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In the functional integral formulation of real-time thermal field theory, a time-dependent canonical
transformation of the integration variables can remove the chemical potential from the action. The
transformation eliminates the chemical potential from the differential equation satisfied by the propagator,
but the chemical potential appears in the transformed boundary conditions and the final result for the
perturbative Green’s functions is unchanged.
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I. INTRODUCTION

When quantum field theories are investigated at fixed
temperature and chemical potential, there is a small puzzle
that has not been discussed in the literature. If the calcu-
lations are done using the real-time functional integral
formalism, it appears that the chemical potential can be
completely eliminated by a time-dependent canonical
transformation. This paper shows that appearances are
deceiving; the chemical potential cannot actually be elim-
inated from the problem. If it is transformed away from the
action then it reappears in the boundary conditions that
must be satisfied by the functional integral in such a way as
to always give the same answer.

A chemical potential is introduced in the grand canoni-
cal ensemble as a Lagrange multiplier that controls the
amount of a particular conserved charge in the environ-
ment [1–4]. The conserved charge may correspond to
either a global symmetry or a local symmetry. The global
symmetry can be Abelian or non-Abelian; the local sym-
metry can be Abelian or non-Abelian. Regardless of how
complicated the theory, if calculations are done in real time
then it always appears possible to transform away the
chemical potential. The clearest example is that of a global
Abelian symmetry, and that case will be treated explicitly
in what follows.

Thus consider a charged scalar field with a free
Hamiltonian density

 H � �yH�H �
~r�yH �

~r�H �m2�yH�H: (1)

The subscript H denotes field operators in the Heisenberg
picture. The charge density

 � � i��yH�
y
H � �H�H�; (2)

when integrated over the volume, gives the charge operator
Q �

R
d3x�. The charge commutes with the Hamiltonian

�Q;H� � 0. The complex field �H has negative charge,

 �Q;�H� � ��H; (3)

and the adjoint field has positive charge. The charge will
continue to be conserved when there is an interaction of the
form V��y�� added to Eq. (1). For a self-interacting

theory, V could be ���y��2. Another possibility is to
introduce a real scalar field � with the interaction
g��y�, a model that has been recently studied and that
has nontrivial � dependence [5]. Neither the form of the
interaction nor the possible occurrence of spontaneous
symmetry breaking will have any bearing on the question
at hand, and consequently, it is sufficient to consider the
free Hamiltonian density (1).

In the operator formulation, the density operator at fixed
temperature and chemical potential is

 expf���H ��Q�g: (4)

In the real-time functional integral formulation, the gen-
erating functional with external sources J	, J for a system
at fixed temperature and chemical potential requires inte-
grating over complex c-number momenta � and �	 and
complex c-number fields � and �	:

 Z�J	; J� �
Z
�d�� exp

�
i
Z
C
d4x�I� � J	�� J�	�

�
:

(5)

Here �d�� � �d�d�	��d�d�	� and the integrand is

 I � � �
@�
@t
� �	

@�	

@t
�H ���: (6)

H and � are the c-number forms of the Hamiltonian
density and charge density:
 

H � �	�� j ~r�j2 �m2j�j2;

� � i��	�	 � ���:
(7)

The contour C in Eq. (5) lies in the complex-time plane,
beginning at some real initial time ti and ending at ti � i�.
Appendix A provides a derivation of Eq. (5).

It appears that the chemical potential can be eliminated
by making a time-dependent change of integration varia-
bles:
 

� � ei�t�0; �	 � e�i�t�0	;

� � e�i�t�0; �	 � ei�t�0	:
(8)

H and � have the same form in the new variables:
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H 0 � j�0j2 � j ~r�0j2 �m2j�0j2;

�0 � i��0	�0	 � �0�0�:
(9)

However, the integrand I� of the action changes inhomo-
geneously because
 

�
@�
@t
� �	

@�	

@t
� �0

@�0

@t
� �0	

@�0	

@t
� i���0�0 � �0	�0	�: (10)

The last term is ��� and cancels the ��� in Eq. (6).
Thus, in the new variables the action is independent of the
chemical potential:

 I 0 � �0
@�0

@t
� �0	

@�0	

@t
�H 0: (11)

The generating functional in Eq. (5) now appears to have
only a trivial dependence on �:

 Z�J	; J� �
Z
�d�0� exp

�
i
Z
C
d4x�I 0 � ei�tJ	�

� e�i�tJ�	�
�
: (12)

An alternative procedure would be to first perform the
functional integration over � and �	 and then perform
the change of variables on the remaining � and �	. The
chemical potential would still appear only in the source
terms.

