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For the most general supersymmetric solutions of type IIB supergravity consisting of a warped product
of AdS5 with a five-dimensional manifold M5, we construct an explicit consistent Kaluza-Klein reduction
on M5 to minimal D � 5 gauged supergravity. Thus, any solution of the gauged supergravity can be
uplifted on M5 to obtain an exact solution of type IIB supergravity. We also show that for general AdS4 �
SE7 solutions, where SE7 is a seven-dimensional Sasaki-Einstein manifold, and for a general class of
supersymmetric solutions that are a warped product of AdS4 with a seven-dimensional manifold N7, there
is an analogous consistent reduction to minimal D � 4 gauged supergravity.
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I. INTRODUCTION

A powerful method to construct solutions of D � 10 or
D � 11 supergravity is to uplift solutions of simpler theo-
ries in lower-dimensions. For this to work it is necessary
that there is an appropriate consistent Kaluza-Klein (KK)
reduction on some internal manifold M from D � 10 or
D � 11 down to the lower-dimensional theory. In general,
a KK expansion on M leads to a lower-dimensional theory
involving an infinite tower of fields. Splitting these fields
into a finite number of ‘‘light’’ fields and an infinite tower
of ‘‘heavy’’ fields,1 the KK reduction is called consistent if
it is in fact consistent to set all of the heavy fields to zero in
the equations of motion, leaving equations of motion for
the light fields only. Clearly this is only possible if the on-
shell light fields do not source the heavy fields.

KK reductions on a circle or more generally on an
n-dimensional torus are always consistent. The heavy
fields, which arise from modes with nontrivial dependence
on the coordinates of the torus, are all charged under the
U�1�n gauge symmetry, while the light fields, which in this
case are actually massless fields, are independent of these
coordinates and hence uncharged under the gauge symme-
try. As a consequence, the heavy fields can never be
sourced by the light fields alone and so the truncation to
the light fields is consistent. Since this argument also
extends to fermions, one concludes that a KK reduction
of a higher-dimensional supergravity theory on a torus can
always be consistently truncated to a lower-dimensional
supergravity theory. Moreover, solutions of the lower-
dimensional supergravity theory that preserve supersym-
metry will uplift to supersymmetric solutions of the higher-
dimensional supergravity theory.

More generally, however, consistent KK reductions are
very much the exception rather than the rule. For example,
it is only in very special circumstances that there is a
consistent KK reduction on a sphere (for further discussion

see [1]). An interesting class of examples are those asso-
ciated with the maximally supersymmetric solutions of
D � 10 and D � 11 supergravity that consist of products
of AdS spaces and spheres. Corresponding to the AdS4 �
S7 and AdS7 � S

4 solutions of D � 11 supergravity, there
are consistent KK reductions on S7 [2] and S4 [3,4] to D �
4 SO�8� gauged supergravity and D � 7 SO�5� gauged
supergravity, respectively. Similarly, starting with the
AdS5 � S5 solution of type IIB supergravity there is ex-
pected to be a consistent KK reduction to SO�6� gauged
supergravity: various additional truncations were shown to
be consistent in [5–7] and an ansatz for the full metric was
constructed in [8].

We would like to view these examples as special cases of
the following conjecture:

For any supersymmetric solution of D � 10 or D � 11
supergravity that consists of a warped product of d� 1
dimensional anti–de Sitter space with a Riemannian mani-
fold M, AdSd�1 �w M, there is a consistent Kaluza-Klein
truncation on M to a gauged supergravity theory in d� 1-
dimensions for which the fields are dual to those in the
superconformal current multiplet of the d-dimensional
dual superconformal field theory (SCFT).

Equivalently, one can characterize the fields of the
gauged supergravity as those that contain the d�
1-dimensional graviton and fill out an irreducible repre-
sentation of the superisometry algebra of the D � 10 or
D � 11 supergravity solution. This conjecture is essen-
tially a restricted version of one that appeared long ago
in [9], for which general arguments supporting it were put
forward in [10].

For example the AdS5 � S5 solution of type IIB, which
has superisometry algebra SU�2; 2j4�, is dual to N � 4
superYang-Mills theory in d � 4. The superconformal
current multiplet of the latter theory includes the energy
momentum tensor, SO�6� R-symmetry currents, along with
scalars and fermions. These are dual to the metric, SO�6�
gauge fields along with scalar and fermion fields, and are
precisely the fields of the maximally supersymmetric
SO�6� gauged supergravity in five-dimensions.

1In general there is not a sharp separation of energy scales, and
hence the quotation marks.
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As we have phrased the conjecture above, it is natural to
try and prove the conjecture directly from the SCFT point
of view. For the case of AdS3 solutions, an argument has
been made by [11,12], but this needs to be modified for
higher dimension AdS solutions. While we think that this is
an interesting avenue to pursue, in this paper we will verify
the conjecture for a number of cases by constructing an
explicit consistent KK reduction ansatz. By this we mean
an explicit ansatz for the higher-dimensional fields that is
built from the fields of the lower-dimensional theory with
the property that it solves the equations of motion of the
higher-dimensional theory provided that the equations of
the lower-dimensional theory are satisfied. This approach
has the advantage that it allows one to uplift an explicit
solution of the lower-dimensional gauged supergravity to
obtain an explicit solution2 of D � 10 or D � 11
supergravity.

