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We present an Ansatz for the planar five-loop four-point amplitude in maximally supersymmetric Yang-
Mills theory in terms of loop integrals. This Ansatz exploits the recently observed correspondence
between integrals with simple conformal properties and those found in the four-point amplitudes of the
theory through four loops. We explain how to identify all such integrals systematically. We make use of
generalized unitarity in both four andD dimensions to determine the coefficients of each of these integrals
in the amplitude. Maximal cuts, in which we cut all propagators of a given integral, are an especially
effective means for determining these coefficients. The set of integrals and coefficients determined here
will be useful for computing the five-loop cusp anomalous dimension of the theory which is of interest for
nontrivial checks of the AdS/CFT duality conjecture. It will also be useful for checking a conjecture that
the amplitudes have an iterative structure allowing for their all-loop resummation, whose link to a recent
string-side computation by Alday and Maldacena opens a new venue for quantitative AdS/CFT
comparisons.
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I. INTRODUCTION

Maximally supersymmetric Yang-Mills theory (MSYM)
is an important arena for exploring the properties of gauge
theories. The Maldacena weak-strong duality [1] between
MSYM and string theory in AdS5 � S

5 provides an ex-
plicit realization of ’t Hooft’s old dream [2] of expressing
the strongly coupled limit of a gauge theory in terms of a
string theory. In addition, the higher-loop planar space-
time scattering amplitudes of MSYM appear to have a
remarkably simple and novel iterative structure [3,4].
This structure allows higher-loop amplitudes to be ex-
pressed in terms of lower-loop amplitudes. This simplicity
may well be connected to the observed integrability of the
theory in the planar limit [5–7].

The iterative structure of the planar amplitudes was first
proposed in Ref. [3], and confirmed for the two-loop four-
point amplitude. An independent two-loop check was
given in Ref. [8]. In Ref. [4], this proposal was fleshed
out for all planar maximally helicity violating (MHV)
amplitudes, expressed via a specific all-loop exponentia-
tion formula which was confirmed for three-loop four-
point amplitudes. The iteration formula has also been
shown to hold for two-loop five-point amplitudes [9]. At
four loops the amplitudes are known in terms of a set of
integrals, but the integrals themselves have not yet been
evaluated fully [10,11]. In this paper, we provide the
corresponding integral representation of the five-loop
four-point planar amplitude, for use in future studies of
its properties. In a very recent paper, Alday and Maldacena
[12] have shown how to perform a string-side computation
of the same gluon amplitudes in the strong-coupling limit.
This opens new and exciting possibilities of quantitative

checks of the AdS/CFT correspondence, going beyond
anomalous dimensions to detailed dependence on
kinematics.

In addition to exhibiting an iterative structure, the scat-
tering amplitudes provide new and nontrivial information
on the AdS/CFT correspondence. Using considerations of
integrability, an integral equation for the cusp (soft)
anomalous dimension—valid to all loop orders—was
written down by Eden and Staudacher [6]. This equation
agreed with the first three loop orders [4,13], but its reli-
ance on various assumptions cast doubt on whether it
would hold beyond this. We now know that this original
proposal requires modification because of the recent cal-
culation of the four-loop cusp anomalous dimension from
the infrared singular terms of a four-loop MSYM ampli-
tude [10,11]. A remarkable new integral equation proposed
by Beisert, Eden, and Staudacher (BES) [7] is in agreement
with this calculation. Surprisingly, the first four loop orders
of the planar cusp anomalous dimension contain sufficient
information to test the AdS/CFT correspondence to the
level of a few percent [10], using the interpolating function
technique introduced by Kotikov, Lipatov, and Velizhanin
[14] as well as Padé approximants. This provides an inde-
pendent guess of the entire perturbative series [10], match-
ing the one generated by the BES integral equation.
Detailed studies of the BES equation [15] (see also
ref. [16]) confirm that it has the proper behavior [17] at
strong coupling, giving a high degree of confidence in it.
Nonetheless, further checks on the perturbative side would
be quite valuable. The first such check requires a compu-
tation of the five-loop anomalous dimension, which—fol-
lowing the approach taken at four loops—requires an
expression for the five-loop four-point amplitude.
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The unitarity method [18–23] provides a powerful
method for computing gauge and gravity loop amplitudes
and has played a central role in obtaining MSYM loop
amplitudes [3,4,9,10,18,19,24–26]. An important recent
improvement [27] is the use of complex momenta [28]
within the framework of generalized unitarity [23]. In
particular, this allows one to define a nonzero massless
three-point amplitude, which vanishes for real momenta.
At one loop this enables an easy algebraic determination of
the coefficient of any box integral appearing in the theory,
because the cut conditions freeze the loop integrals [27].
Some of these ideas have also been applied at two loops
[29]. In this paper we apply these ideas to develop a
maximal-cutting method for efficiently determining coef-
ficients of higher-loop integrals.

In the MSYM theory, a special set of cuts—the iterated
two-particle cuts—give rise to the ‘‘rung rule’’ for sys-
tematically obtaining higher-loop integral representations
of planar four-point amplitudes [24,25]. At two and three
loops this rule generates all contributions appearing in the
amplitudes. However, starting at four loops, new integrals
arise which are not generated by the rung rule. In Ref. [10],
these were computed explicitly using generalized unitarity
by relying on a set of mild assumptions.

These integrals, along with two others that do not appear
in the amplitude, are predicted by a procedure relying on a
beautiful observation due to Drummond, Henn, Smirnov,
and Sokatchev (DHSS) [30]. These authors noticed that,
through three loops, the massless integrals appearing in the
planar four-point amplitude are in direct correspondence
with conformally invariant integrals. This correspondence
comes from replacing dimensional regularization with an
off shell infrared regularization in four dimensions. We
shall call the dimensional regularized version of the con-
formal integrals pseudoconformal, since dimensional regu-
larization breaks conformal invariance. We emphasize that
the dual conformal invariance acts in momentum space,
and is distinct from the usual conformal invariance of the
theory. Its origin and interpretation are still not understood.

DHSS also gave simple rules for generating all such
integrals via ‘‘dual diagrams.’’ The direct evaluation of
generalized unitarity cuts confirmed [10] at four loops
that only such pseudoconformal integrals appear in the
planar amplitude. In the present work, we will assume
that this is also true at higher loops, beginning with five
loops. This provides a basis set of integrals for the planar
(leading-color) contributions to the five-loop amplitude.
We then use the unitarity method to determine the coef-
ficients of these integrals in the planar five-loop four-point
amplitude as well as to provide consistency checks on the
absence of other integrals.

We make use of an additional observation: the cutting
equations hold at the level of the integrands, prior to
carrying out any loop integrals. Indeed they hold indepen-
dently for each of the multiple solutions of the cutting

equations. These properties are especially powerful when
combined with the basis of pseudoconformal integrals. The
problem is then reduced to an algebraic problem of deter-
mining the coefficient of each integral. Remarkably, it
turns out that after dividing by the tree amplitude, the
coefficients are pure numbers taking on the values �1, 0,
or 1. This property is already known to hold for the four-
point amplitude through four loops [10], and here we
confirm it through five loops.

At one loop, complete dimensionally regularized ampli-
tudes in the MSYM theory can be constructed using only
four-dimensional helicity amplitudes, greatly simplifying
their construction [18,19]. Unfortunately, no such theorem
exists at higher loops. Any rigorous construction of ampli-
tudes requires that D-dimensional momenta be used in the
cuts. It is worth noting that if our assumption of a pseudo-
conformal basis of integrals is correct, with dimension
independent coefficients, then unitarity in four dimensions
does suffice to determine these amplitudes in all dimen-
sions. Our partial checks of D-dimensional cuts provide
nontrivial evidence that this assumption is correct. This is
rather remarkable because away from four dimensions
there is a priori no reason why a simple analytic continu-
ation of the dimension of the integrals should give correct
results.

Our expression for the five-loop four-point planar
MSYM amplitude in terms of integral functions should
be useful in a number of studies. The infrared singularities
present in the amplitude encode the so-called cusp or soft
anomalous dimension. At five loops these singularities
begin at 1=�10 [where �, as usual, is the dimensional
regularization parameter: � � �4�D�=2]. Evaluation of
the infrared singular terms through 1=�2 would allow the
extraction of the five-loop cusp anomalous dimension, as
has been done at three and four loops [4,10]. An evaluation
though order 1=� would allow the extraction of a second
anomalous dimension connected to a form factor. An
evaluation through O��0� would allow a five-loop check
of the iterative structure of the amplitudes, providing
strong evidence that it continues to all loop orders.
Although evaluating loop integrals is rather challenging,
there has been rapid progress using Mellin-Barnes repre-
sentations [31] and in automating the required analytic
continuations [32], allowing for explicit computations
through four loops. Recently, there has also been progress
in isolating the subsets of terms which determine the
anomalous dimension [11], greatly simplifying its calcu-
lation. Further development will presumably be needed to
apply these advances to the five-loop amplitude.

Another important reason for studying MSYM ampli-
tudes is their intimate connection to N � 8 supergravity
amplitudes. The identification of additional cancellations
in this theory [33] suggests that in four dimensions it may
be ultraviolet finite to all loop orders [34,35]. (See also
Ref. [36].) String dualities also hint at UV finiteness for
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N � 8 supergravity [37], although this is weakened by
issues with towers of light nonperturbative states from
branes wrapped on the compact dimensions [38].
Remarkably, computational advances for gauge theory
amplitudes can be imported [25] directly into calculations
of gravity amplitudes, by combining the unitarity method
with the Kawai-Lewellen-Tye [39] tree-level relations be-
tween gauge and gravity theories. This allows cuts of
gravity loop amplitudes to be expressed as double copies
of cuts of corresponding gauge theory amplitudes [25].
This strategy has recently been applied to obtain the
three-loop four-point amplitude of N � 8 supergravity,
starting from corresponding N � 4 MSYM amplitudes
[35]. That computation shows that at least through three
loops, MSYM and N � 8 supergravity share the same
ultraviolet power counting. Because they share the same
critical dimension for ultraviolet finiteness, both are ultra-
violet finite in four dimensions. The five-loop planar super-
Yang-Mill amplitudes obtained here will be an important
input for obtaining the corresponding five-loop supergrav-
ity amplitudes. (The supergravity calculation also requires
the nonplanar contributions.)

The paper is organized as follows. In Sec. II, we briefly
summarize known properties of the amplitudes and define
the notation used in the remainder of the paper. In Sec. III,
we review the observations of Refs. [10,30], on the exclu-
sive appearance of pseudoconformal integrals in planar
four-point amplitudes. Because candidate integrals prolif-
erate as the number of loops increases, we give a system-
atic procedure in Sec. IV for constructing these integrals.
The results of this procedure at five loops are given in
Sec. V, along with the coefficients of the integrals deter-
mined via unitarity. Our Ansatz for the amplitude is also
presented in this section. We then briefly review general-
ized unitarity in Sec. VI. A description of the cuts used to
determine the integral coefficients is given in Secs. VII and
VIII, along with a description of the method of maximal
cuts introduced in this paper. Our conclusions and some
comments on the outlook are given in Sec. IX.

II. NOTATION AND REVIEW OF MSYM
AMPLITUDES

We use a standard color decomposition [21,40] for the
MSYM amplitudes in order to disentangle color from
kinematics. In this paper we focus on the leading-color
planar contributions, which have a color structure similar
to those of tree amplitudes, up to overall factors of the
number of colors, Nc. The color-decomposed form of
planar contributions to the L-loop SU�Nc� gauge-theory
n-point amplitudes is

 

A�L�
n � gn�2

�
2e���g2Nc
�4��2��

�
LX
�

Tr�Ta��1�Ta��2� . . .Ta��n� �

� A�L�n ���1�; ��2�; . . . ; ��n��; (2.1)

where A�L�n is an L-loop color-ordered partial amplitude.
We have followed the normalization conventions of
Ref. [4]. Here � is Euler’s constant, and the sum runs
over noncyclic permutations, �, of the external legs. In
this expression we have suppressed labels of momenta and
helicities, leaving only the indices identifying the external
legs. Our convention is that all legs are outgoing. This
decomposition holds for all particles in the gauge
supermultiplet.

