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A popular three-dimensional reduction of the Bethe-Salpeter formalism for the description of bound
states in quantum field theory is the Salpeter equation, derived by assuming both instantaneous
interactions and free propagation of all bound-state constituents. Numerical (variational) studies of the
Salpeter equation with confining interaction, however, observed specific instabilities of the solutions,
likely related to the Klein paradox and rendering (part of the) bound states unstable. An analytic
investigation of the problem by a comprehensive spectral analysis is feasible for the reduced Salpeter
equation with only harmonic-oscillator confining interactions. There we are able to prove rigorously that
the bound-state solutions correspond to real discrete spectra bounded from below and are thus free of all
instabilities.
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I. INTRODUCTION

The most widely explored three-dimensional reduction
of the Bethe-Salpeter formalism [1] for the description of
bound states within quantum field theory is the Salpeter
equation [2]. The Salpeter equation controls the Salpeter
amplitude, which in momentum space encodes the distri-
bution of relative momenta of all bound-state constituents.
In elementary particle physics its application to quantum
electrodynamics (QED) and quantum chromodynamics
(QCD) has met considerable success. In particular, within
the latter realm it has evolved to a well-established stan-
dard tool for describing from first principles hadrons as
bound states of quarks, confined by the strong interactions.
Surprisingly or not, however, the solutions of Salpeter’s
equation with confining interactions have been numerically
shown to develop for some Lorentz structures of the Bethe-
Salpeter kernel representing all interactions between the
bound-state constituents instabilities which cause states
expected to be stable to decay.

In contrast, the reduced Salpeter equation [3–7], derived
from the full Salpeter equation by neglecting some of the
interaction terms (Sec. II), offers the chance to study the
question of stability analytically. Such instabilities should
arise first for pseudoscalar states (Sec. III); there, stripping
off all angular variables simplifies [8–15] the reduced
Salpeter equation to a single integral equation (Sec. IV).
Harmonic-oscillator confining interactions (Sec. V) have a
big advantage: In momentum space, they are represented

by a simple Laplacian, converting thus our integral to
differential equations (Sec. VI). Their analysis proves
that, for all famous Lorentz structures, including one pro-
posed by Böhm, Joos, and Krammer (BJK hereafter) [16],
studied in Ref. [17] and more recently used, among others,
by a group in Bonn [18–21], any bound-state solution is
related to a real (Sec. VII) and discrete (Sec. VIII) energy
eigenvalue, and thus stable. Similar considerations can be
applied to the full Salpeter equation (Sec. IX).

II. BETHE-SALPETER FORMALISM IN
INSTANTANEOUS LIMIT

We are interested in instantaneous approximations to
Bethe-Salpeter equations describing bound states com-
posed of a fermion and an antifermion. Let these constit-
uents, denoted by i � 1, 2, carry the momenta p1 and p2,
which will enter also in terms of the total momentum P �
p1 � p2 and, for a real parameter � or � , the relative
momentum p � p1 � �P � �P� p2.

A. Salpeter equation

Any derivation of the Salpeter equation [2] as one of a
variety of possible three-dimensional reductions of the
Bethe-Salpeter formalism is based on just two fundamental
assumptions: First, one obtains the instantaneous Bethe-
Salpeter equation if all interactions between the bound-
state constituents are instantaneous in the center-of-
momentum frame of the bound state. In the Bethe-
Salpeter equation [1] all interactions between bound-state
constituents are encoded in their integral kernel, K. The
instantaneous approximation then implies that K depends
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only on the spatial components of the relative momenta
involved: K � K�p; q�. Second, one arrives at the Salpeter
equation if every bound-state constituent propagates as a
free particle with effective mass, m. Salpeter’s equation
adopts the free fermion propagator

 S0�p;m� �
i

6p�m� i"
� i

6p�m

p2 �m2 � i"
; " # 0:

Let us present those aspects of the Salpeter equation
which will be relevant for stability. We introduce the one-
particle energy Ei�p�, the one-particle Dirac Hamiltonian
Hi�p�, and the energy projection operators ��i �p� for
positive or negative energy of particle i � 1, 2 by
 

Ei�p� �
������������������
p2 �m2

i

q
; i � 1; 2;

Hi�p� � �0�� � p�mi�; i � 1; 2;

��i �p� �
Ei�p� �Hi�p�

2Ei�p�
; i � 1; 2;

related, for i � 1, 2, by H2
i �p� � E2

i �p� and
��i �p�Hi�p� � Hi�p��

�
i �p� � �Ei�p��

�
i �p�, all

operators ��i �p� fulfilling ��i �p��
�
i �p� � ��i �p�,

��i �p��
	
i �p� � 0, ��i �p� ���i �p� � 1. In terms of the

above abbreviations, the Salpeter equation [2], for bound
states of a fermion (of mass m1 and momentum p1) and an
antifermion (of mass m2 and momentum p2), reads
 

��p� �
Z d3q

�2��3

�
��1 �p1��0
K�p; q���q���0��2 �p2�

P0 � E1�p1� � E2�p2�

�
��1 �p1��0
K�p; q���q���0��2 �p2�

P0 � E1�p1� � E2�p2�

�
: (1)

Accordingly, every solution ��p� of the Salpeter equation
has to satisfy the two constraints

 ��1 �p1���p��
�
2 �p2� � ��1 �p1���p��

�
2 �p2� � 0;

which, by considering their sum or difference, prove to be
equivalent to a single constraint:

 

H1�p1�

E1�p1�
��p� ���p�

H2�p2�

E2�p2�
� 0 (2)

or, equivalently,

 ��p� �
H1�p1���p�H2�p2�

E1�p1�E2�p2�
� 0:

With the help of the decomposition of unity in terms of
projection operators ��i �p�, that is, 1 � 1 � ��1 �p1� �
��2 �p2� ���1 �p1� ���2 �p2� ���1 �p1� ���2 �p2� �
��1 �p1� ���2 �p2�, a Salpeter amplitude ��p� may be,
in general, decomposed into the components
��1 �p1���p��

�
2 �p2�:

 ��p� � ��1 �p1���p��
�
2 �p2� ���1 �p1���p��

�
2 �p2�

���1 �p1���p��
�
2 �p2� ���1 �p1���p��

�
2 �p2�:

The above constraint(s) on the solutions ��p� of the
Salpeter equation (1), arising from its specific projector
structure, halve, in fact, the number of independent com-
ponents of ��p�:

 ��p� � ��1 �p1���p��
�
2 �p2� ���1 �p1���p��

�
2 �p2�:

(3)

Assuming the Lorentz structures of the effective couplings
of the bound fermions i � 1, 2 to the corresponding inter-
action potentials to be identical, the Bethe-Salpeter kernel
K�p; q� is, quite generally, the sum of products of a tensor
product � � � of generic Dirac matrices � and a Lorentz-
scalar associated interaction function V��p; q�: K�p; q� �P

�V��p; q�� � �. More precisely, the action of the kernel
K�p; q� on the Salpeter amplitude ��p� is given by

 
K�p; q���q�� �
X
�

V��p; q����q��:

B. Reduced Salpeter equation

The projection operators ��i �p�, i � 1, 2, for positive or
negative energy satisfy the identity