Often, for simplicity, such explicit KK reduction
Ansätze are constructed for the bosonic fields only. This
is thought to provide very strong evidence that the ansatz
can be extended to the fermionic fields also. In fact an
argument was constructed in [1], based on [10], which
shows that if a consistent KK reduction has been con-
structed for the bosonic fields, then the supersymmetry of
the higher-dimensional theory will guarantee that the re-
duction can be consistently extended to the fermionic
sector. In any event, a bosonic KK ansatz certainly allows
one to uplift bosonic solutions which is the most interesting
class of solutions. One can go further and construct an
ansatz for the fermion fields and demand that the super-
symmetry variation of a bosonic configuration in higher
dimensions leads to the correct supersymmetry variation of
the bosonic configuration in lower dimensions. This ex-
plicitly demonstrates that a supersymmetric bosonic solu-
tion of the lower-dimensional theory will uplift to a
supersymmetric solution of D � 10 or D � 11 supergrav-
ity which will preserve at least the same amount of super-
symmetry as in the lower-dimensional theory.

In this paper we will verify the conjecture for a general
class of AdS5 solutions which are dual to N � 1 SCFTs in
d � 4 dimensions. For this case, the bosonic fields in the
superconformal current multiplet are the energy momen-
tum tensor and the Abelian R-symmetry current. Thus we
seek a consistent truncation to minimal D � 5 gauged
supergravity whose bosonic fields are the metric (dual to
the energy momentum tensor of the SCFT) and an Abelian
gauge field (dual to the R-symmetry current). For the
special class of solutions of type IIB of the form AdS5 �
SE5, where SE5 is a five-dimensional Sasaki-Einstein
manifold, and only the self-dual five-form is nonvanishing,
a consistent KK reduction was constructed in [13] (see also

[14]). Here we will extend this result by showing that for
the most general AdS5 �w M5 supersymmetric solution of
type IIB supergravity with all of the fluxes active, that were
analyzed in [15], the KK reduction is also consistent. We
will construct a KK ansatz for the bosonic fields, and we
will also verify the consistency of the supersymmetry
variations. The analogous result for the most general super-
symmetric solutions of D � 11 supergravity of the form
AdS5 �w M6 with nonvanishing four-form flux [16] was
shown in [17]. Given that any AdS5 solution of type IIA
supergravity can be considered to be a special case of one
in D � 11, if we are to assume that there are no AdS5

solutions in type I supergravity, the results here combined
with [13,17] covers all AdS5 solutions in D � 10 and D �
11 dimensions.

We will also prove similar results for two classes of
AdS4 solutions of D � 11 supergravity, both of which
are dual to N � 2 SCFTs in d � 3. The first, and the
simplest, is the Freund-Rubin class of solutions which
take the form AdS4 � SE7 where SE7 is a seven-
dimensional Sasaki-Einstein manifold and the four-form
flux is proportional to the volume form of the AdS4 factor.
A discussion of this case appears in [18]. Furthermore, our
analysis is a simple extension of the analysis in [19] which
considered the seven-sphere viewed as a U�1� fibration
over CP3. The second is the class of AdS4 �w N7 solu-
tions, corresponding to M5-branes wrapping SLAG 3-
cycles, that were classified in [20]. It is very plausible
that this class of solutions are the most general class of
solutions with this amount of supersymmetry and with
purely magnetic four-form flux. In both cases we show
that there is a consistent KK reduction on the SE7 or the N7

to minimal gauged supergravity in four spacetime dimen-
sions. The bosonic fields of the latter theory again consist
of a metric and a U�1� gauge field which are dual to the
bosonic fields in the superconformal current multiplet. For
these examples, we will be content to present the KK
ansatz for the bosonic fields only.

The general classes of supersymmetric solutions that we
consider have been analyzed using G-structure techniques
[21,22]. In particular, the G-structure can be characterized
in terms of bi-linears constructed from the Killing spinors.
Since the results we obtain only assume supersymmetry
and AdS factors one might expect that the explicit KK
reduction ansatz involves these bi-linears, and this is in-
deed the case. In fact it might be illuminating to recast the
known consistent KK truncations on spheres in terms of
this language, but we shall not investigate that here.

The plan of the rest of the paper is as follows. We begin
in Secs. II and III by considering the AdS4 solutions of
D � 11 supergravity. In Sec. IV we consider the general
class of AdS5 solutions of type IIB supergravity. Only for
the latter class we will present details of our calculations
and these can be found in the appendices. In Sec. V we
briefly conclude.

2Note that since the uplifting formulae are local, in general,
even if the lower-dimensional solution is free from singularities
one still needs to check that the higher-dimensional solution is
also.
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II. REDUCTION OF D � 11 SUPERGRAVITY
ON SE7

Our starting point in this section is the class of super-
symmetric solutions of D � 11 supergravity of the form
AdS4 � SE7 where SE7 is a Sasaki-Einstein 7-manifold:

 ds2
11 �

1
4ds

2�AdS4� � ds
2�SE7�; G � 3

8vol�AdS4�:

(2.1)

Here vol�AdS4� is the volume four-form of the unit radius
AdS4 metric ds2�AdS4� and we have normalized the
Sasaki-Einstein metric ds2�SE7� so that Ric�SE7� �
6g�SE7� (the same as for the unit radius metric on the
round seven-sphere). The Sasaki-Einstein metric has a
Killing vector which is dual to the R-symmetry of the
dual N � 2 SCFT in d � 3. Introducing coordinates so
that this Killing vector is @ , locally, the Sasaki-Einstein
metric can be written

 ds2�SE7� � �d � ��2 � ds2�M6�; (2.2)

where ds2�M6� is locally Kähler-Einstein with Kähler form
J, normalized so that Ric�M6� � 8g�M6� and d� � 2J.