We also define a loop amplitude normalized by the tree
amplitude,

 M�L�n � A�L�n =Atree
n : (2.2)

Supersymmetry Ward identities [41] guarantee that, after
dividing out by the tree amplitudes, MHV amplitudes are
identical for any helicity configuration [22]. (The complete
set of these tree amplitudes are tabulated in Appendix E of
Ref. [25].) Because four-point amplitudes are always
maximally helicity violating, this holds for all four-point
amplitudes. Because it is independent of the position of the
two negative helicity legs, M�L�n has complete cyclic and
reflection symmetry. A practical consequence of this is that
once a coefficient of a given integral is determined, the
coefficient of integrals related by cyclic or reflection sym-
metry follow trivially.

In our evaluations of four-dimensional unitarity cuts, we
use the spinor helicity formalism [40,42], in which the
amplitudes are expressed in terms of spinor inner products,

 

hjli � hj�jl�i � u��kj�u��kl�;

�jl	 � hj�jl�i � u��kj�u��kl�;

ha�jkb � kcjd�i � u��ka��k6 b � k6 c	u��kd�;

(2.3)

where u
�k� is a massless Weyl spinor with momentum k
and positive or negative chirality. Our conventions follow
the QCD literature, with �ij	 � sgn�k0

i k
0
j �hjii

� for real
momenta so that

 hiji�ji	 � 2ki � kj � sij: (2.4)

We also define

 �ki � u��ki�; ~�ki � u��ki�: (2.5)

For complex momenta these two spinors are independent,
though they are dependent for real momenta.

In Ref. [3], a conjecture was presented that MSYM
amplitudes possess an iterative structure, based on an
observed iteration of two-loop four-point amplitudes. In
Ref. [4], this was fleshed out for MHV amplitudes into an
explicit exponentiation Ansatz to all loop orders. Through
five loops, the expansion of the exponential gives the
iteration relations,
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 M�2�n ��� � 1
2�M

�1�
n ����2 � f�2����M

�1�
n �2�� � C�2� �O���;

(2.6)

 M�3�n ��� � �1
3�M

�1�
n ���	3 �M

�1�
n ���M

�2�
n ���

� f�3����M�1�n �3�� � C�3� �O���; (2.7)

 M�4�n ��� � 1
4�M

�1�
n ���	4 � �M

�1�
n ���	2M

�2�
n ���

�M�1�n ���M
�3�
n ��� � 1

2�M
�2�
n ���	2

� f�4����M�1�n �4�� � C�4� �O���; (2.8)

 

M�5�n ��� � �1
5�M

�1�
n ���	5 � �M

�1�
n ���	3M

�2�
n ���

� �M�1�n ���	2M
�3�
n ��� �M

�1�
n ����M

�2�
n ���	2

�M�1�n ���M
�4�
n ��� �M

�2�
n ���M

�3�
n ���

� f�5����M�1�n �5�� � C�5� �O���; (2.9)

where f�L���� is a three term series in �,

 f�L���� � f�L�0 � �f
�L�
1 � �

2f�L�2 ; (2.10)

and f�L�i are numbers independent of the kinematics and of
the number of external legs n. Similarly, the C�L� are also
pure numbers. The constant f�L�0 is proportional to the
L-loop cusp (soft) anomalous dimension ��L�K ,

 f�L�0 � 1
4�
�L�
K : (2.11)

After subtracting the known infrared singularities [43] the
iteration relation takes on a rather simple exponential form,

 Fn�0� � exp�14�KF
�1�
n �0� � C	; (2.12)

where F�1�n �0� is the n-point one-loop finite remainder, �K
is the complete cusp anomalous dimension, and C depends
on the coupling but not on the external momenta. Very
recently Alday and Maldacena have matched this expres-
sion at strong coupling for n � 4 using string theory [12].

The iteration conjecture has so far been confirmed for
two- and three-loop four-point amplitudes [3,4] as well for
two-loop five-point amplitudes [9]. For the four-loop four-
point amplitude, the integrand is known [10] and has been
shown to generate the correct form of the infrared singu-
larities through O�1=�2�. This has been used to extract the
four-loop contribution to the cusp anomalous dimension
[10,11] numerically.

As the amplitudes are infrared divergent, we need to
regulate them. In order to preserve the supersymmetry we
use the four-dimensional helicity (FDH) scheme [44],
which is a relative of Siegel’s dimensional reduction
scheme [45].

III. PSEUDOCONFORMAL INTEGRALS

Conformal properties offer a simple way to identify
integrals that can appear in planar MSYM amplitudes
[10,30]. This observation allows us to easily identify a
basis of integrals, whose coefficients can be determined
via the unitarity method. This greatly simplifies the cut
analysis because we need to determine only these coeffi-
cients to obtain the planar amplitudes.

Although the underlying theory is conformally invariant,
there is as yet no proof that only integrals dictated by
conformal invariance can appear. One obvious complica-
tion to providing such a proof is the infrared divergence of
the amplitudes, and the subsequent need to regulate the
integrals (via dimensional regularization), which breaks
the dual conformal invariance. As mentioned in Sec. I,
we therefore call the integrals corresponding to confor-
mally invariant ones ‘‘pseudoconformal.’’ We shall de-
scribe in this section how to implement this cor-
respondence. In principle, it is possible that individual
integrals appearing in the amplitude would have no special
conformal properties, yet the complete amplitude would
retain simple conformal properties because of cancella-
tions between integrals. Through four loops [10], however,
only pseudoconformal integrals appear in the four-point
amplitude. This provides compelling evidence that this is a
general property of MSYM four-point amplitudes.1

We therefore assume that only pseudoconformal inte-
grals appear in the five-loop planar amplitudes. One way of
proving the correctness of this assumption would be to
compute a sufficient number of cuts in D dimensions to
determine the amplitude completely. In this paper, we
discuss only a partial confirmation.

Dimensional regulation of the infrared singularities
breaks the conformal symmetry. For the purposes of ex-
posing the conformal symmetry, we instead regulate the
infrared divergences by taking the external momenta ki off
shell and letting the dimension be D � 4. We will obtain a
pseudoconformal integral from a suitable conformal inte-
gral by reversing this change of regulator.

The authors of Ref. [30] provide a simple way of making
manifest the conformal properties of planar integrals via
‘‘dual diagrams.’’ The dual diagrams provide a direct
method of identifying all conformally invariant loop inte-
grals.2 In general, conformal properties are not obvious in
the momentum-space representation of loop integrals, but
with a simple change of variables encoded by the dual
diagrams we can make these properties manifest.

Let us give an illustrative example. Consider the two-
loop double-box integral of Fig. 1(a),

1For higher-point amplitudes, the situation is more compli-
cated, as can be confirmed by checking the conformal properties
of known results [9] for the five-point amplitudes at two loops.

2The dual diagrams are related to the dual graphs used in graph
theory [46].
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 I�2��s; t� � ��ie����D=2�2s2t
Z dDpdDq

p2�p� k1�
2�p� k1 � k2�

2q2�q� k4�
2�q� k3 � k4�

2�p� q�2
; (3.1)

where s � �k1 � k2�
2 and t � �k2 � k3�

2.
After replacing the regulator as mentioned above, the

conformal symmetry can then be exposed via the change of
variables,
 

k1 � x41; k2 � x12; k3 � x23; k4 � x34;

p � x45; q � x64; (3.2)

where xij � xi � xj. The new variables automatically sat-
isfy momentum conservation

 x41 � x12 � x23 � x34 � 0, k1 � k2 � k3 � k4 � 0:

(3.3)

After substituting the new variables into Eq. (3.1) and
taking D � 4, the double-box integral takes on a very
symmetric form,

 I�2��s; t� � ��i��2�2x4
24x

2
13

Z d4x5d
4x6

x2
45x

2
15x

2
25x

2
46x

2
36x

2
62x

2
56

:

(3.4)

The conformal-invariance properties follow from examin-
ing its behavior under inversion, x� ! x�=x2,

 x2
ij !

x2
ij

x2
i x

2
j

; d4xi !
d4xi
x8
i

: (3.5)

Under this inversion the double box (3.4) is invariant
because each external point x1; x2; x3; x4 appears equally
many times in the numerator as in the denominator, while
the internal points x5; x6 appear exactly four times in the
denominator, precisely canceling the behavior of the inte-
gration measure. The x variables are useful because inver-
sion respects momentum conservation, which is not true
for an inversion of the original momentum variables.

More generally, following Refs. [10,30], we keep track
of conformal weights using dual diagrams. To obtain the
dual representation, start with the momentum representa-
tion shown in Fig. 1(a) and place internal points x5; x6

inside each loop, as well as external points x1; x2; x3; x4

between each pair of external momenta, as shown in
Fig. 1(b). Following Ref. [30] we mark the internal inte-
gration points by solid dots at the center of each loop but in
most cases leave the external points unmarked. Solid lines
represent an inverse power of x2

ij, corresponding to the dual
propagator 1=x2

ij, which crosses exactly one Feynman
propagator whose momentum is equal to xij. Dashed lines
represent a positive power of an x2

ij, such as the numerator
factors of s � x2

24 and t � x2
13. The x2

ij represented by a
dashed line correspond the sum of the momenta of the
ordinary propagator lines they cross. (The dashed lines can
be deformed to cross different propagators, but momentum
conservation ensures that this does not affect the value of
the dual invariants x2

ij.) The dual diagram constructed in
Fig. 1(b) is in direct correspondence to the dual integral
(3.4).

We can further restrict the possible set of conformal
integrals by requiring that they have only logarithmic
behavior in the on shell limit. That is, we are not interested
in conformal integrals which vanish or diverge with a
power-law behavior in any k2

i , because these do not corre-
spond to massless integrals in dimensional regularization.
For example, numerator factors such as x2

12 � k2
2 are not

allowed. Similarly, factors such as 1=x2
12 � 1=k2

2 are ex-
cluded because their power singularities are too severe for
the required logarithmic behavior of infrared singularities.
We then obtain a pseudoconformal integral, as discussed
earlier, by replacing the off shell regulator with the usual
dimensional one.

It is straightforward to generalize this graphical mapping
to any loop order, allowing for a relatively simple book-
keeping of the change of variables between the momenta
and the dual xi variables. The map in Eq. (3.2) exemplifies
the convention we use for external momenta for all dia-
grams in this paper.

The conformal weights are easy to read off directly from
the dual diagrams. For a dual diagram to be conformally
invariant it must satisfy the following: The number of solid
lines minus the number of dashed lines entering a point xi
must be zero for external points, and four for internal
points. The conformal weight of four for internal points
cancels the conformal weight of the integration measure
given in Eq. (3.5). As observed in Ref. [10], a consequence
of requiring integrals to be conformal is that integrals with
triangle or bubble subdiagrams are not allowed.

