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Networks or webs of domain walls are admitted in Abelian or non-Abelian gauge theory coupled to
fundamental Higgs fields with complex masses. We examine the dynamics of the domain wall loops by
using the moduli approximation and find a phase rotation induces a repulsive force which can be
understood as a Noether charge of Q-solitons. Non-Abelian gauge theory allows different types of loops
which can be deformed to each other by changing a modulus. This admits the moduli geometry like a
sandglass made by gluing the tips of the two cigar-(cone-)like metrics of a single triangle loop. We
conclude that the sizes of all loops tend to grow for a late time in general models with complex Higgs
masses, while the sizes are stabilized at some values once triplet masses are introduced for the Higgs
fields. We also show that the stationary motion on the moduli space of the domain wall webs represents
1=4 Bogomol’nyi-Prasad-Sommerfield Q-webs of walls.
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I. INTRODUCTION

In various areas of physics, many kinds of topological
defects are expected to be produced at a phase transition
via the Kibble mechanism [1]. More than two extended
objects like cosmic strings or domain walls intersect or
meet with angles in general, and therefore such a produc-
tion inevitably results in networks or webs of these objects
[2]. In condensed matter physics several examples have
been observed, while it is not the case of particle physics,
astrophysics, or cosmology. Previously cosmic string junc-
tions were suggested to be a seed of galaxy formation.
Although such a possibility has been denied by recent
cosmic microwave background data, it is argued that they
may still play a certain role. A domain wall network was
proposed to explain dark matter/energy [3]. Future obser-
vation of such defect networks in our Universe certainly
deserves to be explored. Usually dynamics of these net-
works have been studied by computer simulation. On the
other hand, in the case of particlelike solitons such as
monopoles, the analytic method of the moduli space (geo-
desic) approximation has been developed [4,5]. By this
their low-energy dynamics can be described as geodesics
of the moduli space of these solitons. Therefore the deter-
mination of the moduli space is crucial for this task. In a
previous paper [6] we have successfully constructed the
moduli space of domain wall networks in a certain model
which allows a supersymmetric generalization.

Supersymmetry is expected to exist in the early Universe
so this situation is realistic.

In this paper we will work out the dynamics of domain
wall networks using the moduli space approximation. We
find that the sizes of all loops tend to grow for late time in
general models with complex Higgs masses, while the
sizes are stabilized at some values once triplet masses are
introduced for the Higgs fields. To the best of our knowl-
edge this is the first example to discuss the dynamics of a
composite system of solitons analytically.1 Our model here
is a U�NC� gauge theory coupled to NF Higgs fields in the
fundamental representation, which can be extended to
possess N � 2 supersymmetry in 3� 1 dimensions.
This model has been recently studied extensively because
it allows many kinds of Bogomol’nyi-Prasad-Sommerfield
(BPS) solitons; see [8–10] for a review. Vacua are isolated
and disconnected in theories with the number of flavors
more than the number of color, NF >NC, and with non-
degenerate masses for the Higgs fields [11]. Parallel mul-
tiple domain wall solutions exist as 1=2 BPS states when
the Higgs masses are real and nondegenerate. By introduc-
ing the method of the moduli matrix [9,12], analytic solu-
tions of these domain walls were constructed in the strong
gauge coupling limit [7] (see [13] for domain walls inU�1�
gauge theory). This method was then applied to construct
vortex solutions [14], vortex-strings stretched between
parallel domain walls [15], and instantons inside a
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1We have analyzed analytically compressed walls which ap-
pear as limiting configurations of multiple parallel walls com-
pressed to each other [7]. Although these configurations may be
regarded as composite solitons, they can be obtained as a smooth
limiting point within a moduli space of multiple parallel walls,
and do not present qualitatively new features unlike our present
case of the 1=4 BPS webs of walls.
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vortex-sheet [16]. Finally the most general analytic solu-
tions of 1=4 BPS networks (webs) of domain walls have
been constructed in models with complex nondegenerate
Higgs masses [17–19].2 These solutions contain full mod-
uli of a network with arbitrary numbers of loops and
external legs of walls. The effective Kähler potential of
1=2 BPS solitons was constructed in the superfield formal-
ism [22], and then it has been generalized to the case of
domain wall networks [6]. The zero modes of external legs
are non-normalizable and have to be fixed to discuss
dynamics, while zero modes corresponding to loop size
and associated internal phase are normalizable and appear
as massless fields in the effective theory. We have con-
structed the effective Kähler potential and the metric of the
simplest triangle loop in U�1� gauge theory coupled with
NF � 4 Higgs scalars and have found that the metric has a
geometry between a cone and a cigar [6]. This metric is
rather nontrivial since it is regular on the tip although it
corresponds to a shrinking loop. Therefore it is expected to
describe a smooth bounce of the loop.

In this paper we discuss the dynamics of loops of domain
walls in 3� 1 dimensions for (1) a triangle single loop in
the simplest model of NC � 1 and NF � 4, (2) a double
loop in the model with NC � 1 and NF � 6, and (3) a non-
Abelian loop in the model with NC � 2 and NF � 4. This
paper is organized as follows. In Sec. II we summarize the
previous results on the construction of domain wall net-
works and the effective action on them. The effective
action describes the moduli dynamics of the domain wall
networks. Notice that domain wall networks are codimen-
sion two defects so that in 3� 1 dimensional space-time
they trivially extend along one spatial direction x3 perpen-
dicular to the x1, x2 plane where the domain walls form the
networks. If one wants to avoid an infinite volume of
domain walls owing to the infinite extension along the x3

axis, one may simply dimensionally reduce the model to
2� 1 dimensions. However, moduli dynamics of the do-
main wall network still makes sense even in 3� 1 dimen-
sions in the following way. Let us suppose that the
deformations along the x3 axis are small enough in com-
parison with those along the x1, x2 axes. In such a situation
our analysis in this paper is also valid in 3� 1 dimensions.

In Sec. III we first investigate the dynamics of the single
triangle loop. The moduli metric allows the U�1� isometry
whose orbit is parametrized by a Nambu-Goldstone mode
of the flavor symmetry spontaneously broken by the con-
figuration. Associated with this isometry, a conserved
charge Q exists in the general motion of the moduli space.
When Q � 0, a motion of a shrinking loop is bounced and

the phase is rotated with the angle � after the loop com-
pletely shrinks. When Q � 0 a shrinking loop is bounced
at the minimum size of the loop determined by Q.

In Sec. IV we investigate the dynamics of double loop.
In this case there exist two conserved charges Q1 and Q2

corresponding to the phases of the two loops. Both loops
will grow after their sizes bounce at the minimum irre-
spective of their Q-charges.

In Sec. V we work out the dynamics of a non-Abelian
loop. In this case there exist two different configurations of
nonplanar webs with a non-Abelian loop, which can be
deformed to each other by changing a modulus. The mod-
uli space geometry looks like a sandglass which is made by
gluing the tips of the two metrics of a single triangle loop.
Each region of the sandglass metric corresponds to the
configuration of each non-Abelian loop. Depending on
the value of the conserved charge Q one configuration
can or cannot change to the other configuration.

In Sec. VI we turn on the triplet masses for the Higgs
fields. In the context of field theory with eight supersym-
metry charges this is possible in three space-time dimen-
sions. We find the third masses induce the attractive force
for the loop size whereas the Q-charge induces the repul-
sive force. Then the size of the loop is stabilized at some
value where two kinds of forces are balanced. This mecha-
nism to stabilize the size is the same as the one of the
Q-lumps in nonlinear sigma models with a potential term
[23–25]; the size of Q-lumps are stabilized by the
Q-charge and the masses. Also, it was shown in [26] that
a 1=4 BPS dyon can be understood as stationary motion in
the moduli space of BPS monopoles with a potential term
induced by the masses. The dyonic instanton is also under-
stood as stationary motion in the moduli space of instan-
tons [27]. In the same way, our motion in the moduli space
of the domain wall webs suggests BPS dyonic extension of
domain wall webs. In fact it has been previously shown in
[25] that the configuration of Q-domain wall webs is again
1=4 BPS (but not 1=8 BPS) and is stable. We reexamine
this interpretation in this section.

Section VII is devoted to the conclusion and discussion.
The implication of our work to cosmology is briefly
discussed.