We now construct an ansatz which leads to a consistent
truncation, at the level of bosonic fields, to gauged super-
gravity in D � 4. Specifically, we consider

 ds2
11 �

1
4ds

2
4 � �d � ��

1
4A�

2 � ds2�M6�;

G � 3
8vol4 �

1
4 �4 F2 ^ J;

(2.3)

where ds2
4 is an arbitrary metric on a four-dimensional

spacetime, vol4 is its associated volume form, and A and
F2 � dA are one- and two-forms on this spacetime with a
normalization chosen for convenience. Substituting this
into the D � 11 equations of motion [23] (we use the
conventions of [22]),

 RAB �
1
12�GAC1C2C3

GB
C1C2C3 � 1

12gABG
2� � 0;

d �11 G�
1
2G ^G � 0; dG � 0

(2.4)

where G2 � GC1C2C3C4
GC1C2C3C4 , we find that the metric

g��, corresponding to ds2
4, and F2 must satisfy

 R����3g���
1
2F��F

�
� � 1

8g��F��F
��; d �4 F2� 0:

(2.5)

These are precisely the equations of motion of minimal
gauged supergravity in D � 4 [24,25].

Thus we have shown the consistency of the KK reduc-
tion at the level of the bosonic fields. In particular, any
solution of the minimal gauged supergravity, which were
systematically studied in [26], can be uplifted on an arbi-
trary seven-dimensional Sasaki-Einstein manifold to a so-
lution of D � 11 supergravity.

III. REDUCTION OFD � 11 SUPERGRAVITY ON A
SLAG-3 FLUX GEOMETRY

Let us now consider the general class of supersymmetric
warped product solutions of the form AdS4 �w N 7 with
purely magnetic four-form flux which are dual to N � 2
SCFTs in d � 3 [20]. We call these geometries SLAG-3
flux geometries, since they can be derived from a class of
geometries that correspond to M5-branes wrapping special
Lagrangian (SLAG) three-cycles in a SU�3� holonomy
manifold—for further details see [20]. It is quite possible
that this class of geometries is the most general class of
AdS4 geometries with this amount of supersymmetry and
with purely magnetic four-form flux, but this has not been
proven.

The D � 11 metric of the SLAG-3 flux geometry is
given by

 ds2
11 � ��1ds2�AdS4� � ds

2�N 7�; (3.1)

where ds2�AdS4� has unit radius and the warp factor � is
independent of the coordinates of AdS4. N 7 has a local
SU�2� structure which is specified by three one-forms and
three self-dual two-forms J1, J2, J3. One of the one-forms
is dual to a Killing vector that also preserves the flux: this is
dual to the R-symmetry of the correspondingN � 2 SCFT.
Introducing local coordinates so that this Killing vector is
given by @� we have

 ds2�N 7� � ds2�MSU�2�� � w � w�
�2d�2

4�1� �3�2�

�
�2�2

4
d�2; (3.2)

MSU�2� is a four-dimensional space where the Ja live. The
three one-forms mentioned above are w,

��=2
��������������������
1� �3�2

p
�d�, and ���=2�d�. In addition we must

have

 

d
�
��1

�������������������
1��3�2

q
w
�
� ��1=2J1�

�2�

2
�������������������
1��3�2

p w^d�;

d
�
��3=2J3^w�

��

2
�������������������
1��3�2

p J2^d�
�
� 0;

d
�
J2^w�

1

2�1=2�
�������������������
1��3�2

p J3^d�
�
� 0:

(3.3)

Finally the 4-form flux is given by

 G � d� ^ d
�
1

2
��1=2

��������������������
1� �3�2

q
J3

�
: (3.4)

An explicit example of a solution to these equations was
given in [27] as discussed in [20].
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We now consider the KK reduction ansatz:

 ds2
11 � ��1ds2

4 � ds
2�N̂ 7�;

G � Ĝ� F2 ^ Y � �4F2 ^ X;
(3.5)

where ds2
4 is a line element and F2 � dA is a two-form on a

four-dimensional spacetime. In addition ds2�N̂ 7� is the
expected deformation of ds2�N 7�, given by

 ds2�N̂ 7� � ds2�MSU�2�� � w � w�
�2d�2

4�1� �3�2�

�
�2�2

4
�d�� A�2; (3.6)

Ĝ is the expected deformation of the four-form flux ap-
pearing in (3.4)

 Ĝ � �d�� A� ^ d
�
1

2
��1=2

��������������������
1� �3�2

q
J3

�
; (3.7)

and the two-forms X and Y are given by

 X � �
1

2

�
��1=2J1 �

�2�

2
��������������������
1� �3�2

p ! ^ d�
�
;

Y � �
1

2
��1=2

��������������������
1� �3�2

q
J3:

(3.8)

Substituting this ansatz into the equations of motion of
D � 11 supergravity (2.4) and using (3.3) we find that all
equations are satisfied provided that the equations of mo-
tion (2.5) of minimal gauged supergravity in D � 4 are
satisfied. This again shows the consistency of the trunca-
tion, at the level of the bosonic fields.