(a)

s2t

k2 k3

k4k1

(b)

x 2

x 5

x 4

k4

k3

k1

k2

x 1 x 3
x 6

FIG. 1 (color online). The two-loop planar double-box
integral (a) and its dual (b) overlaying a faded version of (a).
In (b) the dashed lines represent a numerator factor of
�x2

24�
2x2

13 � s2t. This inserted numerator factor is needed for
conformal invariance of the integral.
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One class of pseudoconformal integrals may be under-
stood in terms of the ‘‘rung rule’’ of Ref. [24]. This
rule instructs its user to generate contributions to an
�L� 1�-loop amplitude from a known L-loop amplitude
by inserting a new leg between each possible pair of
internal legs, as shown in Fig. 2. From this set, all diagrams
with either triangle or bubble subdiagrams are removed.
The new loop momentum is integrated over, after including
an additional factor of �l1 � l2�2 in the numerator, where l1
and l2 are the momenta flowing through the indicated lines.
(With the conventions used here it is convenient to remove
a factor of i from the numerator factor, compared to
Ref. [24].) Each distinct contribution should be counted
only once, even if it can be generated in multiple ways.
Contributions arising from identical diagrams (that is,
having identical propagators) but with distinct numerators
count as distinct contributions. The diagrams obtained by
iterating this procedure are sometimes called Mondrian
diagrams, because of their similarity to Mondrian’s art.

The rung rule may be understood as a consequence of
the conformal properties of the integrals. As illustrated in
Fig. 3, if the starting integral is pseudoconformal, inserting
a rung splits the inner loop into two side-by-side loops, and
the conformal weight of the central dots in the figure is
unchanged. However, the upper and lower loop need an
additional dashed line connecting their central dots to
maintain their conformal weight. This dashed line corre-
sponds exactly to the factor of �l1 � l2�2 required by the
rung rule in Fig. 2.

The rung rule, unfortunately, does not generate the
complete set of planar integrals [10]. However, at least
through four loops any diagram that it generates is obtained
with the correct sign. Here we confirm this observation at
five loops, using the unitarity method. To obtain the re-
maining, non-rung-rule contributions to the five-loop am-
plitude, we start with the other pseudoconformal integrals
and determine their coefficients using the unitarity method.

IV. GENERATING THE PLANAR
PSEUDOCONFORMAL DIAGRAMS

The proliferation of candidate pseudoconformal inte-
grals with increasing number of loops encourages the
development of a systematic construction procedure. One
approach is suggested by examining the �L� 1�-particle
cuts of an L-loop amplitude. Using such a cut we can
decompose the loop integrals into products of tree dia-
grams which then simplifies the bookkeeping.3 Our proce-
dure will be

(1) Construct the set of all possible amputated tree
configurations on each side of the cut.

(2) Identify all possible loop integrals by sewing each
configuration from the left side of the cut with each
configuration on the right side of the cut.

(3) Identify all possible overall factors in each integral
which make it conformal.

Because the conformal properties are most obvious in the
dual representation described in Sec. III, we have found it
convenient to work with dual coordinates and translate
back to the momentum representation at the end.

A. Constructing all dual tree diagrams

It is useful to consider first the reverse procedure of
splitting an L-loop integral into two trees via an
�L� 1�-particle cut. As an illustration, consider the four-
loop ‘‘window’’ integral as cut in Fig. 4. This integral
contributes to the four-loop four-point amplitude [10]. As
shown in the figure, a five-particle cut separates the integral
into a product of two tree diagrams. In dual space, we also
split integrals into tree diagrams with a five-particle cut.
Figure 5 depicts the separation of the corresponding dual
diagram into tree diagrams, which we carry out in two
steps. In the first step of the figure we divide the dual
diagram along the cut marked with arrows, keeping the
cut line on both sides. In the next step we drop the lines
with arrows, giving us dual diagrams corresponding to
amputated (i.e., with external propagators removed) tree-
level momentum-space diagrams. In this representation
each dual line crosses an internal propagator of the
momentum-space diagrams. The diagrams will always
have a fixed cyclic ordering. The dual-diagram points
also respect this cyclic ordering. In this example, for the
tree amplitude on the left, the points are ordered fx4; x1;
x2; x8; x7; x6; x5g, while the points for the tree diagram on
the right are ordered fx2; x3; x4; x5; x6; x7; x8g.

Our systematic construction of all dual loop diagrams
simply reverses the process in this example. At L loops we

FIG. 3 (color online). The rung rule maintains conformal
weight. If the dual diagram prior to applying the rung rule has
the proper conformal weight so will the resulting diagram.

FIG. 2. The rung rule for generating higher-loop integrands
from lower-loop ones.

3At six loops and beyond it turns out that there are pseudo-
conformal integrals which do not have an �L� 1�-particle cut.
These can however be obtained from a ‘‘parent diagram’’ con-
taining an �L� 1�-particle cut, by canceling one of the
propagators.
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start with two ordered lists of L� 3 points: fx1; x2; xL�4;
xL�3; . . . ; x5; x4g for the left tree and fx2; x3; x4;
x5; . . . ; xL�4g for the right tree. These lists correspond to
�L� 1�-particle cuts in the s12 channel; the corresponding
construction in the s23 channel is easily obtained by relab-
eling the final result. The assignment of labels x1; x2; x3; x4

to points is determined by the external momenta, and the
remainder follow from the cyclic ordering.

We obtain all possible pairs of dual tree diagrams by
connecting nonadjacent points with 1=x2

ij propagators in all
possible ways such that the lines do not cross. Dual dia-
grams where nearest-neighbor points are connected are not
included as they correspond to momentum-space diagrams
whose external propagators have not been truncated.

After identifying the possible dual tree diagrams we
restore the dual lines representing the cut, by retracing
our steps in the example shown in Fig. 5. That is, in both
sets of tree diagrams we draw lines with arrows connecting
x4 to x5, etc., to xL�4, which is then connected to x2. Once
this is done the pairs of tree diagrams can be glued together
along the lines with arrows, which then gives us the L-loop
dual diagrams that we wish to construct. At this stage we
can remove diagrams trivially related by cyclic or flip
symmetry.

B. Finding the pseudoconformal integrals

Once we have a set of candidate loop-level dual dia-
grams, we must find the numerator factors necessary to
make the corresponding integrals conformal. This can be
accomplished as follows [10,30]:

(i) If one of the internal points fx5; x6; . . . ; xL�4g appears
in less than four dual propagators, discard the dia-
gram as it cannot be made conformal.

(ii) To determine possible numerator factors one first
identifies all external points from the set
fx1; x2; x3; x4g appearing in one or more dual propa-
gators, and all internal points in the set
fx5; x6; . . . ; xL�4g appearing in five or more dual
propagators. All such points require numerator fac-
tors x2

ij to cancel the extra conformal weight. That
is, the number of times a given external xi appears in
the dual propagators minus the number of times it
appears in the numerator should be zero. Similarly,
for an internal point xi, the number of times it
appears in the dual propagators minus the number
of times it appears in the numerator should be four.
To find the conformally invariant integrals we
sweep through products of all candidate numerators
x2
ij to identify the ones where the conformal-

invariance constraints are satisfied. (In principle,
there might also be an overall resulting factor of
1=s � 1=x2

24 or 1=t � 1=x2
13, but this does not occur

at five loops, nor do we expect such contributions to
enter the amplitudes with nonzero coefficients at
any loop order.)

(iii) If the previous step yields a previously identified
pseudoconformal integral, go on to the next case.
Such repeated integrals can arise when a numerator
factor cancels a propagator or when diagrams are
related by symmetries.

Once we have the set of conformal dual diagrams we can
convert these back to momentum space with a change of
variables,

 k1 � x41; k2 � x12; k3 � x23; k4 � x34;

l1 � x45; l2 � x56; . . . ; lL�1 � x�L�4�2;
(4.1)

where the li are the momenta of the lines in

FIG. 5 (color online). The dual diagram corresponding to the
window diagram. The lines with the arrows indicate the cut
which separates the dual diagram into a product of tree dual
diagrams.

FIG. 4 (color online). The four-loop window diagram. The
lighter colored line running through the diagrams is a five-
particle cut which separates the diagram into a product of tree
diagrams.

l3

8

l2

l1

5

(l1 l2 + l3)2 = x 2
58

FIG. 6. The notation used in this section for listing out the
pseudoconformal integrals contributing at five loops. The mo-
mentum flow through a line connecting points 5 and 8 gives the
momentum invariant x2

58.
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�L� 1�-particle cut used in the construction. Since our
construction was only a bookkeeping device for finding
pseudoconformal integrals, at the end there is no on shell
restriction on the li.

In the next section we apply this procedure to construct a
basis of all pseudoconformal integrals appearing in the
five-loop planar MSYM amplitudes.

V. FIVE-LOOP PLANAR PSEUDOCONFORMAL
INTEGRALS

A. Five-loop pseudoconformal integral basis

Following the procedure described in the previous sec-
tion we find a total of 59 independent pseudoconformal
integrals potentially present in the five-loop four-point
planar amplitude (not counting those related by permuta-
tions of external legs). They are shown in Figs. 7–10. The
‘‘parent’’ integrals, shown in Fig. 7, have only cubic ver-

tices. The remaining integrals have both cubic and quartic
vertices. They may be obtained by omitting propagators
and modifying numerator factors present in the parent
integrals, As we shall show in the following section using
unitarity cuts, the integrals in Figs. 7 and 8 appear in the
amplitude (2.2) with relative coefficients of 
1, which we
have absorbed into the definitions of the numerator factors
in the figures. The remaining ones shown in Figs. 9 and 10
do not appear at all. We do not have an explanation for the
remarkable simplicity of the coefficients of the integrals,
but presumably it is tied to the superconformal invariance
of the theory.

We draw the diagrams in momentum space, but also
include the relevant xi for tracking numerator factors. The
numerators are written out as Mandelstam variables s �
�k1 � k2�

2 and t � �k2 � k3�
2 or as dual invariants, x2

ij. As
discussed in Sec. III a dual invariant x2

ij is equal to K2

FIG. 7. All pseudoconformal integrals with only cubic vertices that contribute to the amplitude. The relative signs are determined
from unitarity cuts in Secs. VII and VIII.

BERN, CARRASCO, JOHANSSON, AND KOSOWER PHYSICAL REVIEW D 76, 125020 (2007)

125020-8



where K is the total momentum flowing through a line
spanned between points i and j. For example, in Fig. 6,
K2 � �l1 � l2 � l3�2 � x2

58.
Some of the integrals have identical sets of propagators

but differing numerator factors. These sibling integrals
would be identical were one to omit the numerators.
Examples are I11 and I12 or I21 and I22 in Fig. 7. The
numerator factors often have different symmetries than
the propagators in any given integral. The different nu-
merator factors in sibling integrals will also typically have
different symmetries. For example, integral I22 is com-
pletely symmetric under a cyclic permutation of its argu-
ments, f1; 2; 3; 4g ! f2; 3; 4; 1g (corresponding to a �=2
rotation of the diagram in Fig. 7) and under flips,
f1; 2; 3; 4g $ f4; 3; 2; 1g (corresponding to reflection of
the diagram). Its sibling I21, in contrast, has only one
symmetry, f1; 2; 3; 4g ! f3; 4; 1; 2g (corresponding to a ro-

tation of the diagram by � radians). Accordingly, I22

appears only once in the amplitude, but I21 appears four
times. This makes it inconvenient to combine them into a
single integral.

All planar five-loop pseudoconformal integrals with the
exception of I59 have at most four-point vertices. (I59 has
quintic vertices where the external legs attach. Internal
quintic vertices do not occur in conformal integrals until
seven loops.)

