth order background
extremizes the action in the absence of gauginos. One is
left with the direct reduction of the five-dimensional gau-
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gino kinetic term as the four-dimensional kinetic term for
these fields. This reproduces exactly the supersymmetric
gaugino kinetic terms written, however, in terms of the
gauge kinetic function (89) and (90).

We conclude that the action for the gauge theories on the
boundaries is, in the gaugino condensation limit, of exactly
the same form as in globally supersymmetric Yang-Mills
theory. The gauge kinetic functions which appear in all of
the kinetic terms are, however, given by the nonholomor-
phic combination of moduli derived in [1] and presented in
(89) and (90). Because of this nonholomorphicity, the
Yang-Mills sector of the theory is not, in general, super-
symmetric. However, in any situation where the moduli are
treated as constant, that is, independent of space-time, the
Yang-Mills sector is supersymmetric. The nonholomorphy
of the gauge kinetic function is not manifest if the moduli,
and, hence, the gauge coupling, are simply regarded as
numbers. Therefore, in this region of moduli space one can
apply exactly the same analysis of the gauge condensate as
in the supersymmetric case discussed in the previous sub-
section. That is, one simply needs to replace f by the
correct gauge kinetic function for the case at hand. We
conclude, therefore, that in the gaugino condensate, S1
limit, the condensate in the presence of antibranes is given
by

 

�X �
y � ie�

2
4K�z�

A���
2
p �2

4�S� �S�e�f; (91)

where the gauge kinetic function f is
 

f�0� � S� 0

�

�N�1�
k Tk � 2

XN
p�1

Z�p� �
2

3
�k�Tk � �Tk�

� �k�T
k � �Tk�

�� Z� �p� � �Z� �p�
�
k�Tk � �Tk�

�
2

� 2
Z� �p� � �Z� �p�
�
k�T

k � �Tk�

��
; (92)

 

f�N�1� � S� 0

�

�N�1�
k Tk �

1

3
�k�Tk � �Tk�

� �k�T
k � �Tk�

� Z� �p� � �Z� �p�
�
k�T

k � �Tk�

�
2
�

(93)

for a condensate on the (0) and (N � 1) boundary walls,
respectively.

This condensate can now be substituted into (74) to give
the combined potential due to flux and gaugino condensa-

tion for heterotic M theory in the presence of antibranes.
The result is
 

Vc�c=f�f �
1
2e
�2

4Kmod��2
4jA�S� �S�e�fj2 � �A�2

4�S� �S�

� e� �fWflux � �
2
4

�WfluxA�S� �S�e�f�

� e�
2
4Kmod�Ki �j

modDiWfluxD �j
�Wflux � 3�2

4jWfluxj
2�:

(94)

In this expression Wflux is given in (63), f is presented in
(92) and (93), and Kmod is defined in (A3) of Appendix A.

VI. CONCLUSIONS

In this paper, we have included the effects of flux and
gaugino condensation in the four-dimensional effective
description of heterotic M theory including antibranes
[1]. While the parts of the resulting potential which are
due purely to flux are unchanged from the supersymmetric
result, those which are caused by gaugino condensation are
modified in important ways.

It is not even obvious, a priori, that gaugino condensa-
tion would occur in such a nonsupersymmetric setting.
However, because in a certain limit the system still looks
like globally supersymmetric gauge theory, we have ar-
gued that indeed it does. We have also argued that we can
calculate an approximation to the potential for the moduli
which it gives rise to. It should be noted that, in addition to
the points explicitly mentioned in the proceeding sections,
the threshold corrections which antibranes give rise to in
the gauge kinetic functions can completely change which
extended objects in the higher dimensional theory are
strongly coupled—and so, which exhibit gaugino
condensation.

Let us summarize the results derived in Secs. IV and V.
We have shown that the moduli potential energy that arises
from (1) perturbative effects, (2) gaugino condensation,
and (3) flux in heterotic M theory vacua with both M5-
branes and anti-M5-branes is, to our order of approxima-
tion, given by

 V � V 1 �V 2 � Vc�c=f�f; (95)

 V 1 �
0�

�2
4

����2
�Tk � �Tk��ke

�2
4�KT�KD�; (96)