 
��i �p��
c � 
C�1��i �p�C�

T � �	i �p�; i � 1; 2;

where C denotes the usual Dirac-space charge-conjugation
matrix. Accordingly, the second term on the right-hand
side of the Salpeter equation, Eq. (1), is that interaction
term which is related to the negative-energy components
��1 �p1���p��

�
2 �p2� � ��1 �p1���p�
�

�
2 �p2��

c of the
Salpeter amplitude ��p�. Assuming that this term’s con-
tribution may be reasonably ignored relative to that of the
first term yields the so-called reduced Salpeter equation
[3–7]

 
P0 � E1�p1� � E2�p2����p�

�
Z d3q

�2��3
��1 �p1��0
K�p; q���q���0��2 �p2�: (4)

This neglect might be justifiable for nonrelativistic and
weakly bound systems composed of heavy constituents,
such that, on the average, P0 � E1�p1� � E2�p2�  P0 �
E1�p1� � E2�p2�. More rigorously, one would like to be
sure, at least, that, for appropriate expectation values,

 

1

P0 � E1�p1� � E2�p2�


1

P0 � E1�p1� � E2�p2�
:

Formally, this reduction of the (full) Salpeter equation (1)
to the reduced Salpeter equation (4) can be accomplished
by subjecting the Salpeter amplitude ��p� to any of the
equalities

 ��1 �p1���p� � 0; ��p���2 �p2� � 0;

or, equivalently,
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H1�p1���p� � E1�p1���p�;

��p�H2�p2� � �E2�p2���p�;

because of the particular projector structure of the resulting
reduced Salpeter equation (4), imposition of one of
these two constraints automatically implies the other for
the solutions. These equalities entail the constraints
��1 �p1���p��

�
2 �p2� � ��1 �p1���p��

�
2 �p2� � 0 also sat-

isfied by each solution of the Salpeter equation (1), as well
as, in addition, the constraint ��1 �p1���p��

�
2 �p2� � 0. As

a trivial consequence, any solution ��p� of the reduced
Salpeter equation (4) is necessarily of the unique compo-
nent structure ��p� � ��1 �p1���p��

�
2 �p2�.

III. PSEUDOSCALAR BOUND STATES

The states easiest to investigate are bound states com-
posed of a fermion and the associated antifermion, which
guarantees a well-defined behavior with respect to charge
conjugation. The masses of a particle and the correspond-
ing antiparticle are, of course, identical, that is, m1 �
m2 � m. Now, in the center-of-momentum (or rest) frame
of the two-particle system under study, defined by P � 0,
which implies p � p1 � �p2, the time component P0 of
the total momentum P reduces to the bound-state mass
eigenvalue M, i.e., P0 � M. All indices i � 1, 2, distin-
guishing the two bound-state constituents, may then be

dropped throughout the following analysis: E1�p� �

E2�p� � E�p� � E�p� �
������������������
p2 �m2

p
, where p � jpj �������

p2
p

; and, mutatis mutandis, for the Hamiltonians Hi�p�
and energy projection operators ��i �p�.

For the sake of definiteness we focus, in what follows, to
the case of fermion-antifermion bound states of total spin
J, parity P � ��1�J�1, and charge-conjugation quantum
number C � ��1�J (which entails CP � �1 for all J). In
usual spectroscopic notation, these states are denoted by
n 1JJ (n � 1; 2; 3; . . . ). As the perhaps simplest example
within this context, precisely these physical systems have
been studied rather frequently (cf., e.g., Refs. [8–15]).

More specifically, we consider, for reasons of simplicity,
bound states of spin J � 0, that is, pseudoscalar bound
states, with spin-parity-charge-conjugation assignment
JPC � 0��, spectroscopically called 1S0. In nature such
systems are realized and observed, for instance, in the
realm of quark-antiquark bound states, in the form of the
pion and its radial excitations.

In the case of the Salpeter equation (1), as a conse-
quence of the constraints discussed in Subsection II A the
most general expansion of the Salpeter amplitude ��p�,
over a complete set of Dirac matrices, involves not the full
16 but only eight independent Salpeter components. For
the description of 1JJ states, only two of the latter, called
�1�p� and �2�p�, are relevant. With our notation for one-
particle energy E�p� and Dirac Hamiltonian H�p� intro-
duced in Subsection II A, full 1JJ Salpeter amplitudes ��p�

for fermion and antifermion of equal mass m and internal
momentum p thus read, in the center-of-momentum frame
of the bound state,

 ��p� �
�
�1�p�

H�p�
E�p�

��2�p�

�
�5:

In the case of the reduced Salpeter equation (4), the one
additional, two-faced constraint analyzed in Sub-
section II B entails, possibly taking into account
�5H��p� � �H�p��5, for the two independent Salpeter
components�1�p� and�2�p� in the 1JJ Salpeter amplitude
��p�, �1�p� � �2�p� � ��p�. Consequently, the generic
1JJ reduced Salpeter solutions ��p� read

 ��p� � ��p�
H�p� � E�p�

E�p�
�5 � 2��p����p��5:

IV. RADIAL EIGENVALUE EQUATIONS

For any (instantaneous) Bethe-Salpeter interaction ker-
nel K�p; q� of convolution type, i.e., K�p; q� � K�p� q�
and therefore V��p; q� � V��p� q�, by factorizing off all
dependence on angular variables encoded in corresponding
(vector) spherical harmonics both the Salpeter equation (1)
[8,10] and its reduced version (4) [11] can be converted
into equivalent systems of coupled equations for the radial
factors of all relevant independent Salpeter components.
For a fixed Lorentz structure of the kernel, the interactions
experienced by the bound-state constituents enter in such a
set of equations in the form of Fourier-Bessel transforms
VL�p; q� (L � 0; 1; 2; . . . ) of some spherically symmetric
static potential V�r� in configuration space:
 

VL�p; q� � 8�
Z 1

0
drr2jL�pr�jL�qr�V�r�;

L � 0; 1; 2; . . . ;

where jn�z�, for n � 0;�1;�2; . . . , label the spherical
Bessel functions of the first kind [22].

According to Sec. III, for pseudoscalar fermion-
antifermion bound states each solution of the reduced
Salpeter equation (4) involves only one independent
Salpeter component, ��p�. Consequently, the aforemen-
tioned system of radial equations collapses to a single
equation. The application of the radial reduction to the
reduced Salpeter equation (4) then yields the radial eigen-
value equations, for interactions of Lorentz-scalar Dirac
structure, � � � � 1 � 1,
 

2E�p���p� �
1

2

Z 1
0

dq q2

�2��2

��
1�

m2

E�p�E�q�

�
V0�p; q�

�
pq

E�p�E�q�
V1�p; q�

�
��q� � M��p�;

for interactions of time-component Lorentz-vector Dirac
structure, � � � � �0 � �0,
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2E�p���p� �
1

2

Z 1
0

dqq2

�2��2

��
1�

m2

E�p�E�q�

�
V0�p; q�

�
pq

E�p�E�q�
V1�p; q�

�
��q� � M��p�;

for interactions of Lorentz-vector Dirac structure, � � � �
�� � ��,

 2E�p���p� �
Z 1

0

dqq2

�2��2

�
2�

m2

E�p�E�q�

�
V0�p; q���q�

� M��p�;

for interactions of Lorentz-pseudoscalar Dirac structure,
� � � � �5 � �5,
 

2E�p���p� �
1

2

Z 1
0

dqq2

�2��2

��
1�

m2

E�p�E�q�

�
V0�p; q�

�
pq

E�p�E�q�
V1�p; q�

�
��q� � M��p�;

and, for interactions of BJK [16,17] Dirac structure, � �
� � 1

2 ��� � �
� � �5 � �5 � 1 � 1�,

 2E�p���p� �
Z 1

0

dqq2

�2��2
V0�p; q���q� � M��p�:

For any mass eigenvalue M such that M� 2E�p� � 0 the
above radial eigenvalue equations are all of the form of a
homogeneous linear (Fredholm) integral equation of the
second kind.