B. Five-loop four-point amplitude

In Secs. VII and VIII, we evaluate a sufficient number of
cuts in order to determine the numerical prefactors of each
pseudoconformal integral as it appears in the amplitude
(2.2). We find that the complete five-loop four-point
MSYM planar amplitude is

 

M�5�4 �1; 2; 3; 4� � �
1

32
��I1 � 2I2 � 2I3 � 2I4 � I5 � I6 � 2I7 � 4I8 � 2I9 � 4I10 � 2I11 � 4I12 � 4I13 � 4I14 � 4I15

� 2I16 � 4I17 � 4I18 � 4I19 � 4I20 � 2I21 � 2I23 � 4I24 � 4I25 � 4I26 � 2I27 � 4I28 � 4I29 � 4I30

� 2I31 � I32 � 4I33 � 2I34 � fs$ tg� � I22	; (5.1)

where the integrals are shown in Figs. 7 and 8, andM�5�4 is defined in Eq. (2.2). There are a total of 193 integrals in the sum.
As the integrals depend only on the kinematic invariants s and t, instead of having leg labels, each integral can appear only
as Ij�s; t� or as Ij�t; s�. In Eq. (5.1), we have suppressed the arguments ‘‘�s; t�’’ and combined identical terms, leaving a

FIG. 8. All pseudoconformal integrals with cubic and quartic vertices that contribute to the amplitude. The relative signs are
determined from unitarity cuts in Secs. VII and VIII.
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symmetry factor in front. The relative signs between in-
tegrals, determined from the unitarity cuts in Secs. VII and
VIII, have been incorporated in the numerator factors in
Figs. 7 and 8, though we have chosen to leave an overall

sign outside the integrals. The normalization factor of 1=32
follows the conventions of Refs. [4,10] and accounts for
the factor of 2L in Eq. (2.1). The integrals in Eq. (5.1) are
therefore normalized as

FIG. 9. A class of pseudoconformal integrals which do not contribute to the amplitude, as determined from the unitarity cuts. All
these have exactly one factor of st.

FIG. 10. The non-st class of pseudoconformal integrals. They do not contribute to the amplitude.
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 ��ie����D=2�5
Z �Y5

i�1

dDli

�
NQ
j
p2
j

; (5.2)

where the li are five independent loop momenta, N is the
numerator factor appearing as the coefficient of the dia-
grams given in Figs. 7–10, and the p2

j correspond to the
propagators of the diagrams.

To understand the relative signs of the diagrams we
classify terms into those derived from the rung rule and
the rest. Any diagram generated by the rung rule in Fig. 2
simply inherits the sign of the lower loop diagram from
which it was derived. This gives the correct numerator
factor, including the sign, for all contributing integrals
containing only cubic vertices, except for I22 —the only
diagram in Fig. 7 having a non-rung-rule numerator.
Integrals with quartic vertices, such as I24, I27, I28, and
I29, are given by the rung rule applied to known [10] four-
loop diagrams. Using two-particle cuts, other examples of
integrals whose prefactors are easy to understand are I23,
I25, I26, I41, and I42. The latter two have vanishing coeffi-
cient because their four-loop parent diagrams also have
vanishing coefficients. Integral I33 can be understood in
terms of a rung inserted between an external leg and an
internal line.

Another class of prefactors and signs can be understood
from a ‘‘substitution rule.’’ Consider diagram I22 in Fig. 7.
As shown in Fig. 11, this diagram inherits its prefactor and
sign by replacing the four-point vertex by a one-loop box
integral. (The one-loop box enters with a relative plus
sign.) The numerator factor x2

59x
2
68 of the substituted box

is simply the factor needed to make the box conformal. The
negative sign is inherited from the sign of the four-loop
diagram. Also other signs can be understood from this
substitution rule. For example, the sign on I30 and the
zero coefficient on I53 follow from similar substitutions
on four loop conformal diagrams. This rule can more
generally be understood as a substitution of the normalized
four-point function into a four-point vertex, which can be
obtained using generalized cuts.

With the rung rule, two-particle cuts, and substitution
rule we may understand the signs of all diagrams that
appear in the amplitude, except for I31, I32, and I34. As
of yet we have not found a rule giving the sign of these
diagrams, other than resorting to computations of cuts.

At four loops [10], integrals not containing at least one
factor of s and also one factor of t are absent from the
amplitude. This is again true at five loops. Factorization
arguments using complex momenta can give a suggestive
explanation of this property. As we already noted, super-
symmetry identities ensure that after dividing by the tree
amplitude, the nonvanishing MSYM four-point loop am-
plitudes are identical for all external helicity and particle
configurations. Consider then the helicity configuration
1�; 2�; 3�; 4�, with all external legs gluons. The tree
amplitude

 Atree
4 �1

�; 2�; 3�; 4�� � i
h1 3i4

h1 2ih2 3ih3 4ih4 1i

� �i
h1 3i2�2 4	2

st
(5.3)

factorizes in both the s and t channels into products of
three-point vertices. The absence of compensating factors
of s and t would imply factorization into one-particle
irreducible loop three vertices. Such vertices have not
appeared in the factorization of any previous MSYM am-
plitude, and so it is not surprising that the offending
integrals, shown in Fig. 10, do not contribute here either.

We may understand the remaining vanishing coefficients
using the known harmonic-superspace power counting of
MSYM [47]. It is compatible in D � 4 with six powers of
loop momenta canceling from integral numerators. The
missing engineering dimensions of the amplitude are
then supplied by external momenta, requiring at least three
powers of either s or t. This result agrees with the argu-
ments of Refs. [24,25], which provide a bound on dimen-
sions for which the L-loop amplitude is ultraviolet finite,

 D<
6

L
� 4; �L> 1�: (5.4)

It is natural to assume that this power counting holds
independently for each integral. This rules out integrals
which do not have at least three powers of s or t. This
includes all of those in Fig. 9 and those with either a single
power of s2 or t2 in Fig. 10.

C. All-loop structure

Inspecting the contributions of the integrals in the basis
to the five-loop four-point amplitude reveals the following
features:

FIG. 12. A pseudoconformal integral with a vanishing coeffi-
cient in the six-loop amplitude.

FIG. 11 (color online). The ‘‘substitution rule’’ is a rule for
replacing any four-point vertex with terms in a four-point
amplitude. Here integral I22 is obtained by substituting the
pseudoconformal box integral appearing in the one-loop ampli-
tude into the central vertex of the four-loop window diagram.
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(i) All pseudoconformal integrals containing a factor of
s2t or t2s (and possibly additional powers of s or t)
enter the amplitude with relative weight of �1 or
�1.

(ii) Any pseudoconformal integral without a factor of
s2t or t2s has a vanishing coefficient.

(iii) All integrals that could be obtained from the rung
rule or from two-particle cuts inherit their weights
from the lower-loop integrals used to construct
them.

(iv) All contributing integrals individually satisfy the
ultraviolet finiteness bound (5.4).

These observations seems to suggest that, in general, the
set of pseudoconformal integrals with nonvanishing coef-
ficients are the ones with a prefactor divisible by either s2t
or t2s. However, at six loops a new structure appears where
a pseudoconformal integral is a simple product of lower-
loop integrals, as displayed in Fig. 12. We have checked
that the conformal integral in Fig. 12 does not contribute to
the amplitude, although its prefactor is divisible by s2t.
While this particular integral does not appear in the am-
plitude, its existence suggests that at higher loops there will
be additional classes of pseudoconformal integrals with
vanishing coefficients.

VI. GENERALIZED UNITARITY

The unitarity method [18–23,27] has proven an effective
means for computing scattering amplitudes in gauge and
gravity theories. So-called generalized unitarity is particu-
larly powerful for computing amplitudes [23,27], as it
allows an L-loop amplitude to be built directly from prod-
ucts of tree amplitudes. When combined with complex
momenta [27,28,48], it allows the use of maximal cuts,
in which all propagators in an integral are cut. (The term
‘‘generalized unitarity,’’ corresponding to leading discon-
tinuities of diagrams, dates back to Ref. [49].)

We begin our discussion with a brief review, including
earlier applications of maximal cuts to the computation of
two-loop amplitudes [29]. We record a number of obser-
vations useful for computation at higher loops. In Sec. VI A
we modify the maximal-cut procedure and use it to deter-
mine the coefficients of all pseudoconformal integrals
appearing in the MSYM five-loop four-point amplitudes
efficiently and systematically.

A. Maximal cuts

Cut calculations can be simplified by increasing the
number of cut legs. This isolates a smaller number of
integrals, making it simpler to determine the values of their
coefficients. This technique is especially powerful for
computing one-loop MSYM amplitudes, because only
box integrals can appear [18]. As observed by Britto,
Cachazo, and Feng [27], taking a quadruple cut, where
all four propagators in a box integral are cut, freezes the
four-dimensional loop integration. This allows its kine-

matic coefficient to be determined algebraically, with no
integration (or integral reduction) required. The use of
complex momenta, as suggested by twistor space theories
[28], makes it possible to define massless three vertices and
thereby to use quadruple cuts to determine the coefficients
of all box integrals including those with massless external
legs.

For three massless momenta ka, kb, and kc �
��ka � kb� one has the following consistency require-
ment:

 0 � k2
c � �ka � kb�2 � 2ka � kb � habi�ba	: (6.1)

For real momenta in Minkowski signature, �ka and ~�ka [see
Eq. (2.5)] are complex conjugates of each other (up to a
sign determined by incoming or outgoing nature of the
corresponding particle). Hence if habi vanishes then �ab	
must also vanish. This constraint holds for all three legs
a; b; c leaving no nonvanishing quantities out of which to
build a three vertex. If the momenta are taken to be com-
plex, however, the two spinors �ka and ~�ka are independent.
This gives two independent solutions to Eq. (6.1),

 habi � 0; or �ab	 � 0; (6.2)

with the other spinor product nonvanishing in each case. In
the three-gluon case, there are overall two possible solu-
tions: all �’s proportional, and hence all hiji vanishing, or
all ~� proportional, and hence all �ij	 vanishing. This means
that exactly one of

 A���3 � Atree
3 �a

�; b�; c�� � �i
�bc	3

�ab	�ca	
; (6.3)

 A���3 � Atree
3 �a

�; b�; c�� � i
hbci3

habihcai
(6.4)

does not vanish. Similar statements hold for amplitudes
involving fermions or scalars: one of the two independent
helicity configurations will not vanish. The nonvanishing
amplitudes involving a fermion pair are

 Atree
3 �a

�
f ; b

�
f ; c

�� � �i
�bc	2

�ab	
; (6.5)

 Atree
3 �a

�
f ; b

�
f ; c

�� � �i
hbci2

habi
; (6.6)

where the subscript f denotes a fermionic leg. Similarly
the nonvanishing scalar amplitudes are

 Atree
3 �a

�
s ; b

�
s ; c

�� � �i
�bc	�ca	
�ab	

; (6.7)

 Atree
3 �a

�
s ; b�s ; c�� � i

hbcihcai
habi

; (6.8)

where the subscript s denotes a scalar leg. (For complex
scalars, the two helicities correspond to particle and anti-
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particle.) We have chosen the signs in these amplitudes to
be consistent with the supersymmetry Ward identities [41],
as given in Ref. [19], and with the parity conjugation rules
of Ref. [50].

The method of quadruple cuts has been generalized by
Buchbinder and Cachazo [29] to two loops using hepta-
and octa-cuts. Although the two-loop four-point double-
box integral only has seven propagators it secretly enforces
an additional, eighth constraint, yielding an octa-cut which
localizes the integration completely. But as the authors of
Ref. [29] point out this last cut condition is not really
necessary for the evaluation of the two-loop four-point
amplitude: the integrand was already independent of loop
momenta after imposing the constraints from the seven on
shell propagators in the hepta-cut. We will return to this
point below.