The question that will be investigated is whether Eq. (5),
with � present in the Lagrangian, gives the same result as
Eq. (12), where � is absent from the Lagrangian. The
calculation of (5) is performed in Sec. II; the calculation
of (12) is performed in Sec. III. Some concluding remarks
appear in Sec. IV.

II. ACTION CONTAINING �

Neither functional integral, (5) or (12), can be computed
without an understanding of the kernel that inverts the
respective Lagrangians. Specification of the kernels comes
from the Kubo-Martin-Schwinger (KMS) conditions [6]
that the kernels must satisfy. These conditions will be
developed within the functional integral formalism without
appeal to the underlying operator theories.

It is well known, and reviewed in Appendix A, that the
generating functional Z�J; J	� in Eq. (5) represents the
following trace of an operator product:

 Tr
�
e���H��Q�TC exp

�
i
Z
C
d4x�J	�H � J�

y
H�

��
: (13)

Appendix B shows that the operator�H in this formula has
a time dependence determined by H ��Q instead of by
the Hamiltonian alone. The thermal average in Eq. (13) is
of the ordered exponential in which the ordering is along a
time contour C that begins at ti and ends at ti � i�. The

standard real-time contour is a union of four straight-line
paths: C1 runs along the real axis from a large negative
time ti to a large positive time tp; C2 runs antiparallel to the
real-time axis from tp � i� to ti � i�, where 0 
 � 
 �;
C3 connects tp to tp � i�; and C4 connects ti � i� to ti �
i�. The numbering is conventional [1,2] and chosen be-
causeC3 andC4 make no contribution when the limits ti !
�1 and tp ! 1 are taken at the end of the calculation.

The functional integral representation (5) is based on the
Feynman-Matthews-Salam formula [7,8] for computing
transition matrix elements between eigenstates of the
Heisenberg field operator �H�x�. (See Appendix A.) To
incorporate the thermal weighting, the initial eigenstate is
j�i; tii and the final eigenstate is j�f; ti � i�i. To compute
the trace over states requires setting �f � �i and then
integrating over all �i. Consequently the functional inte-
gral is only over c-number fields that satisfy the periodicity
conditions

 �� ~x; ti � i�� � �� ~x; ti�; �	� ~x; ti � i�� � �	� ~x; ti�:

(14)

These must hold only for one value of ti, not for all real
times.

Applying �2=�J	�x��J�0� to Eq. (5) and then setting the
sources to zero gives the functional integral representation
of the contour-ordered propagator:

 DC�x� y� �
Z
�d�� exp

�
i
Z
C
d4xI�

�
��x��	�y�: (15)

Along the contour C � C1 [ C2 [ C3 [ C4 the propagator
is defined as

 DC�x� y� �
�
D>�x� y� if x0 later than y0;
D<�x� y� if x0 earlier than y0:

(16)

Now set ~y � 0 and consider two sets of times:

 �a� x0 � ti and y0 � ti � t;

�b� x0 � ti � i� and y0 � ti � t
(17)

where t > 0. For choice (a), x0 occurs earlier than y0 and so
the propagator isD<� ~x;�t�; whereas in (b), x0 occurs later
on the contour than y0 and so the propagator isD>� ~x;�t�
i��. In the functional integral (15) for case (a), the inte-
grand is �� ~x; ti��	�~0; ti � t�; and for (b), the integrand in
(15) is �� ~x; ti � i���	�~0; ti � t�. Because �� ~x; ti� �
�� ~x; ti � i�� the integrand of (15) is the same in both
cases. Thus the propagator satisfies

 D<� ~x;�t� � D>� ~x;�t� i��: (18)

This is the KMS condition, which was originally derived
by operator methods [6].