V. HARMONIC-OSCILLATOR INTERACTION

The reduced Salpeter equations of Sec. IV may be
discussed to a large extent analytically by focusing to
harmonic-oscillator interactions described by the
configuration-space potential

 V�r� � ar2; a � a� � 0; r � jxj:

For this choice of V�r� we are able to determine analyti-
cally all potential functions VL�p; q� entering in the radial
eigenvalue equations, by taking advantage of the differen-
tial equation [22] satisfied by all spherical Bessel func-
tions, generically called wn�z� (n � 0;�1;�2; . . . ):

 z2 d2

dz2 wn�z� � 2z
d

dz
wn�z� � 
z

2 � n�n� 1��wn�z� � 0:

Defining, as a radial relic of the Laplacian � � r � r, the
second-order differential operators

 D�L�p �
d2

dp2 �
2

p
d

dp
�
L�L� 1�

p2 ; L � 0; 1; 2; . . . ;

the spherical Bessel functions of the first kind, jL�pr�, in
the potentials VL�p; q� thus satisfy

 D�L�p jL�pr� � �r2jL�pr�; L � 0; 1; 2; . . .

This relation allows to replace the harmonic-oscillator
potential r2 in the potential function VL�p; q� by the dif-
ferential operator D�L�p . Hence, by means of the ‘‘orthogo-
nality relations’’
 Z 1

0
drr2jL�pr�jL�qr� �

�

2p2��p�q�; L� 0;1;2; . . . ;

involving Dirac’s delta distribution the potential functions
for harmonic oscillators become

 VL�p; q� � �
�2��2a

q2 D�L�p ��p� q�; L � 0; 1; 2; . . .

(5)

VI. ORDINARY DIFFERENTIAL EQUATIONS
(OF SECOND ORDER)

For the potential functions (5) representing some
harmonic-oscillator interaction, all radial integral eigen-
value equations derived in Sec. IV simplify to second-order
homogeneous linear differential equations; these read, for
kernels of Lorentz-scalar Dirac structure � � � � 1 � 1,
 �

2E�p� � a
�

1

E2�p�
�
m2�p2 � 5m2�

2E6�p�
�

2m2p

E4�p�

d

dp

�
m2

E2�p�
D�0�p

��
��p� � M��p�

or

 

�
2E�p� � a

�
2p2 � 3m2

2E4�p�
�

m2

E�p�
D�0�p

1

E�p�

��
��p�

� M��p�; (6)

for kernels of a time-component Lorentz-vector Dirac
structure � � � � �0 � �0,

 

�
2E�p� � a

�
2p2 � 3m2

2E4�p�
�D�0�p

��
��p� � M��p�; (7)

for kernels of Lorentz-vector Dirac structure � � � �
�� � ��,

 

�
2E�p� �

3am4

E6�p�
�

2am2p

E4�p�

d

dp
� a

�
2�

m2

E2�p�

�
D�0�p

�
��p�

� M��p�

or

 

�
2E�p� � a

�
m2

E�p�
D�0�p

1

E�p�
� 2D�0�p

��
��p� � M��p�;

(8)

for kernels of Lorentz-pseudoscalar Dirac structure � �
� � �5 � �5,

LI, LUCHA, AND SCHÖBERL PHYSICAL REVIEW D 76, 125028 (2007)

125028-4



 

�
2E�p� � a

2p2 � 3m2

2E4�p�

�
��p� � M��p�; (9)

and, for kernels of the BJK [16,17] Dirac structure � �
� � 1

2 ��� � �
� � �5 � �5 � 1 � 1�,

 
2E�p� � aD�0�p ���p� � M��p�: (10)

Note that, for the Lorentz pseudoscalar � � � � �5 � �5,
the reduced Salpeter equation with harmonic-oscillator
potential is represented by a pure multiplication operator.
This implies that the resulting spectrum is purely continu-
ous. That is, there are no bound states at all. This fact is
presumably not evident from the general representation of
the reduced Salpeter equation with pseudoscalar Lorentz
structure as a radial integral equation, as given in Sec. IV.

Transformation to a (zero-eigenvalue) Schrödinger
equation

For m � 0, the ordinary differential equations that rep-
resent the reduced Salpeter equation (4) for a harmonic-
oscillator interaction of Lorentz-scalar or Lorentz-vector
Dirac structure do not (yet) resemble the familiar form of
Schrödinger eigenvalue equations. However, both of them
can be easily cast into the form of the ordinary differential
equation of second order

 

�
�

d2

dp2 � 2g�p�
d

dp
� h�p�

�
��p� � 0; (11)

involving two given functions, g�p� and h�p�. Here, similar
to the role of the mass m of the two bound-state constitu-
ents and the coupling a of the harmonic-oscillator interac-
tion, the bound-state mass eigenvalue, M, enters—in the
function h�p� only—as a parameter. Then, by substitution
of the amplitudes ��p� by ��p� � f�p� �p�, with the
transforming function

 

f�p� � p exp
�
�
Z

dpg�p�
�
;

�
d

dp
� g�p�

�
f�p� �

f�p�
p

;

determined up to an irrelevant constant, Eq. (11) becomes
the eigenvalue equation for  �p�

 

�
�

d2

dp2 �
2

p
d

dp
�U�p�

�
 �p� � 0;

corresponding to eigenvalue 0, of the Schrödinger operator
�D�0�p �U�p�, with the potential

 U�p� � h�p� �
1

f�p�
d2f

dp2 �p� � 2
g�p�
f�p�

df
dp
�p�

� h�p� �
dg
dp
�p� � g2�p�; (12)

here the second equality follows most easily from the

differential equation satisfied by f�p�. Let us apply this
transformation to the two cumbersome Lorentz structures
under concern.

(i) In the case of a Lorentz-scalar Bethe-Salpeter ker-
nel, � � � � 1 � 1, the integration of

 g�p� �
1

p
�

p

E2�p�

gives f�p� � E�p� [as may be guessed from Eq. (6)]
whereas the potential U�p� reads

 U�p� �
E2�p�

am2 
M� 2E�p�� �
1

m2 �
1

2E2�p�
: (13)

(ii) For the case of a Lorentz-vector interaction kernel,
� � � � �� � ��, the integration of

 g�p� �
1

p
�

m2p

E2�p�
E2�p� � p2�

(which can be performed most conveniently by
partial fraction decomposition) yields

 f�p� �
E�p�������������������������

E2�p� � p2
p ;

reading off h�p� and inserting it into the expression
(12) for the potential U�p� entails

 U�p� �
E2�p�
2E�p� �M�

a
E2�p� � p2�

�
2m2p2

E2�p�
E2�p� � p2�2
: (14)

With these formulations of harmonic-oscillator reduced
Salpeter equations at our disposal, we may take advantage,
in Sec. VIII, of some general results derived for
Schrödinger operators.