Let us then focus on the constraints imposed by the delta
functions corresponding to the propagators alone. In the
hepta-cut construction of Ref. [29], various classes of
solutions are allowed by the seven delta-function con-
straints arising from localizing the propagators. In the
context of generalized unitarity these delta functions cor-
respond to solving the on shell cut conditions l2i � 0. As
discussed above the solution to these conditions is always
complex when three-point vertices are present. These cut
conditions have a discrete set of solutions because of the
twofold choice in Eq. (6.2) at each three-point vertex. Each
of these solutions depends on continuous parameters, cor-
responding to the degrees of freedom not frozen by the cut
conditions. The discrete choice coincides with the choice
of three-point amplitude at each vertex A�
�3 as given in
Eqs. (6.3) and (6.4) (or similar vertices for fermionic and
scalar lines), which suggests a convenient way to represent
the possible solutions using additional labels at the vertices
of the cut diagrams. For the four-point hepta-cut two
inequivalent arrangements of three-point vertices are
shown in Fig. 13. External legs represent outgoing external
momenta while internal lines represent cut propagators and
thus on shell loop momenta. The signs inside the blobs in
the diagrams indicate the corresponding choice for the
three-point vertex, and implicitly, that the spinors of the

opposite helicity are proportional. A ‘‘’’ vertex will have
all � spinors proportional to each other, so that the vertex is
built out of ~� spinors of the attached legs, while the roles of
the two kinds of spinors are interchanged for a ‘‘�’’ vertex.
We can sum over all possible solutions to obtain the multi-
ply cut integrand, as was done in Ref. [29]. For the seven-
fold cut of the double-box diagram, there are six distinct
solutions of the two types shown in Fig. 13.

Once we choose external helicities, as in Fig. 14, the
blobs then dictate the possible assignments of helicities for
internal lines. The rules for finding the complete set of
kinematic solutions associated with a given assignment of
plus and minus labels to a diagram are as follows:

(i) A label means the three � spinors corresponding to
the lines attached to the blob are proportional to each
other. Similarly, a � label denotes having the three ~�
spinors proportional to each other.

(ii) If one of the lines attached to a vertex is an external
line ki then the spinors are proportional to an exter-
nal spinor, either �ki or ~�ki .

(iii) If a � vertex is directly connected to another �
vertex then all ~�’s of the lines attached to both
vertices are proportional to each other. A similar
statement holds for the �’s of two connected 
vertices.

(iv) If there is a chain of vertices of the same sign
connecting any two external lines then the diagram
vanishes, because one cannot solve the on shell and
momentum conservation constraints for the dia-
gram. A solution would require that two external
spinors of the same type are proportional to each
other; this cannot be true in general, because they
are independent.

Applying these rules to the four-point double box does
indeed give the six allowed solutions of the two types
shown in Fig. 13. The remaining solutions are related to
the depicted ones by flip symmetries. The complete set of
solutions to the cut constraints is solely determined by the
topology of a given diagram. Each solution determines a
pattern of � and  vertices in the diagram. For each

FIG. 14. A singlet hepta-cut (a) and one of the two helicity
configurations (b) in the simplest nonsinglet cut. The latter
allows gluons, fermions, and scalars to propagate in the loop
indicated by a dashed circle. The other configuration is obtained
by flipping all the helicity signs of the legs in this loop. All lines
in this figure are cut and carry on shell momenta. The arrows
in (a) refer to the direction of momentum flow.

FIG. 13. A pictorial representation of two kinematic solutions
to the four-point hepta-cut equations. The diagrams representing
the remaining four solutions can be obtained by reflection
symmetries of these. A ‘‘�’’ vertex represents a three-point
tree amplitude involving only � spinors and a ‘‘’’ vertex
represents an amplitude involving only ~� spinors. All lines are
cut and carry on shell momenta.
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solution to the cut constraints, one of the two types of
three-point amplitudes vanishes at each vertex. This pat-
tern (along with the topology) will in general restrict the
helicity assignments along internal lines, and may also
restrict the particle types allowed in different internal lines.

The strongest constraint that can arise in a kinematic
solution is the restriction to a single allowed helicity con-
figuration for the internal lines. We will refer to this
configuration as a ‘‘singlet.’’ In this case only gluons can
propagate inside the diagram, as in Fig. 14(a). Fermions or
scalars are not allowed because the only potentially non-
vanishing vertices are of the wrong type and vanish for the
given solution. The second-strongest constraint allows two
helicity configurations. In such configurations the particle
content is purely gluonic except for one loop in which any
particle type can propagate, as shown in Fig. 14(b). (A
fermionic loop always allows two helicity assignments,
corresponding to interchanging fermion and antifermion,
and the same is true for complex scalar loops.)

Solving for the spinors in any diagram is then straight-
forward. Consider the singlet case, Fig. 14(a). The on shell
conditions together with momentum conservation at each
vertex give a set of equations that must be satisfied,
 

�k1
/ �l3 / �l1 ; �k1

~�k1
� �l3

~�l3 � �l1
~�l1 ;

~�k2
/ ~�l1 /

~�l2 ; �k2
~�k2
� �l1

~�l1 � �l2
~�l2 ;

~�k3
/ ~�l5 /

~�l7 ; �k3
~�k3
� �l5

~�l5 � �l7
~�l7 ;

�k4
/ �l7 / �l6 ; �k4

~�k4
� �l7

~�l7 � �l6
~�l6 ;

~�l4 /
~�l6 /

~�l3 ; �l4
~�l4 � �l6

~�l6 � �l3
~�l3 ;

�l4 / �l5 / �l2 ; �l4
~�l4 � �l5

~�l5 � �l2
~�l2

(6.9)

The solution to these equations is
 

�l1 � �k1
; ~�l1 � � ~�k2

;

�l2 � ��k1
� �k2

; ~�l2 �
~�k2
;

�l3 � �k1
~�l3 � �~�k2

� ~�k1

�l4 � �l2
~�l4 �

~�l3
�23	

�3l3	

�l5 � �l2
~�l5 �

~�k2
� ~�l4

�l6 � �k1
� �l2

�23	

�3l3	
~�l6 �

~�l3

�l7 � �k4
~�l7 �

~�k3

h3l2i
hl24i

;

(6.10)

where � is an arbitrary parameter, corresponding to the
remaining degree of freedom in the integration not frozen
by the hepta-cut. Since a bispinor pa _a � �a ~� _a is invariant
under a rescaling of the spinors, ��a; ~� _a� ! ���a; ��1 ~� _a�,
the above solution can be written in many other forms. In
addition, there is a choice as to where to include the
remaining degree of freedom. While individual three-point
amplitudes A�
�3 are not invariant under this transformation,
the product of amplitudes forming the cut is invariant.

B. Solving for integral coefficients using maximal cuts

We now consider how to solve for the coefficient of an
integral using the maximal cuts. At two loops, there is only
a single conformal integral, the double box. It can appear,
of course, in both s- and t-channel configurations, but the
hepta-cut shown in Figs. 13 and 14 selects only the
s-channel double box. Our candidate expression for the
amplitude is then

 A�2��1; 2; 3; 4� � cAtree�1; 2; 3; 4�I�2��s; t�; (6.11)

where I�2��s; t� is the pseudoconformal two-loop double-
box integral in Eq. (3.1) and c is a coefficient that we need
to solve for. This integral contains a factor of s2t in the
numerator, which as we shall see is necessary for satisfying
the cut conditions.

Imposing the sevenfold cut condition, we obtain

 cs2tAtree�1; 2; 3; 4�
Z
d4l1d4l7

Y7

i�1

	�l2i �

� i
Z
d4l1d

4l7
Y7

i�1

	�l2i �
X
h

�Atree
�1� A

tree
�2� A

tree
�3� A

tree
�4� A

tree
�5� A

tree
�6� �h;

(6.12)

where Atree
�i� is the three-point amplitude corresponding to

one of the six three vertices and the sum over helicities h
runs over all possible helicity and particle configurations.
(We have taken the loop integrals to be four dimensional
for the purposes of our discussion here, but in any explicit
evaluation of the integrals they should be continued to D
dimensions to regulate the infrared singularities.)

As discussed above, the delta-function constraints are
solved by a discrete set of solutions, so we obtain

 

cs2tAtree
4 �1; 2; 3; 4�

Z
d4l1d4l7

Z
d�

X6

j�1

Jj	4�l1 � l
solj
1 �	

4�l7 � l
solj
7 �

� i
Z
d4l1d4l7

Z
d�

X6

j�1

Jj	4�l1 � l
solj
1 �	

4�l7 � l
solj
7 �

X
h2Hj

�Atree
�1� A

tree
�2� A

tree
�3� A

tree
�4� A

tree
�5� A

tree
�6� �j;h; (6.13)
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where j runs over the different kinematic solutions, l
solj
1

and l
solj
7 are the values of the independent loop momenta

expressed in terms of the external momenta, and the re-
maining degree of freedom is �. For each discrete solution
j, only a subset of helicity and particle configurations
denoted by Hj gives a nonvanishing contribution. The
Jacobian from the change of variables is Jj.

Buchbinder and Cachazo [29] noted that the integrand is
constant after imposing the seven cut conditions arising
directly from cutting propagators, without need to impose
the eighth cut condition. Another curiosity they noted is
that all six discrete kinematic solutions for the hepta-cut
give the same answer for the amplitude. This was true for
kinematic solutions that permitted only gluons in the two
loops as well as for those which also permitted fermions
and scalars. This simplicity is related to the absence of
terms which integrate to zero upon performing the loop
integral.4

We will exploit this observation, and assume its general-
ization to higher loops. It allows us to match integrands,
and indeed to pick individual solutions to match the left-
hand and right-hand side of Eq. (6.13), determining the
overall coefficient. That is, we assume that there is a single
overall coefficient c to solve for in front of each integral,
instead of a different contribution for each solution. This
also avoids any need for integral reductions or analysis of
the integrals, and translates integrands into algebraic co-
efficients of integrals. Our knowledge of an integral ba-
sis—given by the pseudoconformal integrals—is not
essential but greatly simplifies the extraction of these co-
efficients. This equality of contributions from different
solutions is likely special to MSYM at four points or
perhaps to conformal supersymmetric gauge theories
more generally. In general, there is no reason to expect
solutions which allow different particle types to circulate to
yield equal answers.

The assumption can be checked directly, of course, by
comparing different solutions. While we have not checked
it exhaustively, it does pass the large number of such
comparisons that we have carried out. The use of the
assumption and the maximal-cut procedure described
here also leads to a determination of coefficients at three
and four loops in agreement with known answers [4,10].
Furthermore, a violation would likely lead to inconsistent
determinations of integral coefficients at five loops; we find
no such inconsistency. We can also rely on cross-checks
from nonmaximal cuts.

(The reader may be puzzled by the appearance of com-
plex solutions in what was originally an integral over real
loop momenta. This is not special to the amplitudes under
consideration here. In extracting the cut by replacing
propagators with delta functions, one must sum over com-

plex solutions as well as real ones [27]. This was necessary
in other circumstances such as evaluating the connected
prescription for tree-level gauge-theory amplitudes [51] in
twistor string theory [28]. It can also be understood by
reinterpreting [52] the original integral as a fourfold con-
tour integral in each component of the loop momentum,
and replacing the propagators by products of an ex-

pression of the form �2�i�l�i � l
�;solj
i �	�1 times

Jacobians; Cauchy’s theorem makes it act like a delta
function, but allowing complex solutions. The details are
not important to us here because we are only determining
coefficients and not evaluating any integrals.)

Choosing one of the kinematic solutions then gives

 cs2tAtree
4 �1; 2; 3; 4� � i

X
h

�Atree
�1� A

tree
�2� A

tree
�3� A

tree
�4� A

tree
�5� A

tree
�6� �h;

(6.14)

where h runs over the helicity configurations and particle
content with nonvanishing contributions for the given
solution.