To complete the calculation of the generating functional
(5) requires a simple Gaussian integration over the mo-
menta to obtain
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 Z�J	; J� �
Z
�d�d�	� exp

�
i
Z
C
d4x�L� � J

	�� J�	�
�
:

(19)

The � dependence of the integrand appears in

 L � �

��������@�@t � i��
��������

2
�j ~r�j2 �m2j�j2: (20)

Another Gaussian integration gives

 Z�J; J	� � exp
�
�
Z
C
d4xd4yJ	�x�DC�x� y�J�y�

�
; (21)

where DC is the contour-ordered propagator. When ti !
�1 and tp ! 1, the contours C3 and C4 do not contribute
[1,2]. In the above formula, x is on either C1 or C2 and
similarly for y. This makes matrix labeling convenient:

 Z�J; J	� � exp
�
�
Z
C1[C2

d4xd4yJ	a�x�Dab�x� y�Jb�y�
�
:

(22)

When x and y are both on C1, contour ordering is the same
as time ordering; when both are on C2, contour ordering is
anti-time-ordering:

 D11�x� � 	�t�D>�x� � 	��t�D<�x�; (23)

 D22�x� � 	�t�D<�x� � 	��t�D>�x�: (24)

If x is on C1 and y on C2, then D12�x� y� � D<�x� y�
and the choice ~y � 0 and y0 � �i� gives

 D12� ~x; t� i�� � D<� ~x; t� i��: (25)

If x is on C2 and y on C1, then D21�x� y� � D>�x� y�
and the choice x0 � t� i�, ~y � 0, y0 � 0 gives

 D21� ~x; t� i�� � D>� ~x; t� i��: (26)

These results are standard [1–3]. The Lagrangian (20)
determines the differential equation for the propagator
matrix:

 

��
i
@
@t
��

�
2
�r2 �m2

�
Dab�x� � i�ab�

4�x�: (27)

Although the differential equation contains �, it does not
contain the temperature. Temperature enters through the
KMS boundary condition (18). The solution is summarized
by

 D>�x� �
Z d3k

�2��32E

�
ei� ~k� ~x��E���t��1� n�E����

� ei�� ~k� ~x��E���t�n�E���
�
; (28)

 D<�x� �
Z d3k

�2��32E

�
ei� ~k� ~x��E���t�n�E���

� ei�� ~k� ~x��E���t��1� n�E����
�
: (29)

It is worth noting that D> and D< have both a trivial �
dependence in the multiplicative factor ei�t and a non-
trivial dependence on � that occurs in the Bose-Einstein
functions n�!� � 1=�exp��!� � 1�.

III. ACTION INDEPENDENT OF �

Now we compute the functional integral (12). The dif-
ferential equation satisfied by the propagators will now be
independent of the chemical potential. (Consistent with
this, Appendix B shows that the time dependence of the
field operator �0H is determined by the Hamiltonian H,
rather than H ��Q as was the case for �H in Sec. II.)
However, the simpler differential equation for the propa-
gators has boundary conditions that involve �, and the
result for the correlation functions will turn out the same.

The first step is to apply �2=�J	�x��J�0� to the generat-
ing functional in Eq. (12) and then set the sources to zero.
This gives the functional integral representation of a
contour-ordered propagator, D0C�x� y�. The question is
whether this D0C�x� y� has the same value as obtained
for DC�x� y� in Sec. II. The explicit factors of exp��i�t�
in Eq. (12) give

 D0C�x� y� � ei�x0GC�x� y�e�i�y
0
; (30)

where GC is defined by the function integral

 GC�x� y� �
Z
�d�0� exp

�
i
Z
C
d4xI 0�

�
�0�x��0	�y�: (31)

The periodicity conditions on the new field variables re-
quired by Eqs. (8) and (14) are
 

�0� ~x; ti � i�� � e����0� ~x; ti�;

�0	� ~x; ti � i�� � e���0	� ~x; ti�:
(32)

Again, set ~y � 0 and consider the same two sets of times
given in Eq. (17). For (a), x0 occurs earlier than y0 and so
the contour propagator in (31) is G<� ~x;�t�:
 

G<� ~x;�t� �
Z
�d�0�

�
exp

�
i
Z
C
d4xI 0�

�

��0� ~x; ti��
0	�~0; ti � t�

�
: (33)

For (b), since x0 occurs later on the contour than y0, the
contour propagator is G>� ~x;�t� i��:
 

G>� ~x;�t� i�� �
Z
�d�0�

�
exp

�
i
Z
C
d4xI 0�

�

��0� ~x; ti � i���0	�~0; ti � t�
�
: (34)
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Because �0� ~x; ti � i�� � e����0� ~x; ti� from (32), the
modified KMS condition contains the chemical potential:

 G<� ~x;�t� � e��G>� ~x;�t� i��: (35)

It is straightforward to complete the calculation of
Eq. (12). Integration over the momenta �0 and �0	 gives
 

Z�J	; J� �
Z
�d�0d�0	�

� exp
�
i
Z
C
d4x�L0 � ei�tJ	�0 � e�i�tJ�0	�

�
;

(36)

where L0 is independent of chemical potential:

 L 0 �

��������@�
0

@t

��������
2
�j ~r�j2 �m2j�j2: (37)

Integration over the fields gives

 Z�J; J	� � exp
�
�
Z
C
d4xd4ye�i�x

0
D0C�x� y�J�y�e

i�y0

�
:

(38)

As before, in the limit ti ! �1 and tp ! 1 the contours
C3 and C4 do not contribute and the result collapses to
 

Z�J	; J� � exp
�
�
Z
C1[C2

d4xd4y�ei�x0J	a�x�

�Gab�x� y�Jb�y�e�i�y0�

�
:

The Lagrangian density L0 requires the kernel G to satisfy

 

�
�
@2

@t2
�r2 �m2

�
Gab�x� � i�ab�4�x�: (39)

The Gab have the same decomposition in terms of G> and
G< as in Sec. III. The solutions satisfying the modified
KMS condition (35) are

 G>�x� �
Z d3k

�2��32E
�ei� ~k� ~x�Et��1� n�E����

� ei�� ~k� ~x�Et�n�E����; (40)

 

G<�x� �
Z d3k

�2��32E
�ei� ~k� ~x�Et�n�E���

� ei�� ~k� ~x�Et��1� n�E�����: (41)

From Eq. (30), D0ab�x� � ei�tGab�x�. Consequently
D0>�x� � ei�tG>�x� which is exactly the same as D>�x�
in Eq. (28). And D0<�x� � ei�tG<�x� which is the same as
D<�x� in Eq. (29).

IV. CONCLUSIONS

The previous calculations show that, in the functional
integral formulation of real-time thermal field theory, the

physical consequences of a chemical potential cannot be
transformed away. When any interaction that conserves
charge is included, then order-by-order in perturbation
theory, the physical effects of the chemical potential cannot
be transformed away.

Appendix A shows that the functional integral represen-
tation requires the underlying field operator �H introduced
in Sec. I to have a time dependence determined not by H
but by H ��Q. Appendix B shows that this time depen-
dence agrees with the canonical quantization procedure.

There is an interesting question that arises regarding the
change of variables from �, � to �0, �0 that eliminates the
chemical potential from the action. Since the functional
integral is quantum mechanical, a change of integration
variables is not required to preserve the classical equations
of motion. Nevertheless, Appendix C shows that if �, �
obey the classical equations of Hamilton, then the canoni-
cal transformation that implements the change to �0, �0

will change the classical Hamiltonian in such a way that
�0, �0 satisfy the classical equations with the new
Hamiltonian. This holds regardless of the form of the
Hamiltonian, and it holds even if the charge is not con-
served by the Hamiltonian dynamics.

Appendix D shows that in the imaginary-time formula-
tion of thermal field theory, where real field components
are used, the transformation question does not arise be-
cause it is not possible to make a change of variables that
removes the chemical potential from the action. In this
sense the imaginary-time calculation is more straightfor-
ward. One could calculate the effects of a chemical poten-
tial and then analytically continue the results to real time.
The equivalence of quantum field theories in imaginary
time and in real time relies on the Osterwalder-Schrader
theorem [9,10]. However this theorem requires SO�4� in-
variance of the Euclidean theory and SO�3; 1� invariance of
the Minkowski theory. Since the chemical potential term
explicitly breaks the invariance, the theorem is not
applicable.