IV. REDUCTION OF IIB ON GENERAL M5

We now turn to the general class of supersymmetric
AdS5 �w M5 solutions of IIB supergravity with all fluxes
active that were analyzed in [15]. Such solutions are dual to
N � 1 SCFTs in d � 4 which all have aU�1� R-symmetry.
We will show that there is a consistent KK reduction onM5

to minimal gauged supergravity in D � 5. This case is
more involved than the previous two and so we have
included some details of the calculation in the appendices.

A. Internal geometry and fluxes

We begin by summarizing the results of [15]. The ten-
dimensional metric is a warped product of AdS5 with a
five-dimensional Riemannian manifold M5,

 ds2
10 � e2�	ds2�AdS5� � ds2�M5�
; (4.1)

where the warp factor � is a real function onM5. All fluxes
are active: in order to preserve the spatial SO�4; 2� isome-
try, the one-forms P, Q and the complex three-form G lie
entirely on the internal M5, and the five-form is taken to be

 F � f�volAdS5
� volM5

�; (4.2)

where f is a constant and vol is the volume form corre-
sponding to each of the metrics in the right-hand side of
(4.1). We use the same conventions as in [15] and some of
this is recorded in Appendix A.

The manifold M5 is equipped with two spinors �1, �2 of
Spin(5) subject to a set of differential and algebraic con-
straints arising from the IIB Killing spinor equations. The
spinors �1, �2 define a local identity structure onM5, which
can be conveniently characterized in terms of a set of
forms, bi-linear in �1, �2, consisting of a real scalar sin� ,
a complex scalar S, a real one-form K5, and two complex
one-forms K, K3. These satisfy the following differential
conditions:

 e�4�d�e4�S� � 3iK;

e�6�D�e6�K3� � P ^ K�3 � 4iW � e�2� �G;

e�8�d�e8�K5� � 4 sin�V � 6U;

(4.3)

where D�e6�K3� � d�e6�K3� � iQ ^ e6�K3. In (4.3), U,
V are real two-forms andW is a complex two-form that can
be constructed as bi-linears in � and moreover can be
expressed in terms of the identity structure:

 U �
1

2�cos2� � jSj2�
�i sin�K3 ^ K

�
3 � iK ^ K�

� 2 ImS�K ^ K5�;

V �
1

2 sin��cos2� � jSj2�
�i sin�K3 ^ K

�
3

� i	sin2� � jSj2
K ^ K� � 2 ImS�K ^ K5�;

W �
1

sin��cos2� � jSj2�
�cos2�K5 � ReS�K

� i sin� ImS�K� ^ K3:

(4.4)

In addition, one also has the algebraic constraint

 i K�3P � 2iK3
d�; (4.5)

the five-form flux is given by (4.2) with

 f � 4e4� sin�; (4.6)

the three-form flux is given by

 

�cos2� � jSj2�e�2� �G

� 2P ^ K�3 � �4d�� 4iK4 � 4i sin�K5� ^ K3

� 2 � �P ^ K�3 ^ K5 � 2d� ^ K3 ^ K5�; (4.7)

where sin�K4 � K5 � Re�S�K�, and the metric can be
written
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ds2�M5��
�K5�

2

sin2��jSj2
�

K3�K�3
cos2��jSj2

�
jSj2

cos2��jSj2
�ImS�1K�2

�
jSj2

sin2�

sin2��jSj2

cos2��jSj2

�
ReS�1K�

1

sin2��jSj2
K5

�
2
:

(4.8)

Finally, the vector dual to K5 is a Killing vector of the
metric (4.8) that also generates a symmetry of the full
solution: LK5

� � iK5
P � LK5

G � 0. The above con-
straints arising from supersymmetry ensure that all equa-
tions of motion and Bianchi identities are satisfied.

B. KK reduction

We now construct the ansatz for a KK reduction from
type IIB on the general M5 that we discussed in the last
subsection. We shall show that there is a consistent reduc-
tion to minimal D � 5 gauged supergravity.

OnM5 the vector field dual to the one-form K5 is Killing
and corresponds to the R-symmetry in the d � 4 dual
SCFT. If one introduces coordinates such that this dual
vector field is 3@ , we would like to shift d by the gauge
field A: noting that kK5k

2 � �sin2� � jSj2� this means that
we should make the shift

 K5 ! K̂5 � K5 � �sin2� � jSj2�
A
3
: (4.9)

In particular, given (4.1), our ansatz for the D � 10
type IIB metric is then

 ds2
10 � e2�	ds2

5 � ds
2�M̂5�
; (4.10)

where ds2
5 is an arbitrary metric on five-dimensional space-

time, and ds2�M̂5� is the metric ds2�M5� in (4.8) after the
shift (4.9).

The KK ansatz for the five-form and the complex three-
form of type IIB reads:

 F5 � F̂5 � F2 ^
1
3e

4��̂5V � �5F2 ^
1
3e

4�V;

G � Ĝ� F2 ^
1
3e

2�K3;
(4.11)

where F2 � dA, F̂5 and Ĝ are the five-form and three-form
flux of the undeformed solution on M5 after we make the
shift (4.9), V, K3 are the bi-linears on M5 introduced in the
previous subsection,3 and �̂5 and �5 are, respectively, the
Hodge duals with respect to the metrics ds2�M̂5� and ds2

5 in
(4.10). Notice that since the one-forms P and Q of the
undeformed solution on M5 are independent of K5, they
remain the same as they were.