 V 2 �
2

0�
�4
4

����2
e�

2
4�KT�2KD�K �kl

T �l

�X�p�1

p�0


�p�k
Z� �p� � �Z� �p�

�
m�T
m � �Tm�

�
XN�1

p� �p�1


�p�k
Z� �p� � �Z� �p�

�
m�T
m � �Tm�

�
X�p�1

p�0


�p�k
Z�p� � �Z�p�


�p�m �Tm � �Tm�

�
XN�1

p� �p�1


�p�k
Z�p� � �Z�p�


�p�m �Tm � �Tm�
�

XN�1

p�0


�p�k

�
1�

Z�p� � �Z�p�


�p�m �Tm � �Tm�

� Z�p� � �Z�p�


�p�n �Tn � �Tn�
�

2

3
�k

�
; (97)
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Vc�c=f�f��e
�2

4Kmod��2
4jA�S� �S�e�fj2� �A�S� �S�

�e� �f�2
4Wflux��

2
4

�WfluxA�S� �S�e�f�

�e�
2
4Kmod�Ki �j

modDiWfluxD �j
�Wflux�3�2

4jWfluxj
2��:

(98)

Here the superpotential for the flux is given by the ex-
pression

 Wflux �

���
2
p

�2
4

Z
X

� ^G �

���
2
p

�2
4

�XAGA �
~XBZ

B�; (99)

the appropriate gauge kinetic function, f, should be chosen
from (89) or (90), and the Kähler potential Kmod is defined
in (A3) of Appendix A.

The contribution of nonperturbative membrane instan-
ton effects will be added to this potential in future work, as
will an analysis of the vacua of the resulting system [2].
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APPENDIX A: FIELD DEFINITIONS AND KÄHLER
POTENTIALS FOR HETEROTIC VACUA WITH

ANTIBRANES

In this appendix, we briefly state some results from [1]
which are required in the main text. Despite the explicit
supersymmetry breaking introduced by the anti-M5-brane
in our vacuum, the kinetic terms in the four-dimensional
theory can still be expressed, as in the supersymmetric
case, in terms of a Kähler potential and complex structure.
Let us define the complex scalar fields
 

S � e� � i�� 0

XN
p�1


�p�k z2
�p�T

k;

Tk � e�bk0 � 2i�k;

Z�p� � z�p�

�p�
k Tk � 2i
�p�k nk�p���p�; (A1)

where V0 � e�, b0 � e�, bk0, and z�p� are specified in
Sec. II and �, �k, and ��p� are their real scalar super-
partners given in [1]. Note that in the case with no anti-
branes, each of these complex scalars would be the lowest
component of an N � 1 chiral superfield. This is no
longer the case when the vacuum contains an anti-M5-
brane. Be that as it may, we find that the kinetic terms of
the bosonic sector of heterotic M theory in the presence of

antibranes is still given, in terms of these fields, by the
usual N � 1 supersymmetric formula with the appropri-
ate Kähler potentials. Up to order �2=3

11 , these Kähler po-
tentials are found to be

 �2
4Kscalar � �2

4Kmod � �
2
4Kmatter; (A2)

where

 Kmod � KD � KT �K (A3)

and

 �2
4KD � � ln

�
S� �S� 0

XN
p�1

�Z�p� � �Z�p��2


�p�k �T
k � �Tk�

�
; (A4)

 �2
4KT � � ln

�
1

48
dklm�Tk � �Tk��Tl � �Tl��Tm � �Tm�

�
;

(A5)

 �2
4K�z� � � ln

�
2i�G � �G� � i�za � �z �a�

�
@G
@za
�
@ �G

@�z �a

��
;

(A6)

 Kmatter � e�
2
4KT=3

X
p�0;N�1

G�p�MNC
Mx
�p�

�CN
�p�x: (A7)

The symbol G in K�z� is the N � 2 prepotential of the
h2;1 sector. It is defined in terms of the periods GA in (64)

by GA �
@
@ZA G. The significance of the �2=3

11 expansion
relative to that in S is described in [1].