II. EFFECTIVE ACTION OF DOMAIN WALL
NETWORKS

A. BPS equations for domain wall networks

Let us here briefly present our model (see [9] for a
review), which admits 1=4 BPS webs of domain walls.
We consider the bosonic part of 3� 1 dimensional N � 2
supersymmetric U�NC� gauge theory with NF (>NC)
massive hypermultiplets in the fundamental representation.
Here the bosonic components in the vector multiplet are
gauge fields WM (M � 0, 1, 2, 3), the real scalar fields ��
(� � 1, 2) in the adjoint representation, and those in the
hypermultiplet are the SU�2�R doublets of the complex

2In N � 1 supersymmetric field theories, junctions of do-
main walls were previously found to be 1=4 BPS states preserv-
ing only a quarter of supersymmetry [20]. Exact solutions of
wall junctions were constructed in [21]. See [6] for more
complete references of domain wall junctions in N � 1 super-
symmetric field theories.
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scalar fields Hi (i � 1, 2), which we express as NC � NF

matrices. After eliminating the auxiliary fields, we obtain
the bosonic part of the Lagrangian as

 L � Tr
�
�

1

2g2 FMNF
MN �

1

g2

X2

��1

DM��D
M��

�DMH
i�DMHi�y

�
� V; (2.1)

 

V � Tr
�

1

g2

X3

a�1

�Ya�2 �
X2

��1

�HiM� � ��H
i�

� �HiM� ���Hi�y �
1

g2 ��1;�2�
2

�
; (2.2)

where we have defined Ya 	 g2

2 �c
a1NC

� ��a�jiH
i�Hj�y�

with g the gauge coupling for U�NC� gauge theory, and ca

an SU�2�R triplet of the Fayet-Iliopoulos (FI) parameters.
In the following, we choose the FI parameters as ca �
�0; 0; c > 0� by using SU�2�R rotation without loss of gen-
erality. Here we use the space-time metric �MN �
diag��1;�1;�1;�1� and M� are real diagonal mass
matrices, M1 � diag�m1; m2; 
 
 
 ; mNF

�, M2 �

diag�n1; n2; 
 
 
 ; nNF
�. The covariant derivatives are de-

fined as DM� � @M�� i�WM;��, DMHi � �@M �
iWM�Hi, and the field strength is defined as FMN �
�i�DM;DN� � @MWN � @NWM � i�WM;WN�.

If we turn off all the mass parameters, the vacuum
manifold is the cotangent bundle over the complex
Grassmannian T�GrNF;NC

[28]. Once the mass parameters
mA � inA (A � 1; 
 
 
NF) are turned on and chosen to be
fully nondegenerate (mA � inA � mB � inB for A � B),
almost all points of the vacuum manifold are lifted and
only NF

CNC
� NF!=�NC!�NF � NC�!� discrete points on the

base manifold GrNF;NC
are left to be the supersymmetric

vacua [11]. This choice of the mass parameters breaks the
SU�NF� flavor symmetry to U�1�NF�1. Each vacuum is
characterized by a set of NC different indices
hA1; 
 
 
 ; ANC

i, 1 � A1 < 
 
 
<ANC
� NF, which we will

often abbreviate as hAri in the following. In these vacua,
the vacuum expectation values are determined as

 hH1rAi �
���
c
p
�ArA ; hH2rAi � 0;

h�i � diag�mA1
� inA1

; 
 
 
 ; mANC
� inANC

�;
(2.3)

where r is the color index running from 1 to NC, the flavor
index A runs from 1 to NF, and � is the complex adjoint
scalar defined by � 	 �1 � i�2.

The 1=4 BPS equations for webs of walls interpolating
the discrete vacua (2.3) can be obtained by the usual
Bogomol’nyi completion of the energy density as [17,18]

 F12 � i��1;�2�; D1�2 �D2�1;

D1�1 �D2�2 � Y3;
(2.4)

 D 1H
1 � H1M1 � �1H

1; D2H
1 � H1M2 � �2H

1:

(2.5)

Here we consider static configurations which are indepen-
dent of x3, so we set @0 � @3 � 0 and W0 � W3 � 0.
Furthermore, we take H2 � 0 because it always vanishes
for the 1=4 BPS solutions. The Bogomol’nyi energy bound
is given by

 E  Y �Z1 �Z2 � @�J�; (2.6)

where the central (topological) charge densities which
characterize the solutions are of the form
 

Y �
2

g2 @� Tr�����2D��1�; Z1 � c@1 Tr�1;

Z2 � c@2 Tr�2: (2.7)

The topological charges are defined by

 Tw 	
Z
d2x�Z1 �Z2�; Y 	

Z
d2xY: (2.8)

Here Tw corresponds to the energy of domain walls and Y
corresponds to the energy of domain wall junctions. Since
energy of domain walls means tension times the length of
the walls, this quantity is divergent. On the other hand Y
has a finite value, and we call this charge as the junction
charge or the Hitchin charge. Note that the integration of
the fourth term @�J� � @� Tr�H1�M�H1y �H1y���� in
Eq. (2.6) does not contribute to the topological charges.

The 1=4 BPS equations Eq. (2.4) and Eq. (2.5) [17,18]
can be solved as follows. First, since the first two equations
in Eq. (2.4) give an integrability condition for the two
operators D� � �� (� � 1, 2), W� and �� can be written
as

 �� � iW� � S�1@�S: (2.9)

Here, S�x1; x2� 2 GL�NC;C� is a matrix valued function.
Secondly, Eq. (2.5) can be solved as

 H1 � S�1H0eM1x1�M2x2
: (2.10)

Here H0, which we call ‘‘moduli matrix,’’ is an NC � NF

constant complex matrix of rank NC, and contains all the
moduli parameters of solutions. Any sets of S and moduli
matrix H0 related by the following V-transformation are
physically equivalent since they do not change the physical
configuration:

 H0!VH0; S�x1; x2�! VS�x1; x2�; V 2GL�NC;C�:
(2.11)

Finally, the last equation in Eq. (2.4) can be converted, by
using an NC � NC matrix valued function defined by

 ��x1; x2� 	 SSy; (2.12)

to the following equation:
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1

cg2 �@���
�1@���� � 1NC

���1�0; (2.13)

where �0 	
1
c H0e

2�M1x1�M2x2�Hy0 . This equation is called
the master equation for webs of walls. Since H1H1y �

c1NC
� 0 in vacuum regions, the solution ��x1; x2� of the

master equation should approach �0 near the vacuum
regions. It determines S for a given moduli matrix H0 up
to gauge transformations and then the physical fields can
be obtained through Eqs. (2.9) and (2.10).

There is a useful diagram to understand the structure of
webs of walls, which is called the grid diagram [17,18].
The grid diagram is a convex polygon in the complex plane
Trh�i (� 	 �1 � i�2). A vacuum point labeled by
hA1 
 
 
ANC

i corresponds to the vertex of the convex poly-
gon plotted at Trh�i �

PNC
r�1�mAr � inAr�. For each edge

connecting two vertices, there is a domain wall interpolat-
ing the two vacua and each triangle corresponds to a 3-
pronged domain wall junction. Some examples of grid
diagrams are shown in Figs. 1 and 2. In non-Abelian gauge
theory, two vacua with only one different label such as
h. . .Ai and h. . .Bi can be connected while two with h. . .ABi
and h. . .CDi are forbidden to be connected. If there are
several ways to connect the vacuum points, we obtain
different configurations as shown in Fig. 2. By varying
the moduli parameters, we can move one configuration to
another one.

One can easily read physical information about domain
walls and junctions from the grid diagram. The tension of

the domain wall is proportional to the length of the corre-
sponding edge of the grid diagram. More precisely, for a
domain wall interpolating between vacuum h. . .Ai and
vacuum h. . .Bi, the tension is given by

 Th...Aih...Bi � cj ~mA � ~mBj; (2.14)

where ~mA, ~mB are two component vectors such that ~mA �
�mA; nA�, ~mB � �mB; nB�. Furthermore the magnitude of
the junction charge is proportional to the area of the
corresponding triangle and its sign can be read off from
the vacuum labels. If the junction interpolates three differ-
ent vacua with labels such as h. . .Aih. . .Bih. . .Ci, this
junction is called an ‘‘Abelian junction,’’ and its junction
charge is given by

 Yh...Aih...Bih...Ci � �
j��ABC�j

g2 ; (2.15)

where we have defined ��ABC� as

 ��ABC� � ~mA � ~mB � ~mB � ~mC � ~mC � ~mA; (2.16)

which is twice the area of the triangle in the grid diagram.
The junction charge above is negative, and can be inter-
preted as the binding energy of domain walls at the junc-
tion point. On the other hand, if the junction interpolates
three vacua with labels such as h. . .ABih. . .BCih. . .ACi,
this junction is called a ‘‘non-Abelian junction,’’ and its
junction charge is given by

FIG. 1. Grid diagram and web diagram in Abelian gauge theory.

FIG. 2. Grid diagram and web diagram in non-Abelian gauge theory.
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 Yh...ABih...BCih...CAi �
j��ABC�j

g2 : (2.17)

This is positive, and can be interpreted as the Hitchin
charge of the Hitchin system. The details can be seen in
[18].

In order to extract concrete information from the moduli
matrix H0, it is useful to denote detHhAri0 � exp�ahAri �
ibhAri�, where HhAri0 is an NC � NC minor matrix whose
elements are given by �HhAri0 �st � �H0�

sAt . Defining the
weight W hAri of the vacuum hAri � hA1A2 
 
 
ANC

i by

 W hAri�x1; x2� 	
XNC

r�1

�mArx
1 � nArx

2� � ahAri; (2.18)

we can write the determinant of �0 as

 det�0 � det
�
1

c
H0e

2�M1x1�M2x2�Hy0

�
�

1

cNC

X
hAri

e2W hAri :

(2.19)

If only one of the weight W hAri is nonzero, we can show
that the configuration is the vacuum labeled by hAri. Since
the solution of the master equation � is well-approximated
by �0 near vacuum regions, we can estimate the position
of the domain wall interpolating between vacuum hAri and
vacuum hBri as a line on which the weights W hAri and
W hBri are comparable:
 

W hAri �W hBri �
XNC

r�1

�mAr �mBr�x
1 �

XNC

r�1

�nAr � nBr�x
2

� ahAri � ahBri ’ 0: (2.20)

Here the other weights should be sufficiently smaller than
W hAri and W hBri. Hence the parameter ahAri � ahBri in the
moduli matrix determines the position of the domain wall.
Furthermore, one can see the angle of the domain wall is
determined by the mass difference between the two vacua.
Notice that the domain wall line Eq. (2.20) is perpendicular
to the corresponding edge of the grid diagram; see Fig. 1.
So the grid diagram gives us information of the shape of the
domain wall web as a dual diagram. A junction point at
which three domain walls get together can also be esti-
mated by the condition of equating the weights of three
related vacua as W hAri ’W hBri ’W hCri.

