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The Cornwall-Jackiw-Tomboulis (CJT) effective action at finite temperature is applied to study the
symmetry nonrestoration (SNR) and inverse symmetry breaking (ISB) at high temperature in the Z2 � Z2

model. A renormalization prescription is developed for the CJT effective action in the double bubble
approximation. It is shown that the triviality related feature of the model does not show up, and the
temperature effects do not alter the conditions for SNR/ISB in a broad range of temperatures.
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I. INTRODUCTION

At present it is well known that there are several cate-
gories of physical systems:

(a) One of these includes systems in which the symme-
try, broken at T � 0, is restored at high temperatures
[1–3]. In addition, there is another alternative phe-
nomenon, the behavior of which associates with
broken symmetry as temperature is increased. This
is the so-called inverse symmetry breaking (ISB).
Here high temperature means that T=M� 1 for
mass scale M of the system in question.

(b) Another category includes systems displaying sym-
metry nonrestoration (SNR) at high temperatures.
There exist many such systems associated with nu-
merous different materials [4]. High temperature
SNR has been studied in the framework of quantum
field theory [5–9], and recently developed in con-
nection with cosmological applications [10–22].

Accordingly, interest in developing a formalism allow-
ing for an adequate and reliable description of SNR and
ISB at high temperature has been growing. As was pointed
out in Ref. [9], the CJT effective action is a particularly
well-suited tool for such a task. Indeed, the present work
uses the finite temperature CJT effective action [23] to shed
new light on the Z2 � Z2 model in connection with the
domain wall [10,17] and other [24,25] problems. Section II
is dedicated to the calculation and normalization of the
CJT effective action and Sec. III to the study of high
temperature SNR and ISB. The results are discussed in
Sec. IV where some conclusions are spelled out.

II. RENORMALIZED CJT EFFECTIVE ACTION AT
FINITE T

We use a simple Lagrangian to describe the system
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The boundedness of the potential requires

 �1 > 0; �2 > 0 and �1�2 > 9�2: (2.2)
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Next the two-loop double-bubble approximation, which
is the leading two-loop contribution within a systematic
expansion in loops is used to yield the truncated expression
for CJT effective potential VCJT

� ��0;  0; D;G	 at finite
temperature
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where the usual notation is implied
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The validity of the double-bubble approximation and its relevant applications were discussed in [23,26].
Following [9] we introduce the temperature dependent effective masses M1 and M2
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in which
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Inserting (2.4) into (2.3) we get

 

VCJT
� ��0;  0;M1;M2	 �

�2
1 � ��

2
1

2
�2

0 �
�1 � ��1

24
�4

0 �
�2

2 � ��
2
2

2
 2

0 �
�2 � ��2

24
 4

0 �
�� ��

4
�2

0 
2
0 �Q�M1�

�Q�M2� �
1

2

�
�2

1 � ��
2
1 �

�1 � ��1

2
�2

0 �
�� ��

2
 2

0 �M
2
1

�
P�M1�

�
1

2

�
�2

2 � ��
2
2 �

�2 � ��2

2
 2

0 �
�� ��

2
�2

0 �M
2
2

�
P�M2� �

�1 � ��1

8
�P�M1�	

2

�
�2 � ��2

8
�P�M2�	

2 �
�� ��

4
P�M1�P�M2�; (2.5)

where
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2

Z
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Regularizing the divergent integrals P�M� andQ�M�, appearing in (2.5), we make use of the three-dimensional momentum
cutoff scheme. Each divergent integral is written as the sum of divergent and finite parts, namely
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Developing the renormalization carried out in [27] requires that all divergent terms have to be absorbed into counterterms,
corresponding to renormalizing masses and coupling constants. To this end, the renormalized masses and coupling
constants are defined as
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We impose in addition,
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Altogether, we have a system of three linear equations for five unknown quantities ��2
1, ��2

2, ��1, ��2, and ��. The
existence of nontrivial solutions ensures that only finite terms would be present in the renormalized effective potential
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From (2.6) the renormalized gap equations are obtained
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The equations used for SNR analysis in [5] are directly
derived from (2.8) at high temperature. Substituting (2.8)
into (2.6) we arrive at
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For convenience the subscript R will be omitted in what
follows.

It is worth emphasizing that the present renormalization
prescription leads to two important results:

(i) The expression (2.6) for the renormalized VCJT
� does

not contain any cutoff dependent term.
(ii) The so-called triviality-related features of the model

under consideration do not show up.
These are the main improvements that have been ob-

tained with respect to [9].

III. HIGH TEMPERATURE SNR/ISB

Considering high temperature SNR/ISB we assume that
�2
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2 > 0. As a consequence,

 �0 � 0 and  0 � 0;

which implies that at T � 0 the symmetry of the system is
spontaneously broken in the � sector and unbroken in the
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For �1 � � > 0, T1 is real and the symmetry gets restored
at T � T1. Inversely, the symmetry nonrestoration occurs
in the � sector if
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Therefore the condition for ISB is

 � < 0; �2 < j�j:

In summary, the parameters are constrained by
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�1�2 > 9�2; � < 0; j�j> �1; �2;
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for the present model, in which both SNR and ISB simul-
taneously take place at high temperature in the correspond-
ing sector.

A question that arises is whether the constraints obeyed
by the coupling constants are altered by thermal effects.
The calculations carried out in [6,13,14] revealed that the
possibility of SNR/ISB occurring at high temperature is not
affected by thermal contributions to the coupling constants.

We reconsider this issue using the effective potential
V���0;  0	 (2.9). The T dependent coupling constants are
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Inserting the high temperature expansion for V���0;  0	

into (3.3) we get the leading terms of the thermal contri-
butions to �1�T�, �2�T�, and ��T�,
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The logarithmic dependence of the coupling constants
on temperature makes it clear that the conditions (3.2) for
SNR/ISB to occur are very stable, strengthening the results
of [6,13,14].

Finally, we evaluate the critical exponents � and �
associated with phase transitions at T � T1 in the� sector.
From their definitions and the fluctuation-dissipation theo-
rem it follows that

 �0�T1 � �T� � j�Tj�; M2
1�T1 � �T� � j�Tj�:

The value of � is easily derived from (3.1),

 M2
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Next, combining the expressions for �0 and M2
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giving � � 1
2 .

The preceding result indicates that in the double-bubble
approximation the calculated values for � and � are not
better than those obtained in mean field theory. This is the
shortcoming of our approximation.

IV. CONCLUSION AND DISCUSSION

The high temperature occurrence of symmetry nonres-
toration and inverse symmetry breaking has been studied in
the framework of the Z2 � Z2 model using the CJT effec-
tive action at finite temperature. The application of the
renormalization prescription to the T dependent CJT effec-
tive potential in the double-bubble approximation has been
shown to solve two problems arising in the treatment of
Ref. [9]: the cutoff dependence of the renormalized effec-
tive potential and the triviality related feature of the model,
the latter being probably an artifact of the renormalization
method that had been used.

The conditions to be obeyed by the coupling constants
for SNR or ISB to occur have been shown to be

 � < 0; j�j> �1 or � < 0; j�j> �2

respectively.
Earlier results [6,13,14] concerning the stability of these

conditions have been strengthened by our finding, using the
double-bubble approximation of the CJT effective poten-
tial, that they depend logarithmically on temperature.
However, the expressions obtained for the critical expo-
nents, � and �, give the same values as does mean field
theory.

Generalization to the O�M� �O�N� model is straight-
forward and gives similar results.
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