VII. SELF-ADJOINTNESS OF
‘‘REDUCED SALPETER’’ OPERATORS

The main goal of our investigation is the thorough
analysis of the qualitative features of the spectra of the
reduced Salpeter equation (4) with harmonic-oscillator
interaction of various Lorentz structures by close inspec-
tion of the resulting differential equations given in Sec. VI.

In this respect, the first problem that arises is the ques-
tion of the self-adjointness of the operators in our (differ-
ential) Eqs. (6)–(10). It is straightforward to show that all
these operators are self-adjoint: multiplication by a real-
valued function clearly defines a self-adjoint operator and
by integration by parts it is easy to convince oneself that
D�0�p and
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 m2

�
1

E2�p�
D�0�p �

2p

E4�p�

d

dp

�
�

m2

E�p�
D�0�p

1

E�p�
�

3m4

E6�p�

or

 

m2

E�p�
D�0�p

1

E�p�
�

m2

E2�p�
D�0�p �

2m2p

E4�p�

d

dp
�

3m4

E6�p�

also represent self-adjoint operators. This implies that the
corresponding spectra are real.

The reality of all eigenvalues M can be also inferred
from Eqs. (18) and (16) of Ref. [11] along the lines of
argument presented (for the case of the full Salpeter equa-
tion, however) in Sec. II of Ref. [8] or Sec. II of Ref. [23].
From Eq. (4), all Salpeter amplitudes ��p� satisfy

 

M
Z d3p

�2��3
Tr
�y�p���p�� �

Z d3p

�2��3

E1�p� � E2�p��Tr
�y�p���p��

�
Z d3p

�2��3
Z d3q

�2��3
X
�

V��p; q�Tr
�y�p��0���q���0�:

In this relation, both the integral multiplied by M on the
left-hand side, that is, the ‘‘norm’’

 k�k2 �
Z d3p

�2��3
Tr
�y�p���p��

of each Salpeter amplitude ��p� emerging from the re-
duced Salpeter equation, and the first term on the right-
hand side are certainly real; the second term on the right-
hand side is real provided all Lorentz-scalar potential
functions V��p; q� satisfy V���q;p� � V��p; q� and the
Dirac matrices � satisfy �0�y�0 � ��, which implies
that the matrices ~� � �0� are (anti-) Hermitian, i.e., ~�y �
�~�. In contrast to the full Salpeter equation, for the
reduced Salpeter equation the norm k�k2 of all nonzero
solutions ��p� is definitely nonvanishing. Therefore, all
mass eigenvalues M are guaranteed to be real for reason-
able interaction kernels K�p; q�.

VIII. SPECTRA AND STABILITY OF THE BOUND
STATES

A. General considerations

Now let us investigate in turn the spectra corresponding
to the different Lorentz structures. Our task is considerably
facilitated by making use of a fundamental theorem [24]
about the spectra of Hamiltonians with potentials increas-
ing without bounds: a Schrödinger operatorH � ��� V,
defined as a sum of quadratic forms, with locally bounded,
positive, infinitely rising potential V�x�, that is, V�x� ! 1
for jxj ! 1, may be shown [24], by application of the
well-known minimum-maximum principle [24–26], to
have a purely discrete spectrum.

In the case of harmonic-oscillator interactions of
Lorentz-scalar or Lorentz-vector Dirac structure, we did
not succeed, for m � 0, to reformulate the radial eigen-
value equations (6) and (8), which fix the bound-state mass
eigenvalues M, as standard Schrödinger equations.
However, in Sec. VI we managed to cast such unruly
eigenvalue equations into the form

 
�D�0�p �U�p�� �p� � 0;

with U�p� given in terms of well-defined potentials U1�p�,
U2�p� by U�p� � U1�p� �MU2�p�.

Accordingly, let us analyze the Hamiltonian operator
HU � ���U. For U � U1 �MU2 satisfying the as-
sumptions of the above ‘‘infinitely-rising-potential theo-
rem,’’ the spectrum of this operator HU is, for any M,
entirely discrete. In other words, it consists exclusively of
isolated eigenvalues "�M� of finite multiplicity that de-
pend, of course, on the parameter M. Every single zero
of these functions "i�M� (i 2 Z) defines a bound-state
mass eigenvalue M of Eq. (6) or Eq. (8). The derivative
of each such function "i�M� with respect to M is given, in
accordance with the Hellmann-Feynman theorem [27], by
the expectation value over the associated eigenstate jii
(hijii � 1) of the derivative of this operator HU with re-
spect to M:

 

d"i
dM
�M� �

�
i
��������@HU

@M

��������i
�
� hijU2jii:

Then, if, for all eigenvalues "i�M�, this derivative is strictly
definite, i.e., if for given i either

 

d"i
dM
�M�> 0 8 M

or

 

d"i
dM
�M�< 0 8 M

holds, the discreteness of the spectrum of the Hamiltonian
HU for appropriate potentialsU translates into the discrete-
ness of all eigenvalues M of the bound-state equations (6)
or (8).

B. Lorentz-scalar kernel: � � � � 1 � 1

For massless bound-state constituents, that is, for m �
0, our harmonic-oscillator reduced Salpeter equation with
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Lorentz-scalar interaction kernel � � � � 1 � 1, Eq. (6),
simplifies to

 

�
2p�

a

p2

�
��p� � M��p�:

This relation involves a pure multiplication operator, which
possesses a purely continuous spectrum but no eigenvalues
at all. Consequently, the harmonic-oscillator reduced
Salpeter equation with Lorentz-scalar kernel will not de-
scribe bound states of massless constituents.

In the case of nonvanishing masses m � 0 of the bound-
state constituents, the auxiliary potential U�p� of Eq. (13)
satisfies, for negative harmonic-oscillator coupling a �
�jaj< 0, all requirements of the ‘‘infinitely-rising-
potential theorem.’’ The term U2 multiplied by M,

 U2�p� �
E2�p�

am2 ;

is, for a < 0, obviously negative definite. Hence, all our
considerations of Subsection VIII A apply:

 

d"i
dM
�

1

a
< 0 8 i:

Thus, for nonzero bound-state constituents’ mass the re-
sulting spectrum is purely discrete.

Figure 1 depicts, for a Lorentz-scalar kernel, the typical
behavior of the discrete auxiliary eigenvalues "�M� for
negative harmonic-oscillator couplings a < 0 producing
bound states.

C. Time-component Lorentz-vector kernel:
� � � � �0 � �0

For arbitrary mass m � 0 of the bound-state constitu-
ents, our harmonic-oscillator reduced Salpeter equation
with a time-component Lorentz-vector interaction kernel
� � � � �0 � �0, Eq. (7), yields a Schrödinger equation
with an effective potential V�p� in momentum space.