B. Effective action of domain wall networks

Once we obtain the solutions of the BPS equations
Eqs. (2.4) and (2.5), we can construct a low-energy effec-
tive theory on the world volume of the domain wall net-
works. While all the massive modes on the background
BPS solutions can be ignored at low-energies, moduli
parameters (zero modes) as elements of the moduli matrix
H0 can provide massless modes which will play a main role
in the effective theory. Among these zero modes, we

should promote only normalizable zero modes �i to fields
on the world volume of the domain wall network as

 H0��i� ! H0��i�x	��; (2.21)

where x	 (	 � 0, 3) denotes the world volume coordinates
of the domain wall network. On the other hand, non-
normalizable zero modes which change the boundary con-
ditions at spatial infinities cannot be promoted to fields on
the world volume.

In general, the master equation Eq. (2.13) is difficult to
solve. However we can obtain a general form of the effec-
tive Lagrangian for the moduli fields without solving the
master equation, which has been constructed in [6]. It was
found that the metric on the moduli space is a Kähler
metric whose Kähler potential is given by

 K��; ��� �
Z
d2x

�
c log det�sol��; ���

�
1

2g2 Tr���1
sol ��; ���@��sol��; ����2

�
;

(2.22)

where �sol��; ��� is a solution of the master Eq. (2.13). In
order to get this Kähler potential, one needs to solve the
Gauss’s law constraint for the world volume elements of
the gauge field W	�x

	�,
 

D�F�0� i���;D0���� i
g2

2
�H1D0H1y�D0H1H1y��0:

(2.23)

We found [6] a generic form of the solution for Gauss’s law
can be expressed by derivatives with respect to the moduli
fields as

 W	�x
	� � i��	S

y
sol��; ���Sy�1

sol ��; ���

� S�1
sol ��; ����y	Ssol��; ����; (2.24)

where Ssol��; ��� is given by �sol��; ��� �
Ssol��; ���Ssol��; ���y and the variations are defined by
�	 � @	�i @

@�i and �y	 � @	 ��i @
@ ��i . From this Kähler po-

tential (2.22), the effective Lagrangian can be obtained as

 L eff � @i@ �jK��; ���@	�i@	 ��j � Ki �j��; ���@	�i@	 ��j:

(2.25)

The domain wall network in Fig. 1(a) (NC � 1, NF � 4)
has a single normalizable complex zero mode. To describe
the zero mode, we can take the following moduli matrix
without loss of generality3:

 H0 � �1; 1; 1; ��; with � � ew � er�i
: (2.26)

3If we choose the central position of the loop and two relative
phases carried by external walls, we can always reduce the
moduli matrix H0 for the single triangle loop to the form
(2.26) using the V-transformation.
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The complex parameter � is the normalizable modulus
parameter. One can easily see by looking at the weight of
this system that its real part r changes the configuration of
the triangle loop as shown in Fig. 3, and the imaginary part

 corresponds to the phase of the loop. For sufficiently
large r, the size of the loop is proportional to r.

The other zero modes, the first three elements in
Eq. (2.26), are non-normalizable, and have to be fixed by
boundary conditions when we construct the effective the-
ory of the domain wall network. The effective Lagrangian
for the size moduli has been already constructed in [6]. The
Kähler potential and the metric are smooth everywhere in
terms of the complex coordinate �, and the moduli space
has a geometry between a cone and a cigar with a tip at
� � 0 (r � �1). It was found that the Kähler potential in
the strong gauge coupling limit g2 ! 1 is given as a sum
of hypergeometric functions; see Eq. (3.30) of [6].

In particular the Kähler potential and the metric of the
single triangle loop are given asymptotically for large
j�j � er by
 

K �
c

4��123�

�
1

6�1�2�3
�logj�j2�3

�
1

g2c

�
j ~m12j

2

�3
�
j ~m23j

2

�1
�
j ~m31j

2

�2

�
�logj�j2�2

�
;

(2.27)

 ds2 �
c

��123�

�
r

�1�2�3
�

1

g2c

�
j ~m12j

2

�3
�
j ~m23j

2

�1

�
j ~m31j

2

�2

��
�dr2 � d
2�; (2.28)

where ~mAB � ~mB � ~mA and ratios �A 	
1

2��123�
�ABC ~mB �

~mC satisfying �1 � �2 � �3 � 1. The minus sign in
Eqs. (2.27) and (2.28) is for the triangle loop in the U�1�
gauge theory and the plus sign in the U�3� gauge theory.4

The corrections to the asymptotic metric have been found
to be exponentially suppressed. An interesting feature is
that the above asymptotic metric can be understood as the
kinetic energies: the first terms in the parentheses in
Eqs. (2.27) and (2.28) represent the kinetic energies of
domain walls and the second (with the � sign in front)
that of junctions. Since the lengths of domain walls are
proportional to r, their masses and kinetic energies have
linear dependence on r. On the other hand, the junction
charges are localized at the junction points, and so their
kinetic energies do not depend on r. This interpretation
nicely explains the sign of the second term. See Eqs. (2.15)

and (2.17). This result implies that the asymptotic metric
for more complicated configurations can also be obtained
by computing the kinetic energies of domain walls and
junctions. We will often use this result in investigating the
dynamics of various domain wall networks below.

Before closing this section, let us briefly discuss another
configuration closely related to the above one. When the
vacua inside a loop are degenerate vacua, the loop acquires
some internal moduli.5 The asymptotic metric for the addi-
tional moduli exhibits another characteristic feature. Since
the triangle loop requires at least 4 flavors that are non-
degenerate, we need to take more than 4 flavors to examine
a degenerate vacuum in the loop. Let us assume that mass
parameters for external vacua are all nondegenerate ~mA �

~mB for A � B (A, B � 1, 2, 3, 4), and the other mass
parameters corresponding to the vacuum in the loop are
all degenerate ~mA � ~mB for (4 � A, B � NF). Such a loop
configuration with the degenerate vacuum is described by
the moduli matrix

 H0 � �1; 1; 1;��; � � ��1; �2; 
 
 
 ; �NF�3�: (2.29)

In this case, there exist NF � 3 complex normalizable zero
modes: one of them corresponds to the size and phase of
the loop and the others are zero modes associated with the
vacuum moduli inside the loop. We can obtain the Kähler
potential K in this case, if we replace j�j2 in Eq. (2.27) by
j�j2 	 j�1j

2 � 
 
 
 � j�NF�3j
2. Therefore the knowledge

of the Kähler potential for the NF � 4 case gives a Kähler
metric for this degenerate case as

 Ki �j � @�i
@� �j

K � �ijK0�j�j2� � ��i�jK00�j�j2�; (2.30)

where the prime on K denotes differentiation with respect
to j�j2. See the appendix for a concrete example. By

FIG. 3. The triangle loop configuration has four vacuum re-
gions hAi (A � 1; 
 
 
 ; 4). We fix three complex moduli parame-
ters which are related to positions of external walls. A unique
normalizable mode is a zero mode which is related to the area of
the region h4i, namely, the size of the triangle loop.

4Here we take gauge coupling g and mass parameters for
Higgs scalars (hypermultiplets) to be the same for two distinct
U�1� and U�3� gauge theories with NF � 4. They are dual in the
sense that the number of vacua is equal and also their grid
diagrams are congruent to each other. The duality becomes exact
in the strong gauge coupling limit g2 ! 1.

5Domain walls with degenerate masses were studied in
[29,30]. It was found that some Nambu-Goldstone modes for
broken non-Abelian flavor symmetry are localized around (be-
tween) the domain walls and appear in the effective theory on
them.
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differentiating the leading contribution �logj�j2�3 of this
Kähler potential at asymptotic region r � logj�j2 � 1,
we find that the Kähler metric contains not only terms
proportional to r as in Eq. (2.28), but also terms propor-
tional to r2 as shown in Eq. (A5). This feature shows that
among moduli fields, there are massless modes with a
support extending two-dimensionally over the entire vac-
uum region inside the loop in the web of walls as illustrated
in Fig. 4.