In appendix B we provide some details of how we
constructed this particular ansatz. In particular, a long

calculation shows that the ansatz (4.10) and (4.11) with
P, Q unchanged satisfies all of the IIB equations of motion
and Bianchi identities, provided that ds2

5 and F2 satisfy

 R�� � �4g�� �
1
6F��F

�
� �

1
36g��F��F

��; (4.12)

 d �5 F2 �
1
3F2 ^ F2 � 0: (4.13)

These are precisely the equations of motion of minimal
D � 5 gauged supergravity [28]. This shows the consis-
tency of the truncation of the bosonic sector.

The truncation is, moreover, consistent at the level of the
variations of the IIB fermion fields (see Appendix C for the
details). On the one hand we find that the supersymmetry
variations of the dilatino � and of the internal components
of the gravitino �M identically vanish. On the other hand,
the external components of the IIB gravitino variation
reduce to

 	 
 � D
"�
1

2
�
"�

i
2
A
"�

i
24
F����

��

 � 4	�
���";

(4.14)
where  
 is the D � 5 gravitino and " a D � 5 spinor.
This is the gravitino variation corresponding to minimal
D � 5 gauged supergravity.

To summarize, we have shown that any bosonic solution
of D � 5 supergravity can be uplifted to D � 10 using a
general supersymmetric solution by means of the KK
ansatz (4.10) and (4.11). Moreover, if the five-dimensional
bosonic solution is supersymmetric4 then so will be the
uplifted ten-dimensional solution.

V. CONCLUSION

In this paper we have constructed explicit consistent KK
reduction Ansätze for general classes of AdS5 solutions in
type IIB supergravity and AdS4 solutions in D � 11 su-
pergravity. Our results can be extended to other classes of
supersymmetric solutions that have been classified. It
would be nice to show for the AdS5 �w M6 solutions of
D � 11 supergravity, classified in [30], which are dual to
N � 2 SCFTs in d � 4, that there is a consistent KK
reduction to the SU�2� �U�1� gauged supergravity of
[31]. A similar result in type IIB requires an analogous
classification of AdS5 �w M5 solutions that are dual to
N � 2 SCFTs in d � 4, which has not yet been carried out.

There are several classes of AdS4 solutions of D � 11
supergravity that can be considered. For example, one can
consider AdS4 � N7 solutions of D � 11 where N7 has
weak G2 holonomy [32,33] or the AdS4 �w N7 solutions
that arise from M5-branes wrapping associative 3-cycles
that were analyzed in [20]. These solutions are dual toN �
1 SCFTs in d � 3, which have no R-symmetry, and so one
expects a consistent KK reduction on N7 to a N � 1
supergravity whose field content is just the metric and

3The bi-linear V is not affected by the shift (4.9): choosing the
convenient frame of Appendix B of [20], one can check that all
K5 dependence of V in Eq. (4.4) drops out. 4Such solutions were classified in [29].
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fermions. In fact it is easy to show that there is a consistent
reduction to the N � 1 supergravity of [34]. Similarly, the
AdS4 � N7 solutions of D � 11 where N7 is tri-Sasaki
[32,33], are dual to N � 3 SCFTs in d � 3 and there
should be a consistent KK reduction to a SO�3� gauged
supergravity in D � 4. Additional AdS3 and AdS2 solu-
tions ofD � 11 supergravity studied in [20,35,36] can also
be considered.

The consistency of the KK truncation makes it manifest
from the gravity side that SCFTs with a type IIB orD � 11
dual share common sectors. For example, if we consider
such SCFTs in d � 4, the black hole solutions of minimal
gauged supergravity constructed in [37] should be relevant
for any of the SCFTs. It would be interesting to pursue this
further.
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APPENDIX A: IIB SUPERGRAVITY
CONVENTIONS

We quote here our conventions for IIB supergravity
[38,39], that follow those of [15]. The bosonic ten-
dimensional fields consist of a metric and the following
set of form field stregths: a complex one-form P, a complex
three-form G, and a real five-form F5, subject to the
following equations of motion:

 RMN � PMP
�
N � PNP

�
M �

1
96FMP1P2P3P4

FN
P1P2P3P4

� 1
8�GM

P1P2G�NP1P2
�GN

P1P2G�MP1P2

� 1
6gMNG

P1P2P3G�P1P2P3
�; (A1)

 � F5 � F5; (A2)

 D �G� P ^ �G� � iG ^ F5 � 0; (A3)

 D � P� 1
4G ^ �G � 0: (A4)

We are working in the formalism where SU�1; 1� is real-
ized linearly. In particular there is a local U�1� invariance
and QM acts as the corresponding gauge field. Note that
QM is a composite gauge field with field strength given by
dQ � �iP ^ P�. Since G has charge 1 and P has charge 2
under thisU�1�we have the covariant derivatives:D �G �
d �G� iQ ^ �G and D � P � d � P� 2iQ ^ �P. We
also need to impose the Bianchi identities

 dF5 �
i
2
G ^G� � 0; DG� P ^G� � 0;

DP � 0:
(A5)

The IIB fermionic fields consist of a gravitino �M and a
dilatino �. For supersymmetric bosonic solutions, the var-
iations under supersymmetry of the fermion fields,

 	� � i�MPM
c �

i
24

�P1P2P3GP1P2P3
; (A6)

 

	�M � DM�
1

96
��M

P1P2P3GP1P2P3
� 9�P1P2GMP1P2

�c

�
i

192
�P1P2P3P4FMP1P2P3P4

; (A7)

must vanish. The spinor  has composite U�1� charge
�1=2 so that DM � �rM �

i
2QM�.