Obviously, it is advantageous to choose the simplest
solution, where the kinematics restricts us to the fewest
possible particle types circulating in the loop. The best
choice is a singlet where only gluons contribute. Using the
kinematic solution (6.10), corresponding to the singlet
solution in Fig. 14(a), we have

 cs2tAtree
4 �1

�; 2�; 3�; 4�� � iAtree
�1� A

tree
�2� A

tree
�3� A

tree
�4� A

tree
�5� A

tree
�6� ;

(6.15)

with no sum over intermediate helicities. In the singlet case
there is only one term in the helicity sum and all six three-
point amplitudes are purely gluonic. Here, Atree

�j� represents
one of the three-gluon tree amplitudes in Eqs. (6.3) and
(6.4), with the plus and minus labels on these amplitudes
matching the labels of the vertices in the figure. We have
confirmed that Eq. (6.15) holds for any value of the arbi-
trary parameter � (other than � � 0, where the right-hand
side of Eq. (6.15) is ill defined) in the kinematic solution
(6.10). This equation then determines c � �1, so that
the pseudoconformal double-box integral in Fig. 1 appears
in the two-loop amplitude with a coefficient of

FIG. 15. A singlet iterated two-particle cut of the two-loop
four-point amplitude.

4This property is special to four-point amplitudes and is al-
ready violated at one loop for five-point amplitudes.
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�Atree
4 �1

�; 2�; 3�; 4��, in agreement with known results
[24,25].

C. Generalized unitarity with real momenta
at two loops

The kinematics in maximal cuts is highly constrained. It
is therefore useful to have a way of checking results using
less-restricted kinematics. Let us begin by considering
generalized (nonmaximal) cuts which are well defined
for real momenta in four dimensions.

As an example of a four-dimensional generalized cut,
consider the two-loop iterated two-particle cuts shown in
Fig. 15. This helicity configuration has the property that it
is a singlet under supersymmetry transformations [25], the
only contributions coming from gluon internal states.
Hence we call it the singlet contribution. The remaining
contributions, containing all other helicity and particle-
type assignments, we will collectively call the ‘‘nonsing-
let’’ contributions. These latter contributions transform
into each other under supersymmetry. (The action of su-
persymmetry on the N � 4 amplitudes is described in
Appendix E of Ref. [25].)

The singlet configuration is especially simple to evaluate
because it involves only a single particle type, similar to
the singlet configurations of the maximal cuts. At higher
loops, the number of different particle and helicity con-
figurations grows rapidly. If possible, it would be simpler
to use only singlet configurations to confirm our Ansatz for
the amplitude, just as with maximal cuts. Unlike maximal
cuts, however, the generalized cuts considered here do not

enforce a particular choice of internal-line helicities or
particle types. Nonetheless, in special cases, the singlet
can be used to determine the coefficient of integrals in the
amplitude.

For example, in the iterated two-particle cuts at two
loops shown in Fig. 15, the singlet contribution gives
exactly the coefficient of the double-box integral [24].
With this external helicity configuration, this cut has no
nonsinglet contribution. The nonsinglet contribution ap-
pears in the other channel and gives the identical result. In
the three-particle cut, however, the singlet and nonsinglet
contributions appear in the same cut and are not identical.
This cut does nonetheless have simple properties that we
can exploit. The singlet contribution, depicted in Fig. 16,
has been previously evaluated in Refs. [24,25], with the
result

 C singlet � Atree
5 �1

�; 2�; l�3 ; l
�
2 ; l

�
1 � � A

tree
5 �3

�; 4�;�l�1 ;�l
�
2 ;�l

�
3 �

� �h1 2i2�3 4	2
tr��1l143l32	

�l1 � l2�2�l2 � l3�2�l3 � k3�
2�l1 � k4�

2�l3 � k2�
2�l1 � k1�

2 ; (6.16)

where tr
�1l1 � � �	 � tr��1
 �5�k6 l6 � � �	=2. The tree amplitudes that appear are
 

Atree
5 �1

�; 2�; l�3 ; l
�
2 ; l

�
1 � � i

h1 2i4

h1 2ih2l3ihl3l2ihl2l1ihl11i
;

Atree
5 �3

�; 4�;�l�1 ;�l
�
2 ;�l

�
3 � � �i

�3 4	4

�3 4	�4��l1�	���l1���l2�	���l2���l3�	���l3�3	
:

(6.17)

The nonsinglet contribution arising from the contribution of all other helicity and particle configurations crossing the cut is
a bit more complicated to evaluate, and is equal to [24,25]

 Cnonsinglet � �h1 2i2�3 4	2
tr��1l143l32	

�l1 � l2�2�l2 � l3�2�l3 � k3�
2�l1 � k4�

2�l3 � k2�
2�l1 � k1�

2 : (6.18)

The �5 terms in the singlet and nonsinglet appear with
opposite signs. In the sum over singlet and nonsinglet
contributions to the cut, the �5 terms therefore cancel
algebraically at the level of the integrand. Alternatively,
the difference between the singlet and nonsinglet contri-
butions integrates to zero. From a practical standpoint, it is

easier to compare cuts with target Ansätze prior to integra-
tion and to use only the singlet, so the key observation that
we may use is that the non-�5 term of the singlet is exactly
half the total contribution to the cut.

We need to extend these observations to higher loops in
order for them to be useful. We have confirmed that the

FIG. 16. A singlet contribution to the two-loop three-particle
cut. Only gluons enter in the loops.

BERN, CARRASCO, JOHANSSON, AND KOSOWER PHYSICAL REVIEW D 76, 125020 (2007)

125020-16



same properties hold at three and four loops for any com-
bination of two- and three-particle cuts composed only of
four- and five-point tree amplitudes. (If six- or higher-point
tree amplitudes are present in the cuts, non-MHV configu-
rations with three or more negative and three or more
positive helicities enter into the computation, which ren-
ders the structure of supersymmetric cancellations more
elaborate and prevents us from using the singlet contribu-
tion alone to evaluate the cut.) We will assume that this
observation continues to hold true at five loops. With this
assumption we will be able to check (in Sec. VIII) the
coefficients of a variety of pseudoconformal integrals,
using only singlet cuts. This is a strong consistency check,
because it relies not only on the coefficient under exami-
nation being correct, but also on the assumption remaining
valid. (It seems extremely implausible that a breakdown of
the assumption at five loops could be compensated by an
incorrect coefficient.)

To do better we need to sum over all states crossing the
cuts. Moreover, a proper treatment of the cuts requires that
the cuts be evaluated using D-dimensional states and mo-
menta [20–22]. This ensures that no contributions have
been dropped, as can happen when four-dimensional mo-
menta are used. At one loop, the improved power counting
of supersymmetric theories allows one to prove a theorem
that unitarity cuts with four-dimensional momenta are
sufficient to determine dimensionally regulated supersym-
metric amplitudes (that is, ‘‘near’’ four dimensions) com-
pletely [18,19]. (The regulator must of course maintain
manifest supersymmetry; as mentioned earlier, we use
the four-dimensional helicity scheme (FDH) to do so. In
this scheme, the helicity algebra is always four dimen-
sional, but the momenta are continued to D � 4� 2�
dimensions.) Unfortunately, no such theorem is as yet
known beyond one loop. A subtlety in deriving such a
theorem arises from infrared singularities: the singularities
in one loop can effectively ‘‘probe’’ the O��� con-
tributions from another loop, the product giving a surviving
contribution even as �! 0. When computing with
D-dimensional momenta, one can no longer use the spinor
helicity representation [42], which makes expressions for
tree amplitudes used in the cuts more complicated. A good
way to ameliorate this additional complexity is to consider
instead N � 1 in ten dimensions super-Yang-Mills di-
mensionally reduced to D � 4� 2� dimensions. The re-
maining states are completely equivalent to those of
MSYM in the FDH scheme [44], except that the book-
keeping of contributions is much simpler.

At two loops all cuts of MSYM amplitudes were eval-
uated in D dimensions [53], providing a complete proof of
the planar and nonplanar expressions for the MSYM am-
plitudes first obtained in Ref. [24] using four-dimensional
momenta. At three loops, we have also reevaluated the
planar amplitude using D-dimensional cuts. The four-
loop planar amplitude has been evaluated using
D-dimensional cuts, assuming that the full result (as an

abstract tensor in polarization vectors and momenta) is
proportional to the tree amplitude, and making the reason-
able assumption that no contributions can have a triangle
subintegral. (Only the terms involving polarization vectors
dotted into each other, after tensor reductions, were eval-
uated explicitly. Also, one can rule out all bubble and some
triangle subintegrals using supersymmetry along with gen-
eralized unitarity.) In Sec. VIII, we will make use of these
results to provide nontrivial evidence in favor of the vari-
ous assumptions we have used to obtain our Ansatz for the
five-loop four-point planar amplitude. A complete proof
would require additional D-dimensional cuts be evaluated
in order to confirm the coefficient of every potential inte-
gral that might appear, including nonconformal ones.

VII. MAXIMAL-CUT TECHNIQUE FOR
DETERMINING INTEGRAL COEFFICIENTS

A. Overview of maximal-cut method

In this section, we further develop the maximal-cut
technique for higher loops using the observations of the
previous section. This allows us to extend the two-loop
maximal cuts of Buchbinder and Cachazo [29] to higher-
loop orders. Unlike Buchbinder and Cachazo, we do not
require the loop integration be frozen by the cut conditions.
That is, we do not require the number of cut conditions to
match the number of loop integrations. As discussed in the
previous section, instead, we perform all evaluations of the
cuts at the level of the integrand, prior to performing any
loop integrations.

Moreover, we do not solve for all possible kinematic
configurations satisfying the cuts. We instead focus on
those solutions which allow the simplest determinations
of the coefficients of the pseudoconformal integrals as they
appear in the amplitude. As discussed in Sec. VI A, the
simplest kinematic solutions are the singlets, to which only
gluons contribute. At five loops it turns out that only four
pseudoconformal integrals do not have singlet solutions.
However, even in these cases one can choose kinematics
which forces the fermion and scalar contributions into
specific loops, again greatly simplifying the determination
of the coefficients. In order to speed up the process of
extracting the coefficients we solve the constraint equa-
tions numerically, although in some cases we find it useful
to solve the constraints analytically.

At two, three, and four loops, where the complete results
for the four-point planar amplitudes are known [4,10,24],
we have confirmed that singlet maximal cuts correctly
determine the coefficients of all integrals appearing in
the amplitudes. This suggests that the same will be true
at five loops. Again, if this were not true it would reveal
itself as an inconsistency in the results. In particular, we
would find that different kinematic solutions of the cut
conditions would lead to inconsistent determinations of
integral coefficients. We would also find inconsistencies
with cuts with less restrictive kinematics.
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A drawback of our maximal-cut method is its reliance on
four-dimensional spinor helicity, which as mentioned in
Sec. VI C might drop contributions. Nevertheless, it does
provide a relatively simple and systematic means to obtain
an Ansatz for the coefficients of integrals that appear in the
amplitude.

To evaluate the coefficient of any of the five-loop inte-
grals with only three-point vertices shown in Fig. 7, we cut
all 16 propagators. Similarly, the coefficient of integrals
with quartic vertices in Fig. 8 can be obtained by cutting all
of the propagators present. This is of course fewer than the
number of propagators present in diagrams with only cubic
vertices, so some of the integrals with only cubic vertices
can contribute to the cut. We must therefore subtract out all
such contributions, to obtain the coefficient of a particular
integral containing four-point vertices. For some solutions,
the kinematics does not allow the coefficients of integrals
with quartic vertices to be determined. For example, if the
kinematic constraints due to three-point vertices force the
spinors of two nearest neighboring legs of the four-point
subamplitude to be proportional, �i / �j, the sum of mo-
menta of these legs will be on shell, �ki � kj�2 � 0. This
can place an internal propagator of the four-point subam-
plitude on shell, where it diverges. This effectively selects
out only those terms with this propagator present and loses
the four-point contact contribution. In such cases, we
determine the integral coefficient by using a different
solution to the cut conditions.