APPENDIX A: BRIEF DERIVATION OF THE
FUNCTIONAL INTEGRAL REPRESENTATION

FOR THE GENERATING FUNCTIONAL

1. Action containing �

The presence of the chemical potential in Eq. (5) re-
quires starting with the underlying operator theory in
which H and � are given by Eqs. (1) and (2). To relate
the operator theory to the functional integral, it is necessary
that the time dependence of the Heisenberg field operator
�H be given by

 �H ��Q;�H� � �i
@�H

@t
: (A1)

This is a bit surprising. Appendix B employs canonical
quantization to verify this time dependence. The immedi-
ate consequence of (A1) is
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 �H� ~x; t� � ei�H��Q�t�S� ~x�e�i�H��Q�t;

�yH� ~x; t� � ei�H��Q�t�yS � ~x�e
�i�H��Q�t;

(A2)

where �S� ~x� � �H� ~x; 0� is the Schroedinger-picture op-
erator. The functional integral is built on eigenstates of the
Schroedinger-picture operators:

 �S� ~x�j�i � j�i�� ~x�; �yS � ~x�j�i � j�i�
	� ~x�: (A3)

Then define time-dependent states

 j�; ti � ei�H��Q�tj�i: (A4)

It is important that the time dependence of the state is
opposite to that of a Schroedinger-picture state vector. In
particular, the time dependence is not the result of time
evolution. Rather, the time dependence is mandated by the
necessity to form eigenstates of the time-dependent
Heisenberg field operators:

 �H� ~x; t�j�; ti � j�; ti�S� ~x�;

�yH� ~x; t�j�; ti � j�; ti�	S� ~x�:
(A5)

The eigenvalues �S and �	S are time independent. With
these states, the Feynman-Matthews-Salam [7,8] formula
provides a way to compute matrix elements of time-
ordered operators:
 

h�f; tfjT exp
�
i
Z tf

ti
d4x�J	�H � J�

y
H�

�
j�i; tii

�
Z
�d�d�	�

Z �f

�i

�d�d�	�

� exp
�
i
Z tf

ti
d4x�I � J	�� J�	�

�
; (A6)

with I given by Eq. (6). The initial and final values of the
field variables in the functional integration must satisfy
�� ~x; ti� � �i� ~x� and �� ~x; tf� � �f� ~x�.

The time dependence (A4) implies that

 h�f; tfj � h�f; tij exp�i�H ��Q��ti � tf��: (A7)

To make this into a thermal average requires choosing ti �
tf � i�. Then choosing �f � �i gives a diagonal matrix
element of the form h�i; tij . . . j�i; tii. To compute the
trace requires integrating over all �i. Thus the functional
integration is over fields that satisfy the boundary condi-
tions

 �� ~x; ti � i�� � �� ~x; ti�; �y� ~x; ti � i�� � �y� ~x; ti�:

(A8)

The result of this prescription is the thermal average of the
ordered exponential in which the ordering is along a time
contour C that begins at ti and ends at ti � i�:

 

Tr
�
e���H��Q�TC exp

�
i
Z
C
d4x�J	�H � J�

y
H�

��

�
Z
�d�d�	�

Z
BC
�d�d�	�

� exp
�
i
Z
C
d4x�I � J	�� J�	�

�
; (A9)

where BC refers to the boundary condition (A8). This is the
generating function given in Eq. (5).

2. Action independent of �

Suppose instead that one is given the functional integral
(12). The operators�0H and�0yH satisfy Eqs. (A1)–(A6) but
with � � 0. Then Eq. (A7) becomes

 h�0f; tfj � h�0f; tij exp�iH�ti � tf��: (A10)

For this to be a thermal average requires ti � tf � i� as
usual. For the average to be performed at finite chemical
potential requires

 h�0f; tij � h�
0
i; tije

��Q: (A11)

This requires that the c-number fields satisfy the boundary
conditions (32)
 

�0� ~x; ti � i�� � e����0� ~x; ti�;

�0	� ~x; ti � i�� � e���0	� ~x; ti�:
(A12)

APPENDIX B: COMPARISON WITH CANONICAL
QUANTIZATION

1. Action containing �

It is simple to check that the functional integral calcu-
lation done in Sec. II corresponds to canonical quantization
with the time dependence given by Eq. (A1). With a
partition function Z � Tr�exp����H ��Q���, the two
thermal correlators are

 D>�x� � �iTr�e���H��Q��H�x��
y
H�0��=Z;

D<�x� � �iTr�e���H��Q��yH�0��H�x��=Z:
(B1)

The time dependence in (A1) implies

 �H� ~x;�t� i�� � e��H��Q��H� ~x;�t�e���H��Q�; (B2)

which leads to

 D<� ~x;�t� � D>� ~x;�t� i��: (B3)

This is the KMS relation in Eq. (18) that was determined
directly from the functional integral.