APPENDIX B: IIB REDUCTION: BOSONIC
SECTOR

We now derive the KK reduction ansatz (4.11) for the
type IIB bosonic fields. Recall that the vector field dual to
the bi-linear K5 is Killing and that kK5k

2 � �sin2� � jSj2�.
We therefore need to make the shift

 K5 ! K̂5 � K5 � �sin2� � jSj2�
A
3

(B1)

in the metric of the undeformed solution to obtain

 ds2
10 � e2�	ds2

5 � ds
2�M̂5�
: (B2)

In fact for any p-form �p on M5 we can define a �̂p in M̂5

via
 �̂ p � �p �

1
3A ^ iK5

�p; (B3)

where iK5
is the interior product with respect to the vector

dual to the one-form K5. If we restrict to forms �p whose
Lie-derivative with respect to the Killing vector dual to K5

vanish, it is useful in the calculations below to note that

 d�̂p � d�p �
1
3A ^ diK5

�p �
1
3F2 ^ iK5

�p

� d�p �
1
3A ^ iK5

d�p �
1
3F2 ^ iK5

�p

� dd�p � 1
3F2 ^ iK5

�p: (B4)

We now propose the following KK ansatz for the five-
form and complex three-form field strengths. We first take
the fluxes of the undeformed AdS5 �w M5 solution, and
make the shift (B3) to obtain F̂5 and Ĝ. We then introduce
a set of forms �3, �2, 
1, 
0 on M5, which we take to be
invariant under the action of the Killing vector,5 and write

5This is a natural condition to impose. If we introduce coor-
dinates so that the Killing vector field dual to K5 is 3@ , then the
condition says that the components of the forms must be inde-
pendent of  .
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 F5 � F̂5 � F2 ^ �̂3 � �5F2 ^ �̂2;

G � Ĝ� F2 ^ 
̂1 � �5F2
̂0:
(B5)

The IIB forms P andQ in the KK ansatz are taken to be the
same as those in the undeformed solution.

For the KK reduction ansatz (B2) and (B5) to be con-
sistent, it must satisfy the IIB field Eqs. (A1)–(A5) when
the D � 5 Eqs. (4.12) and (4.13) for ds2

5, F2 are satisfied.
To carry out these calculations it is useful to use the
orthonormal frame ea, a � 1; . . . ; 5, on M5 that was intro-

duced in Appendix B of [15] which, in particular, contains

 e1 �
3

h
K5; h �

1

3

�������������������������
sin2� � jSj2

q
: (B6)

For M̂5 we use the corresponding frame obtained by the
prescription (B1).

The requirement that the fields obey the field Eqs. (A2)–
(A5) translates into a set of differential and algebraic
equations relating the undeformed forms �3, �2, 
1, 
0

to the undeformed fluxes G, F5, P, Q and metric on M5:

 d�2 �
i
2
�
�0G� 
0G

��;
1

3
iK5
�3 � �

1

3
�2 �

i
2

1 ^ 


�
1; d�3 �

i
2
�G ^ 
�1 �G

� ^ 
1� �
1

3
iK5
F5;

1

3
iK5
�2 �

i
2
�
�0
1 � 
0


�
1�; D
1 � P ^ 


�
1 �

1

3
iK5
G � 0; D
0 � P


�
0 � 0; iK5


1 � �
0;

�3 � �5�2;
1

3
e4�iK5

�5 
1 � �i
1 ^ �2 � i
0�3; �
1

3
e4� �5 
1 �

1

3
e4�
0iK5

volM5
� i
1 ^ �3;

D�e4� �5 
1� � P ^ e
4� �5 


�
1 � iG ^ �2 � i
0fvolM5

� 0; 
1 ^ �5
1 � 
2
0volM5

;

(B7)

where 
0,
1 both carry charge 1 under the compositeU�1�
gauge field so that e.g. D
1 � d
1 � iQ ^ 
1.

We must also demand that the KK ansatz satisfies the
Einstein equations. After substitution of (B5), and impos-
ing for simplicity �3 � �5�2 [one of the conditions in
(B7)] we find that the external, ��, components of the
Einstein Eq. (A1) read

 R�� � �4g�� � k1F��F�� � k2g��F��F��; (B8)

where k1, k2 are functions on M5 given by
 

k1 �
1
4	e
�8��2ab�ab2 � 2e�4�
0
�0 � 2e�4�
a1


�
1a

� 2h2
; (B9)

 k2 �
1
16	e

�8��2ab�ab2 � 3e�4�
0
�0 � e
�4�
a1


�
1a
:

(B10)

Comparing with (4.12) we see that we require6 that k1 �
1=6 and k2 � 1=36.

The mixed, �a, components of the Einstein Eqs. (A1)
give

 r�F�� �
k3

4
�����F

��F�� � 0 (B11)

with
 

k3 �
1

8h
	1a	e�8�abcde�

bc
2 �

de
2

� 4e�4��
0
�1a � 

�
0
1a�
: (B12)

Comparing with (4.13) we see that we demand k3 � �1=3.