For massless particles, i.e., for m � 0, this potential
V�p� is singular at p � 0 (Fig. 2):

0 5 10 15 20 25
M

0

20

40

20

40

∋ M

0 5 10 15 20 25

0

20

40

20

40

FIG. 1 (color online). First, lowest-lying eigenvalues "i�M�,
i � 0; 1; . . . ; 9, of the auxiliary Hamiltonian HU � ���U
with effective potential U of Eq. (13), corresponding to the
reduced Salpeter equation with harmonic-oscillator interaction
of Lorentz-scalar structure, � � � � 1 � 1, for bound-state con-
stituents’ mass m � 1 and a ‘‘binding’’ coupling a � �10
(arbitrary units).
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(a)
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FIG. 2 (color online). Qualitative behavior of the effective
potential, V�p�, in the differential-equation representation (7)
of the reduced Salpeter equation with harmonic-oscillator inter-
action in the time-component Lorentz-vector kernel, � � � �
�0 � �0, for a � 10 and (a) vanishing mass m � 0 and
(b) nonvanishing mass m � 1 of the bound-state constituents
(arbitrary units).
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 V�p� �
2p
a
�

1

p2 :

This potential, however, is the sum V�p� � W�p� � 1=p2

of a linear potential W�p� � 2p=a, which is positive for a
positive slope of this linear rise, that is, for all a > 0, and
the singular but positive function 1=p2. Thus, the functions
V�p� andW�p� are related by the inequality V�p� � W�p�.
A suitable combination [28–32] of the minimum-
maximum principle [24–26] with the resulting operator
inequality HV � ��� V � HW � ���W allows to
show that any discrete eigenvalue of HV is bounded from
below by a corresponding eigenvalue of HW . Since, by the
‘‘infinitely-rising-potential theorem,’’ the spectrum of HW
is purely discrete—see our detailed discussion in
Subsection VIII D—, HV necessarily has a purely discrete
spectrum. Of course, the same result is obtained by suitable
generalization of the theorem of Ref. [24].

For nonvanishing mass of the bound-state constituents,
m � 0, the effective potential is fully compatible with the
assumptions of the ‘‘infinitely-rising-potential theorem’’
(Fig. 2):

 V�p� �
2E�p�
a
�

2p2 � 3m2

2E4�p�
�a > 0�:

Here, too, our inevitable conclusion is that the emerging
spectrum must be purely discrete.

D. Lorentz-vector kernel: � � � � �� � ��

For massless bound-state constituents, that is, for m �
0, our harmonic-oscillator reduced Salpeter equation with
Lorentz-vector interaction kernel � � � � �� � �

�,
Eq. (8), becomes

 2�p� aD�0�p ���p� � M��p�:

Of course, this is nothing but the standard nonrelativistic
Schrödinger equation with linear potential, V�p� � p=a,
which is equivalent to the Airy differential equation [22].
To see this, introduce a reduced radial wave function
’�p� � p��p� and perform the change of variables

 z �
1

a1=3

�
p�

M
2

�

to a convenient dimensionless variable, z, in order to arrive
at the Airy differential equation

 

d

dz
w�z� � zw�z�

for w�z� � ’�p�. Thus, for m � 0 and a positive slope of
this linear potential, i.e., for a > 0, the ‘‘infinitely-rising-
potential theorem’’ guarantees the pure discreteness of this
spectrum.

For nonvanishing bound-state constituents’ masses, i.e.,
m � 0, we again have to invoke the transformation to an
auxiliary Hamiltonian HU performed in Sec. VI. The re-

sulting effective potential U�p� of Eq. (14) is, for positive
harmonic-oscillator couplings a > 0, fully compatible with
all the needs of the ‘‘infinitely-rising-potential theorem.’’
Its ‘‘M-part’’ U2,

 U2�p� � �
E2�p�

a
E2�p� � p2�
;

is, for all a > 0, negative definite: U2 < 0. Following our
line of argument of Subsection VIII A, one finds that, also
for nonzero bound-state constituents’ mass, the spectrum is
purely discrete. Without surprise, the behavior of the dis-
crete auxiliary eigenvalues "�M� for a > 0 is for a Lorentz-
vector kernel rather similar to that of their Lorentz-scalar
counterparts (cf. Fig. 3).

E. Lorentz-pseudoscalar kernel: � � � � �5 � �5

Already in Sec. VI, our inspection of the differential
equations revealed that for any kernel of Lorentz-
pseudoscalar type the spectrum is purely continuous: there
is no stability problem.

F. BJK Lorentz structure: � � � � 1
2 ��� � �

� � �5 �
�5 � 1 � 1�

For all m � 0, a harmonic-oscillator reduced Salpeter
equation (10) for a kernel of the BJK Lorentz structure � �
� � 1

2 ��� � �
� � �5 � �5 � 1 � 1� is just the eigenvalue

equation of a Schrödinger operator with potential V�p� �
2E�p�=a. From the ‘‘infinitely-rising-potential theorem’’
we safely conclude that the spectrum of this operator is
purely discrete for a > 0.
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FIG. 3 (color online). First, lowest-lying eigenvalues "i�M�,
i � 0; 1; . . . ; 9, of the auxiliary Hamiltonian HU � ���U
with effective potential U of Eq. (14), corresponding to the
reduced Salpeter equation with a harmonic-oscillator interaction
of Lorentz-vector structure � � � � �� � �

�, for bound-state
constituents’ mass m � 1 and binding coupling a � 10 (arbi-
trary units).
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IX. DIGRESSION: INVESTIGATION OF FULL
SALPETER EQUATION

It goes without saying that analogous spectral analyses
[33,34] can be envisaged [35] for the Salpeter equation (1).
There, however, we expect to face more severe problems
because any solution ��p� of the Salpeter equation (1)
involves more than one independent component. Thus a
Salpeter equation with harmonic-oscillator interaction
yields a system of more than one second-order differential
equation or, equivalently, a higher-order differential
equation.

Hence, let us recall some general features of the eigen-
values of the full Salpeter equation (1), regarded as an
eigenvalue equation for the Salpeter amplitude ��p�; these
observations emerge either from the relationship, that is,
more precisely, the equivalence, of the Salpeter equation to
the well-known random phase approximation (RPA) famil-
iar from the study of collective excitations in nuclear
physics or from the inspection of the Salpeter equation (1).
The normalization condition for Bethe-Salpeter ampli-
tudes arising as a consequence of the inhomogeneous
Bethe-Salpeter equation [1] motivates the introduction of
a norm k�k of the Salpeter amplitude [8,10,23,36], given
by (cf. Eq. (2.9) of Ref. [8] or Eq. (9) of Ref. [10])
 

k�k2 �
1

2

Z d3p

�2��3

� Tr
�

�y�p�
�
H1�p�

E1�p�
��p� ���p�

H2��p�

E2�p�

��

�
Z d3p

�2��3
Tr
�

�y�p�
H1�p�

E1�p�
��p�

�
:

The two expressions on the right-hand side of the above
definition are, of course, equivalent by virtue of the con-
straint (2) satisfied by any solution of the Salpeter equation.
Because of the Hermiticity Hyi �p� � Hi�p� of the single-
particle Dirac Hamiltonian Hi�p�, i � 1, 2, the square
k�k2 of this norm is certainly real. It is, however, not
necessarily positive definite. (Hence, the Salpeter norm
k�k is not necessarily real, whence the quotation marks.)
The spectrum of Salpeter’s equation then exhibits the
following characteristics [8,10,23,37–40].