2. Action independent of �

The functional integral calculation performed in Sec. III
corresponds to an operator theory in which �H is changed
to �0H � e�i�t�H. The time dependence that follows from
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Eq. (A1) is

 �H ��Q;�0H� � �i
@�0H
@t
���0H: (B4)

Since �Q;�0H� � ��
0
H, this implies

 �H;�0H� � �i
@�0H
@t

: (B5)

This is the usual time dependence of a field operator. The
thermal correlation functions of this field are

 G>�x� � �iTr�e���H��Q��0H�x��
0y
H �0��=Z;

G<�x� � �iTr�e���H��Q��0yH �0��
0
H�x��=Z:

(B6)

These satisfy

 G<� ~x;�t� � e��G>� ~x;�t� i��; (B7)

which is the second KMS relation (35), which was deduced
in Sec. III from the functional integral.

APPENDIX C: ELIMINATION OF THE CHEMICAL
POTENTIAL BY A CANONICAL

TRANSFORMATION IN CLASSICAL MECHANICS

The change of variables from �, � to �0, �0 eliminates
the chemical potential � from the action. The functional
integral, being quantum mechanical, is not limited to trans-
formations that preserve the classical equations of motion.
This appendix will show that the above transformation
does preserve Hamilton’s equations.

Let H ��;�	; �;�	� be any function of the momenta
and the fields, which may or may not have a conserved
charge. Define the Hamiltonian density

 H � �H ��;�	; �;�	� � i���	�	 � ���: (C1)

Hamilton’s equations are

 

@�
@t
�
@H�

@�
;

@�
@t
� �

@H�

@�
; (C2)

and similarly for �	,�	. Now consider new variables ��, ��
and their complex conjugates. We would like to find a new
Hamiltonian �H such that

 

@ ��
@t
�
@ �H

@ ��
;

@ ��
@t
� �

@ �H

@ ��
: (C3)

For both sets of Hamiltonian equations to come from a
principle of least action, it is necessary that, for some
function F of the various canonical variables,
 

�d�� �	d�	 �H�dt � ��d ��� ��	d ��	

� �Hdt� dF: (C4)

The relation of the new variables to the old variables is
determined by the choice of F, and this choice then deter-
mines the dependence of �H on the new variables. To
generate the transformation needed here, the appropriate
choice is

 F � ���e�i�t�� ��� � ��	�ei�t�	 � ��	�: (C5)

Equating coefficients of d� and d�	 gives

 � � ��e�i�t; �	 � ��	ei�t: (C6)

The coefficients of d �� and d ��	 give

 e�i�t� � ��; ei�t�	 � ��	: (C7)

The coefficients of d �� and d ��	 give the identities �� � ��
and ��	 � ��	. Equations (C6) and (C7) coincide with the
change of integration variables in Eq. (8).

In the new variables, Hamilton’s equations are Eq. (C3).
The new Hamiltonian, �H , is found by equating coeffi-
cients of dt in Eq. (C4):
 

�H �H� �
@F
@t
�H� � i�� ��	ei�t�	 � ��e�i�t� �

�H� � i���
	�	 � ���: (C8)

The last term exactly cancels the � dependence in (C1).
Thus the new Hamiltonian is

 

�H �H �e�i�t ��; ei�t ��	; ei�t ��; e�i�t ��	�: (C9)

In the case of interest here the original Hamiltonian is

 H ��;�	; �;�	� � �	�� j ~r�j2 �m2j�j2; (C10)

and consequently the new Hamiltonian is

 

�H � ��	 ��� j ~r �� j2 �m2j ��j2: (C11)

APPENDIX D: CHEMICAL POTENTIALS IN
IMAGINARY TIME

In the complex-time formulation of thermal field theory
it is very awkward to remove the chemical potential from
the action. With the complex field expressed in terms of
real fields, � � ��1 � i�2�=

���
2
p

, the Hamiltonian and
charge density are
 

H � 1
2�

2
j �

1
2�
~r�j�

2 � 1
2m

2�2
j ;

� � �1�2 � �2�1:
(D1)

The fields are defined for imaginary time t � �i
 on the
interval 0 
 
 
 � and satisfy the periodicity condition

 �j� ~x; �� � �j� ~x; 0�: (D2)
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The chemical-potential dependent action in Eq. (6) be-
comes

 I � � i�j
@�j

@

�H ���: (D3)

Both H and � are real, but the first term is pure imaginary.
Thus no real transformation of the�j and�j can produce a
cancellation of the �� term.
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