Finally, the internal, ab, components of the Einstein
Eqs. (A1) give one more relation among the unknown
coefficients in the KK ansatz:

 4e�8��2ac�
c
2b � 2e�4��
1a


�
1b � 


�
1a
1b�

� 	ab�e
�8��2cd�

cd
2 � e

�4��
0

�
0 � 


c
1

�
1c��

� 4h2	a1	b1: (B13)

After considering the spinor bi-linears that characterize
the identity structure on M5 [15], we find that all of the
above conditions are satisfied if we choose

 
0 � 0; 
1 �
1
3e

2�K3;

�2 �
1
3e

4�V; �3 �
1
3e

4� �5 V:
(B14)

The most convenient way to prove this is to again use the
specific frame on M5 introduced in Appendix B of [15].

APPENDIX C: IIB REDUCTION: FERMIONS

Now we show that the KK ansatz (4.10) and (4.11) is
also consistent at the level of the supersymmetry variations
of the fermions. For this we follow the spinor conventions
of Appendix A of [15] which we refer the reader to for
more details (we will correct a typo in [15] below).

The undeformed AdS5 �w M5 solution admits Killing
spinors of the form

  �  � e�=2�1 � ��  
c � e�=2�c2 � �; (C1)

where  is a Killing spinor on AdS5, � is a constant two-
component spinor and, most importantly, �1, �2 are spin(5)
spinors on M5 that satisfy two differential conditions

6The possibility that k1, k2, and k3, below, cannot be chosen to
be constant is a potential source of inconsistency of the KK
reduction; a similar issue has been discussed for other reductions
in [18,40].
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 Dm�1 �
i
4
�e�4�f� 2��m�1 �

1

8
e�2�Gmnp�np�2 � 0;

�Dm�2 �
i
4
�e�4�f� 2��m�2 �

1

8
e�2�G�mnp�np�1 � 0;

(C2)

and four algebraic conditions
 

�m@m��1�
1

48
e�2��mnpGmnp�2�

i
4
�e�4�f�4��1�0;

�m@m��2�
1

48
e�2��mnpG�mnp�1�

i
4
�e�4�f�4��2�0;

�mPm�2�
1

24
e�2��mnpGmnp�1�0;

�mP�m�1�
1

24
e�2��mnpG�mnp�2�0;

(C3)

where �m generate Cliff(5) with �12345 � �1. Note that
 c � C1;4 

�, �ci � C5�
�
i , i � 1, 2, where C1;4, C5 are

charge conjugation matrices.
The KK ansatz for the D � 10 Killing spinor is then

simply

  � " � e�=2�1 � �� "
c � e�=2�c2 � �: (C4)

Here " is an arbitrary D � 5 spacetime spinor and the rest
is as in the undeformed case. For the gravitino, we shall
only need a KK reduction ansatz for the external compo-

nents, namely, (in tangent space):

 �
 �  
 � e��=2�1 � ��  c
 � e��=2�c2 � �; (C5)

where  
 is the D � 5 gravitino.
We now demand that the conditions for the KK ansatz to

preserve supersymmetry, namely, that the supersymmetry
variations of � and �M vanish, is the same as the con-
ditions for preservation of supersymmetry in the D � 5
gauged supergravity. We will use (B5) but with 
0 � 0 and
�3��5�2.

First consider the variations of the dilatino and of the
internal components �a of the gravitino. After substituting
(B5) into (A6) and (A7) and using (C2) and (C3), we find
that these variations vanish providing that
 


1a�a�1 � 0; 
�1a�
a�2 � 0;

�4h	a1�1 � 2ie�4��2ab�b�1 � ie�4��abc�bc2 �1

�e�2�
b1�ab�2 � 3e�2�
1a�2 � 0;

�4h	a1�2 � 2ie�4��2ab�b�2 � ie�4��abc�bc2 �2

�e�2�
�b1 �ab�1 � 3e�2�
�1a�1 � 0:

(C6)

One can check that these relations are indeed satisfied7

given our expressions (B14) for 
1 and �2.
Next consider the variation of the external components

of the gravitino. After substituting (B5) into (A7), one finds

 

	�
 �
1

2
e��=2�
"�

�
�

1

4
�e�4�f� 4��1� i�a@a��1�

i
48
e�2��abcGabc�2

�
� �

�
1

2
e��=2�
"

c �

�
�

1

4
�e�4�f� 4��c2� i�a@

a��c2�
i

48
e�2��abcGabc�

c
1

�
� �� e��=2

�
D
"� �1�

1

2
�
"� �1

�A
"� @ �1�
1

16
F
���"� ��4ih�1�1� e�4��2ab�ab�1� 3ie�2�
1a�a�2�

�
1

32
�
��F

��"� �ie�2�
1a�
a�2� e

�4��2bc�
bc�1�

�
� �� e��=2

�
D
"

c � �c2�
1

2
�
"

c � �c2�A
"
c � @ �

c
2

�
1

16
F
���"c � ��4ih�1�c2� e

�4��2ab�ab�c2� 3ie�2�
1a�a�c1�

�
1

32
�
��F��"c � �ie�2�
1a�a�c1� e

�4��2bc�bc�c2�
�
� �;

(C7)
where we are using the coordinate  so that the Killing vector dual to K5 is 3@ . In this expression the �
 generate
Cliff(4,1) and satisfy �01234 � �i (this corrects a sign in [15]). We also have 01234 � �1.