III. DYNAMICS OF TRIANGLE LOOP

Since we have obtained the metric on the moduli space
of the triangle loop, its dynamics can be discussed as

geodesic motions on the moduli space. In order to avoid
infinite volume of domain walls we may compactify the
world volume direction or simply dimensionally reduce the
model to 2� 1 dimensions. Such a model is obtained
merely restricting the indices M, N in the Lagrangian
(2.1) to 0, 1, 2. However, the analysis in the following
sections is also valid in 3� 1 dimensions in the sense that
we stressed in the introduction. The effective Lagrangian
takes the form

 L � Kw �w�r�
��
dr
dt

�
2
�

�
d

dt

�
2
�
; (3.1)

with w � r� i
 in Eq. (2.26). It is worth emphasizing that
the moduli space is regular with positive curvature even
when the loop shrinks completely. Figure 5 shows the
embedding of the moduli space into 3-dimensional
Euclidean space. The moduli space has a U�1� isometry
which originates from a linear combination of three U�1�
flavor symmetries. Correspondingly, there exists a con-
served charge such that

 Q 	
@L

@�d
=dt�
� 2Kw �w

d

dt
: (3.2)

In terms of this conserved Q-charge, the effective
Lagrangian can be rewritten6 as

 

~L � Kw �w�r�
�
dr
dt

�
2
�

Q2

4Kw �w�r�
: (3.3)

Here the second term can be interpreted as a potential
associated with the conserved charge Q. Note that the
smoothness of the Kähler metric in terms of� � ew means
the metric Kw �w is exponentially suppressed as Kw �w /
e2r ! 0 for r � Rew! �1. We also know the asymp-

0

2.5

5

7.5

−4

−2
0

2
4

0

2

4

2.5

5

7.5

−4

−2

0

2

FIG. 5 (color online). The moduli space of a single triangle
loop embedded in R3: The moduli space has a U�1� isometry
which corresponds to the direction of the phase modulus. The
other direction can be regarded as the direction of size modulus
of the loop. The tip of the moduli space corresponds to the point
� � 0 where the loop shrinks completely.

FIG. 4. The densities of the metric for NC � 1, NF � 5 in the strong coupling limit g! 1. At each point on the moduli space, the
tangent space of the moduli space is orthogonally decomposed into the directions of size, phase, and two vacuum moduli inside the
loop.

6We have performed a Legendre transformation of L with
respect to 
.

DYNAMICS OF DOMAIN WALL NETWORKS PHYSICAL REVIEW D 76, 125025 (2007)

125025-7



totic behavior Kw �w / r! 1 for r! 1. The typical form
of the potential is shown in Fig. 6. We can find that the
phase rotation produces the repulsive potential among the
triangle loop. This repulsive potential makes the loop ex-
pand forever, namely, the trajectory of the loop exhibits a
runaway behavior. Although we are now considering the
effective theory of domain wall networks, it is possible to
consider domain wall networks with Q-charges in the
original theory. The above runaway potential tells us that
such configuration is unstable and no longer BPS.
However, we will see in Sec. VI that a stable stationary
point appears if we introduce another type of mass term
(triplet mass). The corresponding configuration will turn
out to be BPS, conserving a quarter of supercharges.

Now let us return to geodesic motions on the moduli
space. We introduce an integral of motion E as an integra-
tion constant as

 E � Kw �w�r�
�
dr
dt

�
2
�

Q2

4Kw �w�r�
; (3.4)

corresponding to the energy associated with the motion of
the zero-modes r�t� and 
�t�. By exploiting this conserva-
tion law of energy, we can obtain the solution of the
equation of motion. The orbit of the geodesic for a given
energy E is given by

 
� 
0 � �
Z
dr

Q���������������������������������
4Kw �w�r�E�Q

2
p ; (3.5)

and the time dependence of the size modulus r is given by

 t� t0 � �
Z
dr

2Kw �w�r����������������������������������
4Kw �w�r�E�Q

2
p : (3.6)

If we consider the motion in the direction of smaller values
of r with Q � 0, the geodesic is a straight line in the
complex �-plane and goes through the tip of the manifold
� � 0 (r � �1). This motion corresponds to the bounce
of the loop, that is, after the loop shrinks completely, it

tends to be larger with 180� phase rotation. In the case of
Q � 0, the repulsive force among the loop become
stronger as the size become smaller, so that it prevents
the loop from shrinking completely. Hence, there exists a
minimum value of the size modulus r determined by

 E �
Q2

4Kw �w�rmin�
: (3.7)

This implies that if the initial velocity of the size modulus
dr
dt is negative, the loop shrinks to its minimum size r � rmin

and then the velocity dr
dt changes its sign.

The large size behavior can be investigated using the
asymptotic metric Eq. (2.28). First note that the second
term in Eq. (2.28) can be absorbed by shifting the
parameter as r! r� �1�2�3�j ~m12j

2=�3 � j ~m23j
2=�1 �

j ~m31j
2=�2�=g2c. After the shift, the equation of motion for

r can be solved as

 
� 
0 � �
Q

2aE

������������������������
4aEr�Q2

q
; (3.8)

 t� t0 � �
1

6aE2 �2aEr�Q
2�

������������������������
4aEr�Q2

q
; (3.9)

where a � c
2��123�

1
�1�2�3

. In the case of Q � 0, the above

equation says r� t2=3. This reflects the fact that the mass
of the triangle loop is proportional to r and its velocity
becomes smaller as the size of the loop becomes large. For
the loop with Q � 0, the minimum size is given by rmin �
Q2=4aE. The typical time dependence of the size modulus
is shown in Fig. 7. Since our argument above is based on
the asymptotic metric Eq. (2.28) which is valid for r� 1,
the solution Eqs. (3.8) and (3.9) can be well trusted only
when rmin � Q2=4aE� 1. Of course, the energyE should
be small enough so as not to excite the massive modes.

The asymptotic potential V � Q2=4ar can be inter-
preted as the shift of the energies associated with the walls
composing the loop. This expectation can be confirmed by
the following argument. For a domain wall with tension T,
the rotation of its phase induces flavor charge density �Q
on the world volume given by

FIG. 7. The solution of the equation of motion for size modu-
lus with Q � 0. The phase rotation produces the repulsive
potential and the loop bounces back at rmin � Q2=4aE.

FIG. 6. Plot of the potential V � Q2=4Kw �w in the g2 ! 1
limit (solid line) and the asymptotic (r� 1) potential V �
Q2=4ar, a � c

2��123�

1
�1�2�3

(dashed line) given in Eq. (2.28).

The phase rotation produces the repulsive force among the
triangle loop.
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 �Q �
c2 d


dt��������������������������
T2 � c2�d
dt�

2
q �

c2

T
d

dt
: (3.10)

In addition, the phase rotation causes a shift of the tension
as

 �T � T
�����������������������
1� �2

Q=c
2

q
� T �

T

2c2 �
2
Q: (3.11)

For the loop, each wall composing the loop becomes a
domain wall with flavor charges by rotating the phase
modulus 
. Since the tensions and lengths of the walls
composing the loop are given by

 T�A;4� � cj ~mAj; l�A;4� �
j ~mAj

��123�

�A
�1�2�3

r; A� 1;2;3;

(3.12)

the total flavor charge for the wall interpolating between
hAi-th and h4i-th vacua is

 QA �
c2

T�A;4�
d

dt
l�A;4� �

c
��123�

�A
�1�2�3

r
d

dt
: (3.13)

From this expression, we find that the total charge Q �P
QA agrees with Eq. (3.2) in large r limit and QA are

given by QA � �AQ. Therefore the total shift of energy is
given by

 

X3

A�1

�T�A;4�l�A;4� �
X3

A�1

T�A;4�

2c2

�
�AQ

l�A;4�

�
2
l�A;4� �

Q2

4ar
:

(3.14)

From the argument above, we can intuitively understand
the reason why the phase rotation gives rise to a repulsive
potential as follows: Since the shifts of tensions of the
walls are proportional to �2

Q and the lengths of the walls
are proportional to r, the shift of the total energy is pro-
portional to �2

Qr. This fact implies that if the charge density
is constant, the total energy increases as the size of the loop
becomes larger. However since the conserved quantity is
not the density �Q but the total flavor chargeQ, the density
decreases in proportion to 1=r and hence the total energy
decreases in proportion to 1=r as the size of the loop
become larger. This is the reason why the phase rotation
produces the decreasing repulsive potential.

Next, let us consider the dynamics of a triangle loop with
degenerate masses. The Kähler potential can be obtained
by replacing j�j2 with j�j2 	 j�1j

2 � 
 
 
 j�NF�3j
2 in

K�j�j2� and the Kähler metric of the moduli space is given
in Eq. (2.30). All but the size moduli r 	 logj�j can be
eliminated from the expression of energy by using the
conserved charges associated with U�NF � 3� flavor sym-
metry. For example, the energy in the case of NF � 5 takes
the form (see appendix)

 E �
1

4
@2
rK _r2 �

Q2

@2
rK
�
jqj2 �Q2

2@rK
; (3.15)

where jqj2 	
P3
a�1 qaqa and the conserved charges Q, qa

(a � 1, 2, 3) are defined by

 Q � iKi �j

�
d ��j

dt
�i �

d�i

dt
��j
�
;

qa � iKi �j

�
d ��j

dt
��a�

i
k�

k �
d�i

dt
��k��a�k

j
�
:

(3.16)

Note that these conserved charges are related as Q �
� ���a��qa=j�j2 and satisfy an inequality Q2 � jqj2. The
second and third terms in Eq. (3.15) can be interpreted as
the effective potential V�r� associated with the conserved
charges. For large r, this potential takes the form

 V�r� �
Q2

4ar
�
jqj2 �Q2

4ar2 : (3.17)

The first term of the potential takes the same form as in the
case of nondegenerate masses. Conversely, the second term
is induced by the Noether charges associated with the
vacuum moduli inside the loop. To understand intuitively
the origin of the second term, we can use the same argu-
ment for the first term. What we should notice is only the
fact that a part of the Noether charge qa which has no
contribution to Q is supported by the two-dimensional
vacuum inside the loop, while the charge Q has one-
dimensional support on the walls. Therefore we can easily
rederive the behavior of the second term repulsive potential
proportional to 1=r2. This potential can be also understood
by exchange of the massless particles propagating the
degenerate vacuum.