B. Evaluating the five-loop integral coefficients

A maximal cut for determining the coefficient of inte-
grals with a given set of propagators is of the form

 C�5�jmaximal � ic
X
h

�Ym
k�1

Atree
�k�

�
h
; (7.1)

where h signifies the different helicity configurations and
particle types that can contribute and m is the number of
tree amplitudes appearing in the cut. In this equation the
cut momenta l1; l2; . . . ; lc are all on shell. Euler’s formula
relates the number of tree amplitudes that appear to the
number of cut lines; at five loops m � c� 4. As discussed
in Sec. VI A, a given kinematic solution to the cut con-
ditions will allow only a subset of helicity configurations to
contribute.

The simplest situation is when an integral has only cubic
vertices, as is true for the integrals of Fig. 7. In this case one
can always choose singlet kinematic solutions to the on
shell conditions so that only gluons propagate in each loop.
After cutting all the propagators, one obtains the numerator
N subject to the cut conditions,

 N �
�Y12

j�1

Atree
�j�

�
singlet

; �l21; l
2
2; . . . ; l216 � 0�; (7.2)

where the tree amplitudes Atree
�j� are purely gluonic. In some

cases, such as cuts isolating integrals I1 or I2, only a single
term appears, but in others a sum of terms appear. For
example, there are five contributions to the cut with propa-
gator configuration of I21 and I22; the integral I21 appears
four times in the cut as well as in the amplitude, but with
the numerator factor permuted, while I22 appears one time.

C. Examples of evaluations of integral coefficients

As a first example of the determination of the coefficient
of an integral, consider the maximal cut of the ‘‘ladder’’
integral I1. HereN � ist5Atree

4 �1; 2; 3; 4�, which is indepen-
dent of the loop momenta. This coefficient was determined
long ago, from iterated two-particle cuts [24]. To confirm
this result using maximal cuts we solve the on shell con-
straints l2i of all 16 cut propagators. For the external
helicities �1�; 2�; 3�; 4�� there are 166 distinct kinematic
solutions of which 62 correspond to singlet configurations.
For �1�; 2�; 3�; 4�� there are 270 solutions of which 27 are
singlets, and for �1�; 2�; 3�; 4�� the numbers are similar:
270 solutions, with 28 singlets. We have confirmed that all
these singlet solutions individually agree with the known
result, providing a nontrivial check. This determines that
the pseudoconformal integral I1 enters with an overall
factor of �1=32 in the normalized amplitude M�5�4 given
in Eq. (5.1), after accounting for the normalization con-
ventions of the integrals in Eq. (5.2). [The 1=32 prefactor in
Eq. (5.1) does not appear in the product of tree amplitudes
making up the cut, but appears in the L-loop amplitude,
due to our convention of including a factor of 2L in
Eq. (2.1).] In the integrals of Figs. 7 and 8 we have not
included the overall factor of �1=32, but leave it as an
explicit overall factor in Eq. (5.1). In the remaining part of
this section, we will refer only to signs relative to I1.

As a second example, consider I17 and I18 in Fig. 7 as
well as I46 in Fig. 10. They have the same propagators and
hence can contribute to same maximal cut. For external
helicities �1�; 2�; 3�; 4�� there are 335 kinematic solu-
tions of which 62 are singlets. The helicity configuration
�1�; 2�; 3�; 4�� has 339 solutions and 48 singlets whereas
�1�; 2�; 3�; 4�� has 304 solutions and 102 singlets. Again
all singlet solutions individually give results consistent
with the coefficient of I46 vanishing and both I17 and I18

entering the amplitude with a numerical coefficient of �1
relative to I1.

As a third example, consider a maximal cut of integral
I21. Together with integrals having the same propagators,
I22, I35, and I49, there are nine potential terms to the
numerator N after symmetrization. For this cut the helicity
configuration �1�; 2�; 3�; 4�� has 376 solutions of which
98 are singlets and �1�; 2�; 3�; 4�� has 384 solutions of
which 58 are singlets. Note that helicity �1�; 2�; 3�; 4�� is
related to �1�; 2�; 3�; 4��, by symmetry. It turns out that
the singlets can never be made consistent with numerators
of type I49, hence its coefficient must vanish. But unfortu-
nately, the singlet cuts do not uniquely fix the coefficients
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of the remaining integrals. For example, if we were to
assume relative numerical coefficients of 
1, there are
exactly two possibilities, one involves five terms given
by symmetrizations of numerators of type I21 and I22 and
the other involves two terms of type I35. To resolve this
situation we must instead consider cuts with fewer cut
conditions imposed, to reduce the degeneracy of the
kinematics.

Maximal cuts of diagrams involving noncubic vertices
are only a bit more complicated. Luckily almost all cuts
needed to determine the coefficients of the integrals have
singlets in their solution set. Only I37, I39, I55, and I59 in
Figs. 9 and 10 do not have singlet solutions. For these cases
we must use nonsinglet cuts, such as those in Fig. 17.

As an example of a singlet solution with a quartic vertex,
consider a maximal cut of I32. An expression that correctly
matches the singlet maximal cut is C�5�4 �
iAtree

4 �1; 2; 3; 4��s
2t2 � � � ��, where ‘‘� � �’’ stands for 14

rational terms obtained from integrals I6, I11, I12, I21, I22,
and I31, which also contribute to this cut. Since the coef-
ficients of these integrals can be determined from other
cuts, we simply subtract their contributions allowing us to
determine the coefficient of I32 to be �1. There are now
fewer cubic vertices in the cut and consequently the num-
ber of kinematic solutions also drops: The three inequiva-
lent external helicity arrangements each have 18 solutions
that are not degenerate in the two four-point blobs.
However, they differ in their singlet content: Helicities
�1�; 2�; 3�; 4�� have four singlets, �1�; 2�; 3�; 4�� have
no singlets, and �1�; 2�; 3�; 4�� have exactly one singlet.
(When solving for the kinematics, as mentioned in
Sec. VII A, we do not include solutions which are degen-
erate in the four-point blobs, because these do not allow us
to determine I32.)

As mentioned above, integrals I37, I39, I55, and I59 have
no singlet solutions in their maximal cuts. For I37 a useful
choice is to force scalars and fermions to circulate in only
two independent nonoverlapping loops; there is only a

single kinematic solution with this property, with the he-
licity configuration shown in Fig. 17(a). I39, I55, and I59 all
have simpler solutions with only one loop that carries
fermions and scalars. For I39, for example, three kinematic
solutions exist with this property, one of which is displayed
in Fig. 17(b).

A cut where a fermion or scalar can circulate in only one
of the loops takes the form

 

C5-loop
4 � ic

X
h2f�;�g

��Yc�4

j�1

Atree
�j�

�
gluon
� 4

�Yc�4

j�1

Atree
�j�

�
fermion

� 3
�Yc�4

j�1

Atree
�j�

�
scalar

�
; (7.3)

where h is the helicity of the particle in the unique loop
with fermions and scalars. (Helicity is conserved along this
loop, which given our all-outgoing convention means that
it flips going from one vertex to the next.) For the complex
scalars, the two helicities correspond to particle and anti-
particle. For the cut in Fig. 17(b) only four vertices involve
particles other than gluons, hence five Atree’s can be pulled
out of the sum as a common factor. The required four-point
tree amplitudes for different particles follow from the
supersymmetry Ward identities [41], which are described,
for example, in Appendix E of Ref. [25]. From this cut we
find that I39 does not contribute to the amplitude. Likewise
the maximal cuts of I55 and I59 show that coefficients of
these integrals vanish.

For the cut in Fig. 17(a) one can arrange the kinematics
so that the two loops that can carry fermions or scalars do
not intersect, simplifying their evaluation. The structure is
similar to Eq. (7.3), except that there are two independent
sums over fermions, scalars, and gluons. We will not
present it explicitly, but instead just give the kinematic
solution needed for this cut,

FIG. 17. (a) The simplest cut determining the coefficient of I37. (b) A particularly good choice of cut for determining the coefficient
of I39. All lines are cut and carry on shell momenta. In all loops except those indicated by a dashed circle, only gluons propagate; the
dashed circle indicates that all particle types can circulate. Other allowed helicity configurations are obtained by flipping all helicities
in these loops. Grey blobs represent four-point amplitudes, which hide possible propagators inside.
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 l1 � p � �p ~�p; l2 � q � �q ~�q;

l3 � ��q ~�q
�p� q� k1 � k2�

2

hq�jp� k1 � k2jq
�i
;

l4 � ��q ~�r
�p� q� l3 � k1�

2

hq�jp� k1jr�i
;

l5 � ��v ~�q
�p� q� l3 � k4�

2

hv�jp� k4jq�i
:

(7.4)

Here p and q are arbitrary null vectors in four dimensions
and ~�r and �v are spinors corresponding to arbitrary null
vectors r; v. The remaining seven loop momenta can be
obtained by momentum conservation.

This cut is the least discriminating one needed for fixing
the coefficients of the integrals in the five-loop amplitude,
and hence it contains the most terms. There are 79 terms of
the right conformal weight that are candidates for the left-
hand side of (7.1), but of these only 28 terms contribute to
the amplitude. These terms are obtained from integrals I5,
I16, I20, I21, I22, and I27; the coefficient of I37 must thus
vanish. Interestingly, this is the only maximal cut where
integrals (I21 and I22) enter twice compared to their ap-
pearance in the amplitude.

In some cases the maximal cuts cannot distinguish be-
tween different integrals, due to the degenerate nature of
the kinematics. As an example, consider the maximal cut
of I21, I22, and I35 described above, which has two possible
numerator combinations satisfying the cut conditions. On
the maximal cut of these diagrams we find

 �I21 � I22 � I35�jcut � 0: (7.5)

The combination of I21 and I22 makes one possible nu-
merator choice and I35 is another consistent choice with
this maximal cut. We have checked that more than 700
kinematic solutions of this cut fail to distinguish between
the possibilities. To resolve this situation we use less
degenerate kinematics with fewer cut conditions imposed.
The two cuts in Fig. 17, for example, resolve this
ambiguity.

This type of ambiguity can even affect combinations of
integrals with different sets of propagators. As a nontrivial
example, the following combination of integrals vanishes
in all maximal cuts we have evaluated, other than the ones
in Fig. 17 and the maximal cut of I50:

 

�I21 � I22 � I27 � I31 � I32 � I33 � I34

� I35 � I36 � I38�jcut � 0: (7.6)

This equation as well as Eq. (7.5) should be interpreted as a
recipe for determining a combination of terms that can
vanish in a maximal cut; if a cut picks up any integral or its
permutation it should be included. (Note that the signs
shown in Figs. 7 and 8 are included in the definition of

these integrals.) Note that Eq. (7.5) is the same ambiguity
as Eq. (7.6), but restricted to cuts of I21’s topology. Other
than (7.6) we have found no ambiguity that holds for all
singlet solutions of a maximal cut. In any case, it can be
resolved by using cuts with fewer on shell conditions. In
particular, the cuts in Fig. 17 resolve the ambiguity (7.6).
These cuts are only consistent with integrals I21, I22, I27,
I31, I32, I33, and I34 included in the amplitude and I35, I36,
and I38 excluded. It is likely that this kind of ambiguity also
exists at all higher loops when using maximal cuts, but
again it should be resolved by using less-restrictive cuts.