(i) The Salpeter equation can be shown to be of the
same algebraic structure as the RPA equation
[23,37–40]. In other words, Salpeter’s equation
and the RPA equation prove to be equivalent [38–
40]. Now, any RPA equation can always be rewritten
in the form of a self-adjoint eigenvalue equation for
the square of the energy [39,40]. Accordingly, the
square of the energy is guaranteed to be real, which
implies that all eigenvalues of such an RPA equation
are either real or purely imaginary [37]. For the
Salpeter equation (1) this means that the squares
P2

0 of the energy eigenvalues P0 of a given bound
state are real or (in the center-of-momentum or

‘‘rest’’ frame of the bound state, defined by P �
p1 � p2 � 0) that the square M2 of any bound-state
mass M is real, respectively.

(ii) In the center-of-momentum frame of the bound
state, any solution ��p� of Salpeter’s equation (1)
is subject to the relation (cf. Eq. (2.17) of Ref. [8] or
Eq. (11) of Ref. [10])

 

Mk�k2 �
Z d3p

�2��3

E1�p��E2�p��Tr
�y�p���p��

�
Z d3p

�2��3
Z d3q

�2��3

�Tr
�y�p��0
K�p;q���q���0�

�
Z d3p

�2��3

E1�p��E2�p��Tr
�y�p���p��

�
Z d3p

�2��3
Z d3q

�2��3
X
�

V��p;q�

�Tr
�y�p��0���q���0�: (15)

For all interaction kernels such thatR
d3p

R
d3qTr
�y�p��0
K�p; q���q���0� is real,

 Z d3p

�2��3
Z d3q

�2��3
�Tr
�y�p��0
K�p; q���q���0��

�

�
Z d3p

�2��3
Z d3q

�2��3

� Tr
�y�p��0
K�p; q���q���0�;

the right-hand side of Eq. (15) is, of course, real. In
this case, remembering the reality of the square of
the Salpeter norm, the mass eigenvalues M of all
bound states with nonvanishing norm k�k of the
associated Salpeter amplitudes �, that is, k�k2 �

0, are real: M� � M [8,23]. The needed reality of
the interaction term in Eq. (15) holds, for instance,
for all Bethe-Salpeter kernels which are sums of
terms of Dirac structure � � � such that the Dirac
matrices ~� � �0� are (anti-) Hermitian, ~�y � �~�,
with the associated Lorentz-scalar potential func-
tion V��p; q� satisfying V���q;p� � V��p; q�.

1

(iii) The comparison of Salpeter’s equation (1) with its
Hermitian conjugate (sandwiched between �0 from
the left and �0 from the right) reveals [8,23] that the
solutions of this eigenvalue equation always occur
in pairs of the form ��;M� and ��;�M��, with the
Salpeter amplitude ��p� related to the Hermitian
conjugate of its ‘‘partner solution’’ ��p�, provided

1Thus, (at least) for the present class of interactions any
solution of Salpeter’s equation (1) with nonreal and therefore
purely imaginary mass eigenvalue M� � M � �ijMj must have
vanishing norm k�k2 � 0.
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the interaction kernel satisfies 
K�p; q���q��y �
�0
K�p; q���q���0; the squares of the ‘‘norms’’
of conjugate solutions have opposite sign: k�k2 �
�k�k2. For the case of equal masses m1 � m2 of
the bound-state constituents [8], the relation be-
tween � and � is particularly simple, viz., ��p� �
�0�y�p��0. For the general case of unequal masses
m1 � m2 of the bound-state constituents [23] the
relation of � and � involves, in addition, the
charge-conjugation matrix C defined, e.g., by C �
i�2�0. This doubling of the eigenvalues to pairs of
opposite sign is well known from solutions to the
RPA equation [23,37,38]. The requirement on the
interaction kernel holds, for example, for every
Bethe-Salpeter kernel which is a sum of terms
each of which is the product of a real Lorentz-scalar
interaction function V��p; q� � V���p; q� and a
Dirac structure � � � such that all Dirac matrices
~� � �0� are (anti-) Hermitian, ~�y � �~�.
Furthermore, the relation between ��p� and ��p�
holding within the particular class of interactions
defined by the requirement 
K�p; q���q��y �
�0
K�p; q���q���0 also entails that a Salpeter
amplitude � solving the Salpeter equation for a
nondegenerate zero mass eigenvalue M � 0 neces-
sarily has vanishing Salpeter ‘‘norm’’: k�k � 0
[23].

In particular, any momentum-space interaction function
V��p; q� which can be represented as the Fourier transform
V��p; q� � V��p� q� �

R
d3p exp
�i�p� q� � x�V��r�

of some (real) central potential V��r� � V���r� in configu-

ration space experienced by the two bound-state constitu-
ents at distance r � jxj satisfies both V���p; q� � V��p; q�
and V��q;p� � V��p; q�. Thus, for Dirac matrices � in the
kernel K�p; q� �

P
�V��p; q�� � � obeying �0�y�0 �

�� both conditions on the kernel K�p; q� required for
the above-mentioned spectral properties to hold are simul-
taneously fulfilled. In this case, the spectrum of mass
eigenvalues M of the Salpeter equation (1) can only in-
volve, in the complex-M plane, pairs �M;�M� of opposite
sign on the real axis (excluding the origin), with the
associated Salpeter amplitudes having Salpeter norms
squared of opposite sign, and/or points M � �M� on the
imaginary axis (including the origin), with corresponding
Salpeter solutions of vanishing Salpeter ‘‘norm.’’

Merely for illustrative purposes let us now generalize,
for a few examples, the treatment applied to the reduced
Salpeter equation (4) in Sec. III through Sec. VI to the case
of the (full) Salpeter equation (1). As recalled in Sec. III,
Salpeter amplitudes ��p� for bound states with spectro-
scopic label n 1JJ and, therefore, all Salpeter amplitudes
��p� for bound states with spin-parity-charge-conjugation
assignment JPC � 0�� consist of two independent
Salpeter components �1�p� and �2�p�. The corresponding
Salpeter equation will therefore reduce to a system of two
coupled (integral) equations for two radial wave functions
�1�p� and �2�p�.