IV. DYNAMICS OF DOUBLE LOOP

We will consider the dynamics of double loop shown in
Fig. 1(b) in this section. Unlike the previous example, this
configuration has two normalizable zero modes which are
related to the sizes of the loops and their phases. By
varying the sizes of the loops, we obtain various configu-
rations of the loops. We will first explain the configurations
of the domain wall web and then discuss the dynamics of
the double loop.

The model is U�1� gauge theory with six hypermultip-
lets, and we choose six complex masses as follows (assum-
ing a real positive value for m> 0):

 M � diag
�
3m
2
; i

���
3
p
m

2
;�

3m
2
;�i

���
3
p
m

2
;
m
2
;�

m
2

�
: (4.1)

The solution of the BPS equations Eqs. (2.4) and (2.5) is
characterized by H0, which is now six component row
vector

 H0 �
���
c
p
�ea1�ib1 ; ea2�ib2 ; ea3�ib3 ; ea4�ib4 ; ea5�ib5 ; ea6�ib6�:

(4.2)
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Since the parameters ai and bi (i � 1; 
 
 
 ; 4) are related to
positions and phases of external walls, these will be non-
normalizable modes if these are promoted to fields, and
normalizable zero modes correspond to the parameters in
the fifth and sixth components of H0. They are related to
sizes of the double loop and their phases. When we con-
sider the effective theory of the domain wall network, we
have to fix four complex moduli parameters and promote
two normalizable modes to fields:

 H0 �
���
c
p
�1; e3ml=4; 1; e3ml=4; �1�x	�; �2�x	��; (4.3)

with �i � ew
i
� er

i�i
i (i � 1, 2). For simplicity, we have
chosen a somewhat symmetric set of four complex parame-

ters for external walls. By varying the sizes of loops, we
obtain seven different patterns of web configurations as
shown in Figs. 8 and 9. Let us recall the vacuum assign-
ment depicted in Fig. 1(b) which gives the grid diagram
together with the web diagram A in Fig. 9. The fixed
parameter l corresponds to the length between the h1ih2i�
h4i junction and the h2ih3ih4i junction, in other words, the
length of the h2ih4i wall (internal line) of configuration G
in Fig. 9. We call the left loop surrounding vacuum h5i
loop-1 and the right surrounding h6i loop-2. In region A(B),
both loop-1 and loop-2 appear as quadrangle loops (tri-
angle loops). When the loop-1(2) grows and covers the
junction h1ih2ih4i (h2ih3ih4i), the other loop-2(1) is eaten
by the loop-1(2) as C(D) in Fig. 9. In region E(F) the loop-
2(1) vanishes and the triangle loop-1(2) exists. In region G
both the loop-1 and loop-2 disappear.

Since the Kähler potential K is independent of 
i, the
Kähler metric Ki �j can be written as Ki �j 	

@
@wi

@
@ �wj K �

1
4 �

@
@ri

@
@rj K. Then the effective Lagrangian takes the form

 L � Ki �j�r
1; r2�

dwi

dt
d �wj

dt

� Ki �j�r
1; r2�

�
dri

dt
drj

dt
�
d
i

dt
d
j

dt

�
; (4.4)

where we have used Ki �j � Kj�i. In this case, there exist two
conserved charges defined by Qi 	 2Ki �j

d
j
dt . By using

these conserved charges, the Lagrangian can be rewritten
as

 

~L � Ki �j�r
1; r2�

dri

dt
drj

dt
�

1

4
K �ji�r1; r2�QiQj; (4.5)

where K �ji is the inverse of the metric Ki �j.
In the previous section, we have found the characteristic

property of the loop, that is, the loop is apt to become larger
irrespective of Q � 0 or Q � 0. Therefore, we expect that
the loops would become larger and sit in region A in Fig. 8
after a sufficiently long time interval. Some examples of
numerical solutions without flavor charges (Q1 � Q2 � 0)
are shown in Fig. 10. For the initial velocities such that
dr2

dt & 2 dr1

dt and dr2

dt * 1
2
dr1

dt (Fig. 10(a)), the orbits of the
solutions are almost straight lines in r1-r2 plane and sit
entirely in region A. For the initial velocities such that
dr2

dt * 2 dr1

dt and dr2

dt * � dr1

dt (Fig. 10(b)), the orbits of the
solutions first enter region C, namely, one of the loops
shrinks. Then, they bounce back at r1 � �1 and return to
region A. For the initial velocities such that dr

2

dt & � dr1

dt and
dr2

dt * 1
2
dr1

dt (Fig. 10(c)), one of the loops shrinks and boun-
ces back at r1 � �1. Then, they enter region D and
bounce at r2 � �1, namely, the other loop shrinks to
zero size. Finally, the orbits return to region A and the
sizes continue to become larger.

Next, let us consider the case of the double loop with the
flavor charges. Figure 11 shows an example of the potential

FIG. 9. Configurations of double loop.

FIG. 8. Seven regions of moduli space corresponding to differ-
ent patterns of configurations.
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V � 1
4K

�jiQiQj and numerical solutions for the double loop
with flavor charges. The potential increases rapidly outside
region A and produces the repulsive force among the walls,
so that any orbits of the solutions enter region A after a
sufficiently long time interval and continue to become
larger. Other numerical simulations also demonstrate that
region A is preferable.

It is possible to know the asymptotic metric in region A
for r1 � r2 � ml by computing the kinetic energy of
domain walls. The kinetic energy of domain walls implies
that the asymptotic metric r1 � r2 � ml is given by

 

ds2 �
c���
3
p
m2
��8r1 � r2�jdw1j2 � �8r2 � r1�jdw2j2

� �r1 � r2��dw1d �w2 � dw2d �w1��

�
5
���
3
p
c

2m2 �Re	�jd	�j2 � Re	�jd	�j2�; (4.6)

where 	� is defined by 	� 	 �1� ��w1=2� �1�
��w2=2, � 	 3=

���
5
p

. This form of the metric implies that
the geodesic equation decomposes into two independent
equations which can be solved as in the case of the triangle
loop.

Figure 11 appears to illustrate that the trajectory of the
double loop configurations can bounce back at most only
twice. However, this behavior is due to the particular mass
assignment of the model; namely, the center wall in con-
figuration A is rather heavy. Let us consider a smaller mass
difference between two flavors corresponding to the vacua
inside the loop, such as
 

M � diag
�
3m
2
; i

���
3
p
m

2
;�

3m
2
;�i

���
3
p
m

2
;
m0

2
;�

m0

2

�
;

m0 � m: (4.7)

Then the mass of the center wall is much smaller than those

FIG. 11. (a) Contour plot of the potential logV � log�14K
�jiQiQj�. (b) Orbits of numerical solutions with flavor charges. There exists

a forbidden region where the potential energy exceeds the given total energy V�r�>E.

FIG. 10. Numerical solutions of the equation of motion for double loop without flavor charges. The initial state has been taken to be
configuration A with the same loop size, and some orbits for various initial velocities are shown in these figures.
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of the other walls. Such mass assignment makes it possible
that the double loop configuration bounces a lot of times.
Moreover, if we consider the case of degenerate masses
m0 � 0, we can have configurations exhibiting as many
‘‘bounces’’ as one wishes. In this degenerate mass limit,
the center wall is no longer visible, rather, it spreads over
the entire middle vacuum region in the loop. Cor-
respondingly, the mode also spreads over the vacuum
region as in the case of a triangle loop with degenerate
masses (see Fig. 4) and it describes the degrees of freedom
of the degenerate vacua inside the quadrangle loop.
Furthermore, it is interesting to note that the infinitely
many bounces in the degenerate mass limit naturally re-
duces to the repulsive force, which is described by a
potential similar to the second term in Eq. (3.17) with a
different coefficient a. To describe the dynamics in the
degenerate mass limit, we can use the expression for the
energy Eq. (3.15), if the Kähler potential K is replaced by
that for a quadrangle loop.

V. DYNAMICS OF NON-ABELIAN LOOP

We will next consider the dynamics of non-Abelian loop
shown in Fig. 2 in this section. This configuration has four
external walls, and also four internal walls which divide six
vacua and constitute a quadrangle loop. After fixing the
positions of external walls, one complex moduli parameter
is left. The difference from the Abelian loop is that the
moduli parameter controls the areas of two vacuum re-
gions. First we will explain the configuration and moduli
parameters, and then we will discuss the dynamics of the
non-Abelian loop. For the details of the non-Abelian webs
of walls, see [18].