APPENDIX B: REPRODUCING THE FLUX
POTENTIAL FROM THE GUKOV-VAFA-WITTEN

SUPERPOTENTIAL

Here we present a proof that, in heterotic M theory vacua
with N � 1 M5-branes and an anti-M5-brane, the Gukov-
Vafa-Witten superpotential

 Wflux �

���
2
p

�2
4

�XAGA �
~XAZ

A�; (B1)

along with Kähler potential Kmod given in (A3), reproduces
the four-dimensional scalar potential energy (61) when
they are inserted into the supersymmetric expression for
the potential. The manipulations presented below were first
presented in [37] in the context of vacua without anti-
branes. The scalar potential energy generated by Wflux

and Kmod is

 Vflux � e�
2
4Kmod�Ki �j

modDiWfluxDjWflux � 3�2
4jWfluxj

2�;

(B2)

where all of the complex fields (A1) are collectively de-
noted by Yi and the Kähler covariant derivative is DiW �
@iW � �2

4
@Kscalar

@Yi W. Using the form of the Kähler potential
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and the fact that the superpotential depends only on the
complex structure moduli za, it can be shown that

 Vflux � e�
2
4�KT�KD�e�

2
4K�Ka �bDaWfluxDbWflux

� ��4
4

~Ku �v@u ~K @v ~K�3�2
4�jWfluxj

2� (B3)

 �
1

2b3
0V0

e�
2
4K�Ka �bDaWfluxDbWflux � �

2
4jWfluxj

2�:

(B4)

Here, we have defined ~K 
 KD � KT , the subscripts u, v
run over all moduli indices except for a, �a, and we have

used the fact that ~Ku �v@u ~K @v ~K � 4��2
4 . As in [1], K is the

Kähler potential of the complex structure moduli. We now
use @a �

@
@za �

@ZA

@za
@
@ZA � @aZ

A@A and KA � @AK to
write

 K a �bDaWfluxDbWflux � �K
a �b@aZ

A@ �b
�ZB��@AWflux

� �2
4KAWflux�

� �@BWflux � �
2
4KBWflux�

(B5)

 

�
2

�2
4

�Ka �b@aZ
A@ �b

�ZB���XCGCD �
~XD���

D
A �ZD�2

4KA��

� ��XE �GEF �
~XF���

F
B � �

2
4Z

FKB��

�
2

�2
4

�XC; ~XC�
GCDUDF �GFE �GCDUDE

�UCF �GFE UCE

24 35
�

XE

~XE

 !
(B6)

 

�
2

�2
4

�XC; ~XC�
GCDUDF �GFE �GCDUDE

�UCF �GFE UCE

24 35
�

XE

~XE

 !
: (B7)

Here, UDF is given by the expression

 

UDF � �Ka �b@aZ
A@ �b

�ZB���DA � �
2
4Z

DKA�

� ��FB � �
2
4Z

FKB�: (B8)

We now define

 MAB �
�GAB � TAB;

TAB � 2i
ImGACZ

CImGBDZ
D

ZEImGEFZ
F :

(B9)

One can then use the relations

 UABMBC � UAB �GBC;GABUBC � �MABUBC; (B10)

together with the explicit form for UDE,

 UAB � �1
2e
��2

4K�ImM��1AB � �ZAZB; (B11)

to write

 

GCDUDF �GFE �GCDUDE

�UCF �GFE UCE

24 35 � �MCDU
DFMFE � �MCDU

DE

�UCFMFE UCE

24 35

� �
e��

2
4K

2

�MCD�ImM�1�DFMFE � �MCD�ImM�1�DE

��ImM�1�CFMFE �ImM�1�CE

24 35

�

�GCGE � �GCZ
E

� �ZCGE
�ZCZE

2
4

3
5: (B12)

In the last matrix, the relation �MAB �
�GAB�Z

B �
2iIm GABZ

B has also been employed. Finally, using the
identity

 jWfluxj
2 �

2

�4
4

�XC; ~XC�
�GCGE � �GCZ

E

� �ZCGE
�ZCZE

" #
XE

~XE

 !
;

(B13)

the scalar potential becomes

 

Vflux��
1

2�2
4b

3
0V0

�XC; ~XC�

�
�MCD�ImM

�1�DFMFE � �MCD�ImM
�1�DE

��ImM�1�CFMFE �ImM�1�CE

2
4

3
5

�
XE

~XE

 !
: (B14)
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This is easily rewritten as
 

Vflux � �
1

2�2
4b

3
0V0

� ~XA � �MABX
B�

� �ImM��1AC� ~XC �MCDX
D�; (B15)

which is exactly the four-dimensional flux potential (61)
obtained by dimensional reduction. This completes the
proof. We emphasize again that this proof was carried
out in the presence of both M5-branes and anti-M5-branes

in the vacuum. It is, of course, valid in the purely super-
symmetric case as well.

Finally, we take the opportunity to state some identities
that we use in the body of the paper. These are

 G A � MABZ
B (B16)

 Im MABZ
A �ZB � �1

2e
��2

4K: (B17)
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