We now observe that for the choice of forms given in (B14) one has

 

�4ih�1�1 � e
�4��2ab�

ab�1 � 3ie�2�
1a�
a�2 � �

8i
3
�1;

ie�2�
1a�a�2 � e�4��2bc�bc�1 �
4i
3
�1 (C8)

and similar expressions for the last two terms of (C7). Using these results, the fact that @ �1 � �
i
2�1 and Eqs. (C3), after

introducing the KK ansatz (C5) for the gravitino we deduce that

JEROME P. GAUNTLETT AND OSCAR VARELA PHYSICAL REVIEW D 76, 126007 (2007)

126007-8



 

	 
 � e��=2�1 � �� 	 c
 � e��=2�c2 � � �
�
D
"�

1

2
�
"�

i
2
A
"�

i
24
F����

��

 � 4	�
���"

�
� e��=2�1 � �

�

�
D
"

c �
1

2
�
"

c �
i
2
A
"

c �
i

24
F����

��

 � 4	�
���"c

�
� e��=2�c2 � �;

(C9)

which implies

 

	 
 � D
"�
1

2
�
"�

i
2
A
"�

i
24
F����

��

 � 4	�
���";

(C10)

as claimed in the text.

[1] M. Cvetic, H. Lu, and C. N. Pope, Phys. Rev. D 62,
064028 (2000).

[2] B. de Wit and H. Nicolai, Nucl. Phys. B281, 211 (1987).
[3] H. Nastase, D. Vaman, and P. van Nieuwenhuizen, Phys.

Lett. B 469, 96 (1999).
[4] H. Nastase, D. Vaman, and P. van Nieuwenhuizen, Nucl.

Phys. B581, 179 (2000).
[5] M. Cvetic et al., Nucl. Phys. B558, 96 (1999).
[6] H. Lu, C. N. Pope, and T. A. Tran, Phys. Lett. B 475, 261

(2000).
[7] M. Cvetic, H. Lu, C. N. Pope, A. Sadrzadeh, and T. A.

Tran, Nucl. Phys. B586, 275 (2000).
[8] A. Khavaev, K. Pilch, and N. P. Warner, Phys. Lett. B 487,

14 (2000).
[9] M. J. Duff and C. N. Pope, Nucl. Phys. B255, 355 (1985).

[10] C. N. Pope and K. S. Stelle, Phys. Lett. B 198, 151 (1987).
[11] J. R. David, B. Sahoo, and A. Sen, J. High Energy Phys. 07

(2007) 058.
[12] A. Sen (private communication).
[13] A. Buchel and J. T. Liu, Nucl. Phys. B771, 93 (2007).
[14] T. T. Tsikas, Classical Quantum Gravity 3, 733 (1986).
[15] J. P. Gauntlett, D. Martelli, J. Sparks, and D. Waldram,

Classical Quantum Gravity 23, 4693 (2006).
[16] J. P. Gauntlett, D. Martelli, J. Sparks, and D. Waldram,

Classical Quantum Gravity 21, 4335 (2004).
[17] J. P. Gauntlett, E. O. Colgain, and O. Varela, J. High

Energy Phys. 02 (2007) 049.
[18] M. J. Duff, B. E. W. Nilsson, C. N. Pope, and N. P. Warner,

Phys. Lett. 149B, 90 (1984).
[19] C. N. Pope, in The Santa Fe Meeting on Consistency of

Truncations in Kaluza-Klein, edited by T. Goldman and
Michael Martin Nieto (World Scientific, Singapore, 1984).

[20] J. P. Gauntlett, O. A. P. Mac Conamhna, T. Mateos, and D.
Waldram, J. High Energy Phys. 11 (2006) 053.

[21] J. P. Gauntlett, D. Martelli, S. Pakis, and D. Waldram,

Commun. Math. Phys. 247, 421 (2004).
[22] J. P. Gauntlett and S. Pakis, J. High Energy Phys. 04

(2003) 039.
[23] E. Cremmer, B. Julia, and J. Scherk, Phys. Lett. 76B, 409

(1978).
[24] E. S. Fradkin and M. A. Vasiliev, ‘‘Model Of Supergravity

With Minimal Electromagnetic Interaction.’’
[25] D. Z. Freedman and A. Das, Nucl. Phys. B120, 221

(1977).
[26] M. M. Caldarelli and D. Klemm, J. High Energy Phys. 09

(2003) 019.
[27] J. P. Gauntlett, N. Kim, and D. Waldram, Phys. Rev. D 63,

126001 (2001).
[28] M. Gunaydin, G. Sierra, and P. K. Townsend, Nucl. Phys.

B242, 244 (1984).
[29] J. P. Gauntlett and J. B. Gutowski, Phys. Rev. D 68,

105009 (2003); 70, 089901(E) (2004).
[30] H. Lin, O. Lunin, and J. M. Maldacena, J. High Energy

Phys. 10 (2004) 025.
[31] L. J. Romans, Nucl. Phys. B267, 433 (1986).
[32] B. S. Acharya, J. M. Figueroa-O’Farrill, C. M. Hull, and

B. J. Spence, Adv. Theor. Math. Phys. 2, 1249 (1999).
[33] D. R. Morrison and M. R. Plesser, Adv. Theor. Math. Phys.

3, 1 (1999).
[34] P. K. Townsend, Phys. Rev. D 15, 2802 (1977).
[35] O. A. P. Mac Conamhna and E. Ó Colgáin, J. High Energy
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