The model is U�2� gauge theory with NF � 4 hyper-
multiplets, and we choose four complex mass parameters
as follows:

 M1 � iM2 � diag
�
m
2
� im;

3m
2
;
m
2
� im;�

3m
2

�
: (5.1)

The complex masses and vacuum points in the Trh�i plane
are shown in Fig. 2(a). The solutions of the BPS equations
are characterized by a 2� 4 moduli matrix H0. It is
convenient to extract the 2� 2 matrix HhA1A2i

0 defined by
�HhA1A2i

0 �st � �H0�
sAt , s, t � 1, 2. Let us denote detHhA1A2i

0
as

 hA1A2i 	 exp�ahA1A2i � ibhA1A2i� � detHhA1A2i
0 : (5.2)

These parameters are not independent but satisfy the so-
called Plücker relation given by

 h12ih34i � h13ih24i � h14ih23i � 0: (5.3)

Each parameter ahA1A2i corresponds to the area of the
vacuum region hA1A2i and bhA1A2i to the associated phase
as before. In order to fix four external walls, we set four
complex moduli parameters as

 ah12i � ah34i � �ah14i � �ah23i �
mL
4
; (5.4)

 bh12i � bh34i � bh14i � bh23i � 0: (5.5)

The parameter L controls the positions of the external
walls and the shape of the quadrangle loop as shown in
Fig. 12. The remaining moduli parameters are h13i and
h24i, which determine the size of the loop. We introduce
two complex parameters u, v 2 C as

 ah13i � ibh13i � �u� v�
mL
4
; (5.6)

 ah24i � ibh24i � �u� v�
mL
4
: (5.7)

The parameter u is fixed by the Plücker relation Eq. (5.3).
In the following, we take L sufficiently large, L� 1=m, so
that the equation Eq. (5.3) determines the parameter u as
u ’ 1. Then the only parameter left is v, which we denote
as v 	 s� i
. The moduli parameter s controls the areas
of two vacua h13i and h24i, and three patterns of webs with

FIG. 12. The web diagrams in the parallelogram-type mass arrangement. Positions of the Abelian junction A� and the non-Abelian
junction N� are given by A1 � �s� 1;�1�, A2 � �

2
3 ;

4
3� s�, A3 � �

1�s
2 ; 1�, A4 � ��

2
3 ;�

2
3� s�, N1 � �1� s; 1�, N2 � ��

2
3 ; s�

4
3�,

N3 � ��
1�s

2 ;�1�, N4 � �
2
3 ;

2
3� s� in units of L

4 .
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a quadrangle loop appear as s changes, as shown in Fig. 12.
The parameter 
 is related to the Nambu-Goldstone mode
corresponding to one of the broken flavor symmetries.

Now let us discuss the dynamics of the non-Abelian
loop. If we calculate the kinetic energies of domain walls
separately in the three configurations in Fig. 12, the asymp-
totic metric on the moduli space of the quadrangle loop is
obtained as

 ds2
w �

3mc
2

�
L
4

�
3
�s� 1��ds2 � d
2�; s�

1

3
;

ds2
w � 2mc

�
L
4

�
3
�ds2 � d
2�; s � 0;

ds2
w �

3mc
2

�
L
4

�
3
��s� 1��ds2 � d
2�; s��

1

3
:

(5.8)

In the outer two regions of the parameter s, the metric has
linear dependence on s since the lengths of the internal
walls depend linearly on s. We have observed the same
feature in the case of the triangle loop in Eq. (2.28). In the
middle region, the linear dependence on s cancels out and
the metric does not depend on s. Figure 13(a) shows the
numerically evaluated metric and Fig. 13(b) shows the

shape of the moduli space isometrically embedded into
the 3-dimensional Euclidean space.

If we consider the motion without flavor charge from the
outer regions of the parameter s to the direction of middle
region, it goes through the middle regions and continues to
go in the same direction. This motion corresponds to the
motion of the loop changing the vacuum region inside the
loop. If the configuration has nonzero flavor chargeQ � 0,
the potential term V � Q2

4Kv �v
will be induced in the effective

Lagrangian. The typical form of the potential is shown in
Fig. 14. If the energy E is greater than Vmax 	

8Q2

mcL3 , the
change of the vacua inside the loop can occur as in the case
of Q � 0. However, if E< Vmax, the quadrangle loop
bounces back to be larger without changing the vacua
inside the loop.

Let us next compute the kinetic energies of junctions.
The magnitude of the junction charge is proportional to the
area of the corresponding triangle in the grid diagram in the
complex Trh�i plane. See Eqs. (2.15) and (2.17). We show
the areas of four junctions in Fig. 15. The sign of the
Abelian junction is minus while that of the non-Abelian
junction is plus. Although the total junction charge is zero
in all three regions of the parameter s, the positions of
junctions have different dependence on s. This causes the
different velocities of junctions for a given value of dsdt , and
the total kinetic energies of junctions can be nonzero. Since
the Abelian junction transforms into the non-Abelian junc-
tion and vice versa at s � �1=3, the kinetic energies of
junctions are different in these three regions. These kinetic
energies imply the additional contributions to the asymp-
totic metric as

 ds2
j � �

3

8g2

�
L
4

�
2
��134��ds

2 � d
2�; s�
1

3
;

ds2
j � 0; s � 0;

ds2
j �

3

8g2

�
L
4

�
2
��134��ds2 � d
2�; s��

1

3
:

(5.9)

FIG. 14. The potential V � Q2

4Kv �v
.

FIG. 13 (color online). (a) The metric evaluated numerically (solid line) and the asymptotic metric (5.8) computed from kinetic
energies (dotted lines). (b) Embedding of the moduli space into the 3-dimensional Euclidean space. Here the metric is numerically
evaluated in the limit g! 1. The moduli space is nonsingular since the curvature is finite everywhere.
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VI. SIZE MODULUS STABILIZATION AND Q
WEBS OF WALLS

So far, we have seen that the sizes of the loops tend to
become larger after sufficiently long time interval. In this
section, we show that the sizes of the loops stabilize if the
third mass parameters M3 are turned on in the Lagrangian
(2.1). One way to introduce M3 consistently with super-
symmetry is the Scherk-Schwarz dimensional reduction
from 3� 1 dimensions to 2� 1 dimensions for the
Lagrangian (2.1). Then the third (twisted) mass parameter
M3 is naturally introduced together with the third adjoint
scalar �3 whose origin is the gauge field of the reduced
dimension. Keep in mind that this explanation is merely
technical in order to be compatible with supersymmetry.
Once we forget about supersymmetry, the third masses can
be always introduced in 3� 1 dimensions.

A. Effective theory analysis

Let us consider the triangle loop discussed in Sec. III for
simplicity. If we turn on a small third mass parameter such
that M3 � diag�0; 0; 0; m3�, a potential Vm�r� is induced in
the effective theory. We can show that this potential can be
obtained from the 1� 1 dimensional effective theory L �
Kw �w�@	r@	r� @	
@	
� by requiring r�t; x3� �

r�t�; 
�t; x3� � 
�t� �m3x
3 and then reducing to 1-

dimensional theory as

 L � Kw �w�r�
��
dr
dt

�
2
�

�
d

dt

�
2
�
� Vm�r�;

Vm�r� � �m3�
2Kw �w�r�:

(6.1)

The asymptotic form of this potential obtained from the
asymptotic Kähler metric (2.28) takes the form

 Vm�r� � �m3�
2 c

2��123�

r
�1�2�3

; (6.2)

which is valid for r� 1. This is a confining potential so
that the loop shrinks and eventually shrinks to a point, if we
do not turn on the flavor Q-charges coming from the
motion of the phase. This potential can be interpreted as
a shift of energies of the walls. Because of the small mass

parameter m3, the tensions of walls shift as7

 �ThA;4i �
�������������������������������������
�ThA;4i�2 � �m3c�

2
q

� ThA;4i �
�m3c�2

2ThA;4i
: (6.3)

Therefore the total shift of energy can be evaluated by
using Eq. (3.12) as

 

X3

A�1

�ThA;4ilhA;4i � �m3�
2 c

2��123�

r
�1�2�3

: (6.4)

When we turn on the flavor charge Q around the domain
walls composing the loop given in Eq. (3.2), the effective
Lagrangian can be rewritten as

 

~L � Kw �w�r�
�
dr
dt

�
2
� VQ�r� � Vm�r�; (6.5)

 VQ�r� � Vm�r� �
Q2

4Kw �w
� �m3�

2Kw �w  jm3Qj: (6.6)

Let us remember thatKw �w vanishes in the limit of r! �1
and diverges in the limit of r! 1. Therefore, VQ�r� 	
Q2

4Kw �w
increases as r! �1 while Vm�r� 	 �m3�

2Kw �w in-
creases as r! 1 asymptotically, and there is the minimum
of the potential saturating the inequality in the last equa-
tion, as shown in Fig. 16. At the minimum, the value of the
Kähler potential is related to the given Q-charge

 Kw �w �
1

2

��������Qm3

��������: (6.7)

Comparing this with the Q-charge for the unstable con-

FIG. 15. The magnitude of the junction charge is proportional to the area of the triangle in the complex Trh�i plane which is dual to
the junction point in the actual configuration. Abelian junctions Ai and non-Abelian junctions Ni (i � 1; 
 
 
 ; 4) are illustrated in
Fig. 12. Non-Abelian junctions are denoted by shaded regions.