2

In order to analyze simultaneously Bethe-Salpeter inter-
action kernels of Lorentz-scalar and time-component
Lorentz-vector Dirac structure, we introduce a simple
sign factor � by

 � �
	
�1 for � � � � �0 � �0 �time-component Lorentz-vector interactions�;
�1 for � � � � 1 � 1 �Lorentz-scalar interactions�:

(Lorentz-scalar and time-component Lorentz-vector confining interaction kernels and their linear combinations attracted,
for purely phenomenological reasons, particular attention in the Bethe-Salpeter descriptions [8–15,39– 41] of hadrons as
bound states of quarks [42,43].) With the help of the parameter � and the interaction functions VL�p; q� (L � 0, 1) of
Sec. IV, the radial remnants of the Salpeter equation (1) for pseudoscalar bound states are, for both Lorentz-scalar (� �
� � 1 � 1) and time-component Lorentz-vector (� � � � �0 � �0) kernels,

 2E�p��2�p� �
Z 1

0

dqq2

�2��2
�V0�p; q��2�q� � M�1�p�;

2E�p��1�p� �
Z 1

0

dqq2

�2��2

�
�

m2

E�p�E�q�
V0�p; q� �

pq
E�p�E�q�

V1�p; q�
�
�1�q� � M�2�p�:

This set of equations exhibits a very peculiar structure: For M � 0, the equations decouple. For M � 0, from one of the
equations one of the two independent Salpeter components, say�1�p�, may be expressed in terms of the other,�2�p�, and
inserted into the other equation in order to reformulate this eigenvalue problem for the square M2 of the bound-state mass
M:

2As recalled in Sec. III, for pseudoscalar bound states the constraints on the solutions ��p� of the reduced Salpeter equation (4)
imply �1�p� � �2�p� � ��p�. Consequently, for a given Lorentz structure � � � of the interaction kernel the radial eigenvalue
equation representing the reduced Salpeter equation can be derived by adding the two radial eigenvalue equations related to Salpeter’s
equation (1) after letting �1�p� � �2�p�.
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4E2�p��2�p� � 2E�p�
Z 1

0

dqq2

�2��2
�V0�p; q��2�q� �

2

E�p�

Z 1
0

dqq2

�2��2

�m2V0�p; q� � pqV1�p; q���2�q�

�
Z 1

0

dqq2

�2��2

�
�

m2

E�p�E�q�
V0�p; q� �

pq
E�p�E�q�

V1�p; q�
�Z 1

0

dkk2

�2��2
�V0�q; k��2�k� � M2�2�p�:

Following Sec. V, specifying the interactions to harmonic-oscillator form allows to trade any integration over the potential
functions VL�p; q�, L � 0, 1, for the differential operator D�0�p :

 

�
4E2�p� �

2a
E�p�

���p2 � 2m2�D�0�p � pD
�0�
p p� 2� �

a2

E�p�
�m2D�0�p � �pD

�0�
p p� 2��

1

E�p�
D�0�p

�
�2�p� � M2�2�p�:

This is still a homogeneous linear differential equation but
of fourth order. Thus its analysis requires techniques or
tools beyond those familiar from the study of Schrödinger
operators.

The Salpeter equation for a Bethe-Salpeter kernel of the
BJK [16,17] Lorentz structure � � � � 1

2 ��� � �
� �

�5 � �5 � 1 � 1� constitutes an exceptional case; there
all interactions enter only in one of the two relations which
form the set of coupled radial integral equations describing
pseudoscalar bound states, the other relation being of
‘‘merely’’ algebraic nature:
 

2E�p��2�p� � 2
Z 1

0

dqq2

�2��2
V0�p; q��2�q� � M�1�p�;

2E�p��1�p� � M�2�p�:

Merging these two relations generates an eigenvalue prob-
lem for M2, posed equivalently by

 4E2�p��1�p� � 4
Z 1

0

dqq2

�2��2
V0�p; q�E�q��1�q�

� M2�1�p�;

4E2�p��2�p� � 4E�p�
Z 1

0

dqq2

�2��2
V0�p; q��2�q�

� M2�2�p�:

For the harmonic-oscillator interaction V�r� � ar2 these
eigenvalue equations become, by virtue of Eq. (5), i.e.,
q2V0�p; q� � ��2��2aD

�0�
p ��p� q�, the ordinary differ-

ential equations

 4
E2�p� � aD�0�p E�p���1�p� � M2�1�p�;

4
E2�p� � aE�p�D�0�p ��2�p� � M2�2�p�:

Applying the substitution E�p��1�p� / �2�p� proves the
equivalence of these formulations. In contrast to the case of
an arbitrary interaction kernel, for the BJK Lorentz struc-
ture our harmonic-oscillator Salpeter problem reduces to a
single second-order differential equation. The differential
operator on the left-hand side of this eigenvalue problem is
not self-adjoint. Nevertheless, according to the general
properties of eigenvalues of the Salpeter equation (1) sum-

marized at the beginning of this section, the spectrum of
eigenvalue squares M2 is real. Recalling, for a > 0, our
reasoning of Subsection VIII A for HU � ���U with
auxiliary potential

 U�p� �
E�p�
a
�

M2

4aE�p�
;

it is trivial to demonstrate, by similar arguments, that the
spectrum of squared eigenvaluesM2 and, as a consequence
thereof, the spectrum of mass eigenvalues M are purely
discrete.

X. SUMMARY, CONCLUSIONS, AND OUTLOOK

The present investigation has been devoted to an explo-
ration of the conditions under which the reduced Salpeter
equation with confining interactions has stable bound-state
solutions. For harmonic-oscillator interactions, the reduced
Salpeter equation becomes in momentum space either an
algebraic relation or a second-order ordinary differential
equation involving the Laplacian � acting on states of
angular momentum ‘ � 0 (i.e., our differential operator
D�0�p introduced in Sec. V). For real harmonic-oscillator
couplings, all corresponding spectra are real. For pseudo-
scalar states, where instabilities are expected to appear
first, we showed that, depending on the Lorentz nature of
the kernel, the resulting spectrum is either purely continu-
ous or entirely discrete, consisting of isolated mass eigen-
values of finite multiplicity.

As a byproduct, the same analysis proves the bounded-
ness from below of all the spectra for the appropriate choice
of the respective sign of the harmonic-oscillator coupling
constant a.

(i) For interaction kernels of the time-component
Lorentz-vector structure (� � � � �0 � �0),
Lorentz-pseudoscalar structure (� � � � �5 � �5),
the (eventually simple) BJK [16,17] structure, � �
� � 1

2 ��� � �
� � �5 � �5 � 1 � 1�, and, if m � 0,

of Lorentz-scalar structure (� � � � 1 � 1) or
Lorentz-vector structure (� � � � �� � ��), each
harmonic-oscillator ordinary differential equation
of Sec. VI is, for arbitrary a > 0, the eigenvalue
equation of some positive operator. The entire spec-
trum of any such operator must be positive.
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(ii) For an interaction kernel of Lorentz-pseudoscalar
structure (� � � � �5 � �5), and any m � 0,
Eq. (9) is, for finite a < 0, the eigenvalue equation
of an operator which is not positive but bounded
from below, by 2m� 3a=�2m2�, as is its (continu-
ous) spectrum.

(iii) For m � 0, the ordinary differential equations, in
Sec. VI, related to interaction kernels of Lorentz-
scalar structure, � � � � 1 � 1, or Lorentz-vector
structure, � � � � �� � ��, are not of the (stan-
dard) form of eigenvalue equations of some
Schrödinger operators. In order to decide on the
nature of their spectra we have to rely on the trans-
formation of Sec. VI to Schrödinger-like auxiliary
operators. For a < 0 in the Lorentz-scalar case and
a > 0 in the Lorentz-vector case, all eigenvalues
"i�M�, i � 0; 1; 2; . . . , of the latter operators can be
shown to be entirely discrete for all M, and strictly
decreasing functions of M. Because of their strict
decrease, with increasing bound-state mass M, the
zeros of the lowest trajectories "0�M� define not
necessarily positive lower bounds on the spectra of
mass eigenvalues M, proving both spectra to be
bounded from below.

Altogether this provides a rigorous proof of the stability
of the considered bound states: their energies form (for
couplings of suitable sign) real discrete spectra bounded
from below.