Although it is straightforward to solve analytically for
any given kinematic configuration, it can get quite tedious
since many of the pseudoconformal integrals have well
over 100 singlet cuts each. It is therefore simpler to do so
numerically. The bispinor formalism, which is automati-
cally on shell, enables us to choose which kinematic solu-
tion to solve for numerically: Our procedure is to first
assign spinors, one to each three-point vertex, with �’s
assigned to each  vertex and ~�’s assigned to each � blob.
If two nearest-neighbor three-point vertices are of the 
type, the two � spinors of the vertices are set equal to each
other. The on shell constraints force the � spinors to be
proportional to each other, but we use the rescaling free-
dom of the spinors, mentioned below Eq. (6.10), to set the
proportionality constant to unity. Similarly, if two nearest-
neighbor three-point vertices are of the � type, the ~�
spinors are set equal to each other. This gives us a list of
�’s and ~�’s that uniquely specifies the solution, but their
values are not yet determined. The momentum of a cut
propagator between blobs of opposite sign is given by
taking the tensor product of the two spinors associated
with the blobs the propagator connects to. One must also
allow for a complex scale factor multiplying each momen-
tum between these blobs since it is not possible to simul-
taneously remove the proportionality constants in both �
and ~�. We solve the momentum conservation constraints
by numerically minimizing the sum of the squares of
absolute value of all momentum conservation relations
that should vanish. At the solution point this vanishes.

In some cases the numerical convergence is insuffi-
ciently fast. If necessary a given cut can always be ana-
lyzed analytically. But it is simplest to discard unstable or
poorly convergent solutions because there are plenty of
other solutions available. We have performed on the order
of 100 singlet maximal cuts corresponding to each of the
propagator configurations of the pseudoconformal basis
integrals with only three-point vertices, effectively ex-
hausting the singlets. For each integral also containing
four-point vertices, we have performed on the order of 10
singlet maximal cuts, again effectively exhausting the
singlets. We have also checked a handful of nonsinglet
solutions, in particular, for those diagrams which have no
singlet solutions. In all cases, we find that the cuts are
consistent with the Ansatz (5.1).
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VIII. CROSS-CHECKS ON COEFFICIENTS FROM
TWO- AND THREE-PARTICLE GENERALIZED

CUTS

The kinematics used in the maximal cuts is rather re-
stricted, so additional checks are desirable. We have eval-
uated two such generalized cuts in four dimensions. In D
dimensions we evaluated various two-particle cuts. These
cuts also provide a confirmation that no other integrals
appear in the amplitudes besides the pseudoconformal
ones.

A. Cuts in four dimension

The easiest four-dimensional cuts to evaluate are the
singlet cuts, involving only MHV gluon tree amplitudes
and a single three-particle cut, shown in Fig. 13. As de-
scribed in Sec. VI, the non-�5 terms, obtained after divid-
ing by the tree amplitude [see Eq. (6.16)], give precisely
half the cut of the final amplitude at least through four
loops. By evaluating the cuts of Fig. 18, we obtain a non-
trivial check, since we find that a similar result holds at five
loops.

Our evaluation confirms agreement of the non-�5 terms
in the singlet cut of Fig. 18(a) with 1=2 the value of the
unintegrated corresponding cut of the Ansatz (5.1). This
provides a nontrivial confirmation that we have properly

determined the coefficient of integrals

 I3; I8; I9; I10; I13; I14; I17; I18; and I28 (8.1)

from the maximal cuts. Similarly, we have confirmed that
the non-�5 terms in the singlet cut 18(b) agrees with 1=2
times the value of the corresponding cut of the Ansatz (5.1).
This checks that the coefficients of the integrals,

 I2; I3; I6; I9; . . . ; I12; I17; I18; I25; and I30; (8.2)

are also correct. Moreover this also checks that integrals
which have cuts of the forms in Fig. 18, but are not
pseudoconformal, do not appear in the amplitude.

B. Cuts in D dimensions

A more rigorous check comes the evaluation of the
D-dimensional cuts. As already mentioned, beyond one
loop, no theorem has been proven that four-dimension cuts
are sufficient for determining complete amplitudes in
supersymmetric theories. It is therefore important to evalu-
ate at least some cuts in D dimensions. This is especially
true if we wish to apply the results away from D � 4.

We evaluate the D-dimensional cuts of MSYM, by
interpreting it instead as ten-dimensional N � 1 super-
symmetric Yang-Mills, dimensionally reduced toD dimen-
sions. As mentioned in Sec. VI, this way of evaluating the
MSYM amplitudes has the advantage of simplifying the
bookkeeping on which states are present: the N � 1
multiplet consists of only a single gluon and gluino, each
of which is composed of 8Nc degrees of freedom. With this
formulation, all states are included, using D-dimensional
momenta in the cuts.

The simplest class of integrals to check in D dimensions
are ones which can be constructed by iterating two-particle
cuts, following the discussion of Refs. [24,25]. The two-
particle sewing equation, which is valid inD dimensions, is

 

X
N�4 states

Atree
4 �l1; 1; 2; l2�A

tree
4 ��l2; 3; 4;�l1�

� �iAtree
4 �1; 2; 3; 4�

st

�l1 � k1�
2�l1 � k4�

2 : (8.3)

Since the tree amplitude Atree
4 appears on the right-hand

side, the same two-particle sewing algebra appears at the
next loop order. The iterated two-particle cuts allow us to

FIG. 19. The D-dimensional two-particle cut dividing the five-loop amplitude into (a) two two-loop amplitudes, (b) a one-loop and
three-loop amplitude, and (c) a four-loop and a tree amplitude. All physical states are summed over in the cuts.

FIG. 18. The two singlet cuts containing only gluons in D � 4.
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confirm that the coefficients of integrals,

 I1 . . . I10; I15; I16; I19; I20; I41 . . . I45; I47; I53; I57; I58 (8.4)

have all been determined correctly.
We have also checked the D-dimensional two-particle

cuts which split the five-loop four-point amplitude into a
product of a two two-loop amplitudes, a one-loop and
three-loop amplitude and a four-loop and a tree amplitude,
as depicted in Fig. 19. Using D-dimensional cuts we
have evaluated the coefficients of all integrals appearing
in two- and three-loop amplitudes, leaving the external legs
in D dimensions. These are all proportional to the
D-dimensional tree amplitude. We may likewise use the
D-dimensional four-loop amplitude subject to the same
assumptions made in Ref. [10], namely, the absence of
certain triangle subintegrals and the appearance of the
tree-level kinematic tensor as an overall coefficient. We
can then apply the two-particle cut sewing equation (8.3) to
confirm the coefficients of various five-loop integrals. This
allows us to provide additional checks via D-dimensional
unitarity that integrals

 I1 . . . I10; I15 . . . I20; I23; I25; I26; I41 . . . I47; I51 . . . I58 (8.5)

all have the coefficients presented in Sec. VII.
To have a complete proof that the Ansatz (5.1) is com-

plete, one would need to confirm from D-dimensional
unitarity that these remaining integrals enter with the co-
efficients determined in Sec. VII and that there are no other
(nonconformal) integrals present. We leave this for future
work.

In general, it is rather surprising that four-dimensional
unitarity cuts are sufficient to determine the amplitudes in
all dimensions. The maximally supersymmetric theory,
however, is special. Our D-dimensional study here pro-
vides nontrivial evidence that at least at four points, the
four-dimensional cuts suffice. This result may be under-
stood as a direct consequence of only pseudoconformal
integrals being present, with coefficients independent of
the number of dimensions.

IX. CONCLUSIONS

In this paper we presented an Ansatz for the five-loop
four-point planar amplitude of maximally supersymmetric
Yang-Mills amplitudes in terms of a set of pseudoconfor-
mal integrals [10,30]. We introduced a method based on
cutting the maximal number of propagators [27,29] in each
integral, to determine very efficiently the coefficients of the
integrals as they appear in the amplitude. We then used
generalized unitarity [23] with less restrictive cuts, both in
four and D dimensions, to verify the correctness of the
expressions determined in this way.

Our Ansatz for the planar five-loop four-point amplitude
relies on a basis of pseudoconformal integrals, and as-
sumes that the amplitude can be expressed entirely in terms

of such integrals. These integrals are the dimensionally
regulated counterparts of off shell conformal integrals
[10,30], limited to those which have logarithmically diver-
gent on shell limits. This assumption has been tested and
confirmed by explicit calculation through four loops. The
assumption provides a compact basis of (plausibly inde-
pendent) integrals, and reduces the problem of computing
the amplitude to that of determining the coefficients of
each integral. We have provided strong evidence that this
continues to hold through at least five loops, through the
evaluation of a large variety of generalized unitarity cuts,
including ones evaluated in D dimensions. The computa-
tion of additional cuts in D dimensions would make it
possible to prove that our expression is indeed complete.
Alternatively, we may wonder whether it is possible to link
to the position space conformal invariance of the theory to
the absence of nonpseudoconformal integrals. An impor-
tant cross-check would come from showing that the infra-
red singularities of the amplitude have the predicted form
[4,43].

The set of integrals that appears in the expression for an
L-loop MSYM amplitude is a subset of all pseudoconfor-
mal integrals. It is interesting that the integrals which do
appear, do so with coefficients 
1. We presented heuristic
rules which give a partial understanding of the signs of
these coefficients. It would of course be very useful to have
a complete set of heuristic rules for predicting all signs and
zeroes to arbitrary loop order.

This maximal form of generalized unitarity we em-
ployed should also prove useful for determining nonplanar
contributions. For example, the nonplanar contributions to
the subleading-color three-loop amplitude shown in Fig. 20
are easily determined from maximal cuts. These contribu-
tions are in agreement with known results [25,35]. [Note
that with the cut conditions imposed �l� k4�

2 and 2l � k4

are indistinguishable in the second integral of Fig. 20, so
other cuts are necessary to determine the proper factor.]

Our determination of coefficients also relied on special
properties of the four-point amplitude. How can one com-
pute amplitudes with a larger number of external legs?
While some extension to the techniques presented in the
present paper will certainly be necessary, they provide a
very good starting point. In the planar two-loop five-point
amplitude [9,26], for example, terms with even parity
relative to the tree amplitude also appear to be expressible
purely in terms of pseudoconformal integrals. The parity-
odd terms require further study.

FIG. 20. Nonplanar examples of three-loop integrals con-
firmed by cutting all the propagators. These agree with the
results of Ref. [25].
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Beyond computations of gauge-theory amplitudes, the
maximal-cut method described here should also be useful
in higher-loop studies of quantum gravity. Recent calcu-
lations have established [35] that the three-loop degree of
divergence in four dimensions (or equivalently the critical
dimension) of N � 8 supergravity is—contrary to widely
held expectations—the same as that of N � 4 supersym-
metric gauge theory. There are other indications that the
supergravity theory may even be ultraviolet finite beyond
three loops [33–37]. These investigations point to the need
for higher-loop computations of supergravity amplitudes,
in order to establish the critical dimension in which they
first become ultraviolet divergent. In the approach advo-
cated in Ref. [25], cuts of MSYM gauge-theory amplitudes
can be used to construct cuts of N � 8 supergravity
amplitudes. This paper provides the required planar ampli-
tudes at five loops. The nonplanar contributions are more
difficult, but should be within reach. This task would be
considerably easier if a nonplanar analog of the pseudo-
conformal integrals were identified.

Our expression for the planar five-loop four-point
MSYM amplitude presented in this paper has two obvious
applications. The first would be the extraction of the planar

five-loop cusp anomalous dimension, allowing a further
check of the conjectures of Refs. [7,10]. Another applica-
tion would be a five-loop check of the iterative structure of
the amplitude. This would provide a rather strong check of
the all-loop resummation of maximally helicity violating
amplitudes proposed in Refs. [3,4], and help reinforce a
link to a recent string-side computation of gluon ampli-
tudes [12]. The latter computation, together with all-loop-
order resummations, opens a fresh venue for quantitative
studies of the AdS/CFT correspondence.
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