7The Scherk-Schwarz dimensional reduction just introduces
one more component of the energy density for the tension Tw of
domain walls in Eq. (2.8). The tension of domain walls is
formally still given by the same formula, proportional to the
length of the mass vector: ThA;Bi � cj ~mA � ~mBj, except that the
mass vector ~mA now becomes a three-vector in the three-
dimensional grid diagram, after the Scherk-Schwarz dimensional
reduction.
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figuration in Eq. (3.2), we observe that the stable configu-
ration has d
=dt � �m3. The relation (6.7) implies the
size of the loop is stabilized at a certain value r � r0. For a
sufficiently small value of jm3j and large value of jQj, the
stabilized size r0 takes a large value, so that it can be
evaluated from the asymptotic potential as

 r0 �
jQj
jm3jc

��123��1�2�3: (6.8)

Thus the third mass parameter M3 stabilizes the size
moduli of loops by preventing the loops from expanding
forever. When the flavor charge Q becomes nonzero, the
configuration is stabilized at a finite size of the loop, rather
than at the boundary of the moduli space corresponding to
the complete shrinkage (vanishing size) of the loop. This
stabilization mechanism is the same as the one of the
Q-lumps in nonlinear sigma models with a potential term

[23–25]; the sizes of the Q-lumps are stabilized by the
Q-charge and the masses.

In the subsequent section we will show the BPS nature of
this stabilized loop configuration from the viewpoint of
original theory. There we will see the origin of the mini-
mum of the potential (6.6) which is always positive except
for the case Q � 0 or m3 � 0. The value of the potential
jQm3j at the minimum is shown to be equal to an increase
in the BPS mass from the BPS loop with Q � m3 � 0.

B. Q-domain wall web as 1=4 BPS soliton

So far we have seen dynamics of Q-charged domain
walls and their networks mainly from the viewpoint of the
low-energy effective theory. Let us go back to the original
theory and reanalyze the stable network with nonzero
Q-charges in more detail. It turns out that the configuration
is a solution of other 1=4 BPS equations which are de-
formed from Eqs. (2.4) and (2.5). In order to see it, let us
consider a supersymmetric model in d � 2� 1 with 8
supercharges in which there is an additional adjoint scalar
�3 and third mass parameter M3 as mentioned above.

It is convenient to write the mass matrix as M3 	

ma
3Ha � diag�m1

3; m
2
3; 
 
 
 ; m

NF
3 �, where we set TrM3 � 0

without loss of generality and Ha (a � 1; 2; 
 
 
 ; NF � 1)
are the generators of U�1�NF�1, that is, the elements of the
Cartan subalgebra of SU�NF�. The densities of conserved
charges of the U�1�NF�1 symmetries are defined by

 �a 	 i�H1Ha�D0H1�y �D0H1HaH1y�: (6.9)

In addition, it is convenient to define an electric charge
density as

 �e 	 @� Tr�F0��3�: (6.10)

Then the energy density can be written as

 

E � Tr
�

1

g2 F
2
�0 �

1

g2 F
2
12 �

1

g2 �D0�~��
2 �

1

g2 �D��~��
2 �

1

2g2 ��~�;� ~��
2 � jD0H

1j2 � jD�H
1j2

� jH1M~� � �~�H
1j2 �

g2

4
�H1H1y � c1NC

�2
�

� Tr
�

1

g2 �F12 � i��1;�2��
2 �

1

g2

�
D1�1 �D2�2 �

g2

2
�c1NC

�H1H1y�

�
2
�

1

g2 �D1�2 �D2�1�
2

� jD�H
1 � �H1M� � ��H

1�j2 �
1

g2 �F�0 �D��3�
2 �

1

g2 �D0�� � i��3;����
2 �

1

g2 �D0�3�
2

� jD0H1 � i�H1M3 � �3H1�j2
�
�Y �Z1 �Z2 �ma

3�a �
2

g2 �e � @�J�

 Y �Z1 �Z2 �ma
3�a �

2

g2 �e � @�J�; (6.11)

where � stands for indices 1, 2 while ~� for 1, 2, 3, and we have used the Gauss’s law

 D �F�0� i��~�;D0�~��� i
g2

2
�H1D0H

1y�D0H
1H1y��0: (6.12)

The BPS equations are obtained by requiring the BPS bound to be saturated. Apart from the equations to determine time-
dependence, we find the same five 1st order equations as Eqs. (2.4) and (2.5) for the fields fW�;��;H1g:

FIG. 16. The potential V for a nonzero third mass parameter
m3 and flavor charge Q. The potential V is the sum of Vm �
�m3�

2Kw �w and VQ �
Q2

4Kw �w
. The potential takes the minimum

jm3Qj at r � r0.
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F12 � i��1;�2� � 0;

D1�2 �D2�1 � 0;

D1�1 �D2�2 �
g2

2
�c1NC

�H1H1y�;

D1H
1 �H1M1 ��1H

1 � 0;

D2H1 �H1M2 ��2H1 � 0:

(6.13)

Then the solution, except for time dependence, can be
written by using the solution of the master equation
Eq. (2.13) � 	 SSy as Eqs. (2.9) and (2.10). Time depen-
dence of all the fields including new variables fW0;�3g are
determined by additional equations [25]

 F�0 �D��3 � 0; D0�� � i��3;��� � 0;

D0�3 � 0; D0H1 � iH1M3 � i�3H1 � 0:
(6.14)

If we choose a gauge such that W0 � ��3, these can be
solved by replacing H0 as H0 ! H0e

iM3t and requiring the
other fields to be independent of time:

 iW1 � �1 � S�1@1S; iW2 � �2 � S�1@2S;

H1 � S�1H0eM1x1�M2x2�iM3t:
(6.15)

The spatial profile of the gauge fieldW0 (and adjoint scalar
�3) are finally determined from the Gauss’s law constraint
Eq. (6.12). The solution takes the form of

 W0 � ��3 � �ma
3

�
@
@�a

SySy�1 � S�1 @
@ ��a

S
�
: (6.16)

Here, �a (a � 1; 2; 
 
 
 ; NF � 1) are the complex moduli
parameters whose imaginary parts correspond to the
Nambu-Goldstone modes of U�1�NF�1 symmetries, that
is, �a appear in the expression of H0 as H0��a� �
H0��a � 0�e�

aHa . It is instructive to note a similarity
between Eqs. (2.24) and (6.16). Recall that the latter is
the solution of the Gauss’s law constraint for the configu-
rations when we promote the moduli parameters of the
stationary 1=4 BPS background to fields (functions of the
world volume coordinates including time t � x	�0). Let us
suppose that we make an ansatz for the field �a to depend
only linearly on time as �a�t� � �a � ima

3t, namely, the
moduli matrix changes as H0e�

aHa ! H0e
Ha��a�ima

3 t�. This
leads to @0�a�t� � ima

3 and then the solution (2.24) corre-
sponds to the solution (6.16).

For the solution Eqs. (6.15) and (6.16), theQ-charges are
determined by integrating the densities Qa �

R
d2x�a.

Interestingly, the Q-charge which is a variable defined in
the original theory can be directly related to the Kähler
metric of the low-energy effective theory (2.25)

 Qa � 2mb
3Ka �b � 2mb

3Kb �a;

Ka �b 	
@

@ ��b
@
@�a

K � Kb �a:
(6.17)

Here we have used the fact that the Kähler potential K is

independent of the imaginary parts of �a. Since the right-
hand side depends on the parameters contained in H0,
some of these parameters are fixed for given values of
Qa. Therefore, those parameters are no longer moduli
parameters and the configuration is stabilized. Especially,
in the case of the triangle loop discussed in the previous
subsection, we can show that the size parameter is fixed at
the same value obtained as the minimum of the potential
Eq. (6.7) in the effective theory by taking, for example,

�a � �0; 0;
��
3
2

q
w� and ma

3 � �0; 0;
��
3
2

q
m3� with Ha�3 �

1
2
��
6
p diag��1;�1;�1; 3� and the notation Q �

��
3
2

q
Qa�3.

Furthermore, the minimum value jm3Qj of the effective
potential in Eq. (6.6) precisely corresponds to the incre-
ment of energy bound ma

3Qa in the last line of Eq. (6.11).
Note that since F0� ! 0 at spatial infinity in this case, the
electric charge does not contribute to the total energy.8

Eq. (6.17) tells us that the 1=4 BPS configuration requires
both nonzero Q-charges and the third masses ma

3 (or both
of them to vanish simultaneously). If one of them is absent,
the balance between them is lost and the configuration no
longer is BPS. This is also consistent with what we found
from the effective theory viewpoint in the previous
sections.

VII. CONCLUSION AND DISCUSSION

In this paper, we investigated dynamics of 1=4 BPS
domain wall networks (or webs) in Abelian or non-
Abelian gauge theories coupled with complex masses for
Higgs fields in the fundamental representation. In the
previous paper [6] we have obtained the effective action
on the world volume of the domain wall networks. In this
paper we applied it to study the dynamics of the networks.
Namely, we described the dynamics of the slowly moving
networks as geodesics on their moduli space, namely, with
the moduli approximation. Only moduli parameters related
to internal loops composed of several domain walls in the
networks can be treated as massless fields in the effective
Lagrangian. Other moduli are associated with the shift of
external domain walls, which requires an infinite amount
of energy and results in the change of boundary conditions.