Our findings point in the same direction as the observa-
tions made in a purely numerical analysis [44] aiming at
the description of quark-antiquark bound states with the
help of the full Salpeter equation (1). In this investigation
the (instantaneous) interaction between the bound-state
constituents is modeled by the sum of a Coulomb-type
short-range interaction (arising from one-gluon exchange
between quark and antiquark) and a rather sophisticated
confining interaction, which interpolates between a
harmonic-oscillator-type behavior for small interquark dis-
tances r, or small masses of the bound-state constituents,
and a linear rise for large interquark distances r, or large
masses of the bound-state constituents. From a point of
view of principle it is a pity that this study has been
performed merely at a single point in free-parameter space,
determined (for an equal-weight mixture of time-
component Lorentz-vector and Lorentz-scalar Dirac struc-
tures of this particular confining interaction) from a fit of
the mass spectrum of experimentally observed mesons.
The authors of Ref. [44] arrive at the following conclusions
(for bound states composed of equal-mass constituents):

(i) For bound states of heavy-mass constituents, the
solutions prove to be stable for both time-component
Lorentz-vector and Lorentz-scalar Dirac structures
of the confining interaction and, consequently, for
any linear combination of these Lorentz structures.

(ii) For bound states of light-mass constituents, the
solutions are still all stable for a pure time-
component Lorentz-vector Dirac structure of the
confining interaction but turn out to be mostly un-
stable for a pure Lorentz-scalar spin structure of the
confinement.

However, in Ref. [44] it was also (numerically) shown that
neglecting the ‘‘negative-energy’’ components of the
Salpeter amplitude ��p� by simply imposing onto ��p�
the requirement ��1 �p1���p��

�
2 �p2� � 0 (almost totally)

removes the instability of the bound-state energy levels
otherwise showing up in the case of a Lorentz-scalar con-
fining interaction. According to our discussion of the com-
ponent contents of all solutions of both the full and the
reduced Salpeter equations with respect to the energy
projectors ��i �p� in Sec. II, imposition of such a constraint
on ��p� is tantamount to the consideration of the reduced
Salpeter equation (4).

Our approach can be clearly generalized [35] to analyze
not only Salpeter’s equation (1) but, in a similar way, three-
dimensional reductions of the Bethe-Salpeter equation
different from the Salpeter equation; some of these reduc-
tions are reviewed, for instance, in Ref. [45].

The intention of the present study was to perform, as a
purely theoretical investigation, a rigorous analysis of the
spectral properties of the Salpeter equation (4), irrespective
of its four-dimensional origin within the Bethe-Salpeter
formalism. Our pragmatic point of view seems to be jus-
tified by the fact that in the past exactly this bound-state
equation has been applied in numerous treatments of, for
instance, quark-antiquark bound states in quantum chro-
modynamics (for details, consult the reviews in
Refs. [42,43]). As already mentioned in the introduction,
our interest in the problem of the particular type of insta-
bilities discussed here has been aroused by their occasional
observation [10,44], and the attempts to arrive at full
analytic understanding of them [39–41]. Nevertheless,
we feel obliged to add a few brief comments on the
practical relevance of this framework and the implications
of our findings.

(1) From the very beginning, our considerations have
been confined to three-dimensional reductions of
the Bethe-Salpeter formalism, obtained by assum-
ing all interactions to be instantaneous in the center-
of-momentum frame of the two-particle systems
under study. The relevance of all statements about
the presence or absence of instabilities in any three-
dimensional reduction (as given by Salpeter’s equa-
tion) for the situation in the four-dimensional Bethe-
Salpeter formalism remains unclear; its discussion
would necessitate a spectral analysis of its own,
which will become much more involved than our
analysis reported above, but is well beyond the
scope of the present investigation.
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(2) As recalled in Sec. II, in addition to some instanta-
neous approximation any derivation of, in particular,
the Salpeter equation relies on the assumption of
free propagation of all bound-state constituents,
with a constant (i.e., momentum-independent) ef-
fective or constituent mass which should adequately
parametrize some significant part of the dynamical
self-energy effects. Needless to say, the free-
propagator assumption cannot be compatible with
a confining interaction and is therefore conceptually
problematic: In quantum field theory, the Dyson-
Schwinger equations relate the propagators, that is,
the two-point Green functions, to the n-point Green
functions which represent the interactions in the
Bethe-Salpeter equation. Therefore, propagators
and interactions cannot be chosen independently
from each other. Thus in non-Abelian gauge theories
the simultaneous assumption of free propagation of
the bound particles and confining interactions (as
induced by quantum chromodynamics) are intrinsi-
cally inconsistent. Moreover, phenomena such as
the dynamical breakdown of chiral symmetry can
only be taken into account by retaining the exact
propagators, obtained as the solutions of the Dyson-
Schwinger equation for the corresponding two-point
Green function of the bound-state constituents.
Their proper incorporation is crucial for the inter-
pretation of the lowest-lying pseudoscalar quark-
antiquark bound states: as Goldstone bosons. To
make a long story short, it is, of course, very desir-
able to have also in one’s favorite instantaneous
bound-state equation the exact fermion propagators
at one’s disposal.
One of the attempts to retain in some three-
dimensional reduction (as far as possible) the origi-
nal wave-function renormalization and mass func-
tions parametrizing the full propagators of both
fermionic bound-state constituents resulted in the
instantaneous bound-state equation proposed in
Ref. [46]. The first tentative exploration of some
of the implications of this generalization [47] of
Salpeter’s equation for quark-antiquark bound
states may be found in Ref. [48]. The latter study
utilizes exact propagators of light quarks, as ex-

tracted within a ‘‘renormalization-group-improved
rainbow-ladder truncation’’ (which scheme has the
undeniable advantage to preserve the axial-vector
Ward-Takahashi identity) applied to both the quark
Dyson-Schwinger equation and the meson Bethe-
Salpeter equation [49]. Given the formalism intro-
duced in Ref. [46], our (obvious) next step is a
similar study [34,50] for our full-propagator version
of the Salpeter equation (4). Our preliminary results
indicate that for reasonable behavior of both bound-
state constituents’ propagator functions, i.e., non-
trivial wave-function renormalization and dynami-
cal mass, stability (in our sense) can be achieved
[34,50]. The significance of these findings for the
four-dimensional Bethe-Salpeter formalism, which
includes all the constituents’ self-energy effects,
may be judged by future work.

(3) Of course, one might argue that a sufficiently pre-
cise purely numerical solution of the bound-state
equation in use may suffice to settle the stability
issues once and forever. However, as demonstrated,
e.g., by the not really conclusive findings of
Refs. [10,44] a numerical analysis may give but a
hint of potential problems with unstable solutions.
Thus, it is our conviction that a genuine understand-
ing of the origin of these troubles and a compelling
solution of this problem may be gained only by
some analytic proof.

Hence, as our conclusion let us stress once again that, for
the solutions of the instantaneous Bethe-Salpeter formal-
ism, at least, the kind of analysis proposed above provides
a rigorous answer to the question of stability, defined by
our requirement that each bound state found belongs to a
real and discrete spectrum that is bounded from below.
Note that the requested reality of the bound-state masses
precludes, for example, any solutions of tachyonic nature.
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