As concrete examples, we dealt with three different
types of loops in Abelian or non-Abelian gauge theories.
The first example is in Sec. III where the simplest configu-
ration of the single triangle loop appears in the Abelian
gauge theory with 4 massive Higgs fields. The metric of the
moduli space for the single loop has a geometry between a
cone and a cigar [6]. We found geodesics corresponding to
any motion of a shrinking loop pass the tip (zero size of the
loop). This means that the loop bounces back with �
rotation of the internal phase and eventually expands to

8The Q-wall can be viewed as a capacitor with electric charge
distributions on the two sides of the wall [31]. Since these
charges have opposite signs, the total electric charge vanishes.
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an infinite loop. The second example is the dynamics of
two loops in the Abelian gauge theory with 6 massive
Higgs fields in Sec. IV. There exist seven types of configu-
rations shown in Fig. 9. We numerically showed that after a
sufficiently long time both of the two loops expand forever
irrespective of the initial condition. As the two loops get
larger, the system approaches a system of two independent
single loops. Our last example is the network including
both Abelian and non-Abelian junctions which appears in
theU�2� gauge theory with 4 massive Higgs fields [18]; see
Sec. V. After fixing all the non-normalizable moduli, there
remains only one complex moduli parameter s as the
normalizable modulus which controls the areas of two
vacuum regions. We found the metric of the moduli space
whose geometry in Fig. 13 looks like a sandglass made by
gluing the tips of the two metrics of a single triangle loop in
Fig. 5. The geodesic of s is a one way traffic from any
initial value to an expanding loop with either s � �1 or
s � �1 (one or the other branches of the sandglass),
depending on its initial velocity. Namely, only one of the
loop out of two loops remains after sufficient time.

We also considered the dynamics of the web loop ac-
companied by a phase rotation in the internal direction, a
U�1� isometry which originates from a linear combination
of broken U�1� flavor symmetries. Conserved charges
associated with the rotation are Q-charges of the domain
walls composing the loops. These Q-charges give a run-
away potential in the effective theory and exert a repulsive
force between walls in the loop. Then the loops with
Q-charges are generally unstable (non-BPS) and tend to
expand forever. Thanks to the repulsive force, the geo-
desics bounce back before reaching the completely shrunk
loops. The minimum sizes of the loops are determined by
the given Q-charges. For the loops including both the
Abelian and the non-Abelian junctions with the sandglass
geometry in Fig. 13, the corresponding geodesic motion
becomes bounce back type or one way traffic type depend-
ing on the total energy and the given Q-charge.

By introducing the third masses for the Higgs fields, the
effective theory of the loops acquires an attractive potential
in contrast to the Q-charges. In the presence of the third
masses, the loops tend to shrink. Coexistence of the
Q-charges and the third masses stabilize the size of the
loops. Then the size of the loop is fixed at some value
where the attractive and the repulsive forces are balanced
like the known stabilization mechanism of size moduli for
the lumps due to the suitable potential accompanied by the
Q-charge [23–25]. We also studied such configurations in
the original theory, rather than in the effective theory on the
world volume of the web of loops. Then we derived new
1=4 BPS equations which includes time derivatives and
found a new BPS bound which is the sum of the topological
charges of domain walls and their junctions and the addi-
tional masses coming from the Q-charges. General solu-
tions of the 1=4 BPS equations with the Gauss’s law are

found. All the results found in the original theory are
compatible with those found in the effective theory.

To illustrate the behavior of domain wall networks in
this paper, we took the strong gauge coupling limit where
the background solutions are explicitly available. This
limit is sufficient to discuss qualitatively the dynamics of
the networks even at finite gauge couplings. This is be-
cause the asymptotic metrics on the moduli space (large
loops) are not sensitive on the gauge coupling [6].
Furthermore, when we turn on the nonzero flavor charges,
the loops cannot get close to shrinking points. The flavor
charges are generally produced whenever we promote the
relative phase moduli to fields on the effective theories. So
our analysis is adequate to know qualitative features for
any gauge coupling. It is an interesting future problem to
study numerically at finite gauge couplings in order to
clarify more detailed aspects of the network dynamics.

Here we make several comments on possible extensions
of the present work.

Global cosmic strings appear when global U�1� symme-
try is spontaneously broken. It is well-known that there
exists a repulsive force between two strings. Strings inter-
act with the Nambu-Goldstone boson associated with the
spontaneously broken U�1� symmetry, and the repulsive
force was explained in terms of the Nambu-Goldstone
bosons propagating in the bulk [2]. In the same way, it
will be possible to explain the repulsive force induced
inside a domain wall loop in terms of the Nambu-
Goldstone bosons. A feature different from the case of
cosmic strings is that the Nambu-Goldstone modes in
this case of a domain wall loop are normalizable and
therefore appear in the low-energy effective action of the
loop as shown in this paper.

An extension to a supertube [32] is interesting and may
have some impact on string theory. With a Noether charge
density, domain walls with arbitrary shape [33] were con-
structed as a field theory realization of a supertube. Our
work should be extendible to a BPS supertube junction.
Such a solution may suggest a junction of a membrane tube
in M-theory. In fact, the junction of membranes was al-
ready constructed in d � 6, N � �2; 0� supersymmetric
theories [34].

It is interesting to explore applications of our results to
cosmology. Our theory is supersymmetric and all station-
ary configurations discussed in this paper are BPS and are
stable. In the early Universe supersymmetry is expected to
be unbroken. Therefore our results can be applied when
gauge and global symmetry are broken above the super-
symmetry breaking scale. Vacuum regions inside domain
wall loops are considered to be bubbles. Our results imply
all bubbles grow for a late time in theory with complex
masses if the size of the Universe is infinite. In this respect,
it is worth generalizing our work to domain wall webs in a
finite size space. In this case, zero modes of external legs of
walls become normalizable and are promoted to fields in
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the effective theory. Dynamics of webs is not restricted to
loops and will become richer. If we do not restrict our-
selves to a supersymmetric Universe, we can allow triplet
masses of Higgs fields even in four space-time dimensions.
In this case, the bubble (loop) sizes are stabilized. Growing
bubbles with (without) a Q-charge will be stabilized
(shrink) after supersymmetry is broken and the triplet
masses are induced.
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APPENDIX: TRIANGLE LOOP WITH
DEGENERATE MASSES

Let us consider a triangle loop for NC � 1, NF � 5 case
in which the masses for fourth and fifth flavor components
are degenerate, ~m4 � ~m5. There exist four Killing vector
fields �0, �a (a � 1, 2, 3) on the moduli space, which are
given by

 �0 	 i�i@i � �c:c:�; �a 	 i��a�ij�
j@i � �c:c:�:

(A1)

These Killing vectors originate from the U�2� flavor sym-
metry which rotates the fourth and fifth flavor components
of H. Not all of them are independent. Instead they are
related as

 �0 �
1

j�j2
� ���a���a: (A2)

The tangent space of the moduli space can be orthogonally
decomposed into the direction of size of the loop tr 	
�i@i � �c:c:�, phase of the loop t
 	 �0, and two directions
of the vacuum moduli inside the loop tI 	 caI �a (I � 1, 2).
Here the coefficients caI are defined by caI � ���a�� � 0,
caI c

a
J � �IJ. The norms of these vector fields are given by

 ktrk2 � kt
k2 � 2j�j2�K0�j�j2� � j�j2K00�j�j2��

�
1

2

@2

@r2 K; (A3)

 kt1k2 � kt2k2 � 2j�j2K0�j�j2� �
@
@r
K; (A4)

Here r 	 logj�j can be interpreted as the size of the loop.
For large r, K ! c

3��123�

1
�1�2�3

r3 and the norms Eqs. (A3)

and (A4) become

 ktrk
2 � kt
k

2 !
c

��123�

r
�1�2�3

;

kt1k2 � kt2k2 !
c

��123�

r2

�1�2�3
:

(A5)

These asymptotic forms of the norms and their dependence
on the size of the loop r show the fact that the metric
densities for size and phase moduli have a one-dimensional
support on the edges of the loop, while those for the
vacuum moduli have a two-dimensional support extended
fully inside the loop (see Fig. 4). Since the moduli space
has isometrics generated by the Killing vectors �0 and �a,
there are conserved Noether charges defined by

 Q � h _�; �0i � iKi �j�
_��j�i � _�i ��j�; (A6)

 qa � h _�; �ai � iKi �j�
_��j
��a�

i
k�

k � _�i ��k��a�k
j�; (A7)

where _� 	 _�i@i � �c:c:� and h ; i denotes the inner product
with respect to the metric of the moduli space Ki �j. These
conserved charges are related as

 Q �
1

j�j2
� ���a��qa: (A8)

Since the tangent vectors tr, t
, t1, t2 are orthogonal, the
time derivative of the moduli parameters _� can be written
as

 

_� �
h _�; tri

ktrk2 tr �
h _�; t
i

ktrk2 t
 �
h _�; t1i

kt1k2 t1 �
h _�; t2i

kt2k2 t2: (A9)

Then the energy in the effective theory can be written as

 E �
1

2
h _�; _�i

�
1

2

�
h _�; tri

2

ktrk2 �
h _�; t
i

2

kt
k2 �
h _�; t1i

2

kt1k2 �
h _�; t2i

2

kt2k2

�

�
1

4
@2
rK _r2 �

Q2

@2
rK
�

1

2@rK
�ca1c

b
1 � c

a
2c
b
2�qaqb

�
1

4
@2
rK _r2 �

�
1

@2
rK
�

1

2@rK

�
Q2 �

qaqa
2@rK

: (A10)

Here we have used h _�; tri � _rktrk2 and ca1c
b
1 � c

a
2c
b
2 �

� ���a��� ���b��=j�j4 � �ab.
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