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We study the predictions of holographic QCD for various observable four-point quark-flavor current-
current correlators. The dual 5-dimensional bulk theory we consider is a SU�3�L � SU�3�R Yang-Mills
theory in a slice of AdS5 spacetime with boundaries. Particular UVand IR boundary conditions encode the
spontaneous breaking of the dual 4D global chiral symmetry down to the SU�3�V subgroup. We explain in
detail how to calculate the 4D four-point quark-flavor current-current correlators using the 5D holographic
theory, including interactions. We use these results to investigate predictions of holographic QCD for the
�I � 1=2 rule for kaon decays and the BK parameter. The results agree well in comparison with
experimental data, with an accuracy of 25% or better. The holographic theory automatically includes
the contributions of the meson resonances to the four-point correlators. The correlators agree well in the
low-momentum and high-momentum limit, in comparison with chiral perturbation theory and perturbative
QCD results, respectively.
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I. INTRODUCTION

The success of the perturbative description of QCD
allows us to understand the high energy behavior of strong
interactions above 1.5 GeV. On the other hand, chiral
perturbation theory (�PT) describes well the physics of
strong interactions at low energy. In the intermediate re-
gion between both regimes, the situation is much less clear
since neither of these theories behave perturbatively. One
interesting and potentially powerful new idea to gain ac-
cess to the nonperturbative regime of QCD is holographic
QCD, which is based on the gauge/gravity duality [1–4].

There are two kinds of holographic QCD dual models:
there are 10D models based on string theory and super-
gravity [5–23], including studies of deep inelastic scatter-
ing [24–28], and in addition, there are phenom-
enologically inspired 5D holographic dual models [29–
35]. In both approaches, the description of confinement
and chiral symmetry breaking has been tackled, and
masses, decay constants, form factors and other properties
of mesons have been calculated, yielding remarkably good
agreement with experimental data. All of these estimates
are based on two-point current correlators, which do not
involve bulk interactions and pertain to the low-lying
mesons. Given these initial successes, it is important that
these holographic dual models of QCD are tested using
processes that go beyond the properties of two-point cur-
rent correlators, and include interactions in the bulk of the
5D theory. One such test is the computation in the 5D
holographic theory of connected 4D four-point flavor cur-
rent correlators, which can be compared with experiment

and, in certain limits, with the results of chiral perturbation
theory and perturbative QCD calculations.

In this paper, we shall focus exclusively on such four-
point flavor current correlators. These correlators are cru-
cial to the resolution of a long-standing problem in QCD:
the �I � 1=2 rule, which we will describe in detail in later
sections and briefly here. In short, if one neglects
CP-violating effects, there are two independent K0 decays:
K0 ! ���� and K0 ! �0�0. These two decays are com-
binations of �I � 1=2 and �I � 3=2 isospin amplitudes,
A0 and A2, respectively. Experimentally ReA0=ReA2 �
22:2, and the largeness of this ratio is the �I � 1=2 rule.
In the chiral limit, these two amplitudes are generally
expressed in terms of the g8 and g27 parameters (see for
example [36]), both of which depend on integrals over
Euclidean momentum of certain four-current correlators.
Our aim in this paper is to apply holographic QCD to
calculate these observables.1

The 4D theory we are trying to model is QCD with three
massless quark flavors, possessing a global SU�3�L �
SU�3�R symmetry which is spontaneously broken down
to the vector subgroup via the quark condensate.2 The AdS/
CFT correspondence then immediately tells us that the
dual 5D theory should be a Yang-Mills theory with the
SU�3�L � SU�3�R gauge group, with a bi-fundamental
bulk scalar field to provide breaking of this symmetry.
The gauge fields in 5D couple to the QCD flavor currents,
whereas the bulk scalar couples to the bilinear quark
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1In a previous article [37], we briefly presented some of our
initial results on this subject. In the present work, we signifi-
cantly extend and improve upon our earlier study.

2Note that for simplicity throughout this paper we work in the
chiral limit setting bare quark masses to zero, and ignore the
anomalous and therefore explicitly broken U�1�axial symmetry.
We hope to return to these issues in a later publication.
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operator. In previous models, the inclusion of a bulk scalar
field allowed a comprehensive description of chiral sym-
metry breaking [29,30,32,33]. However, it is possible to
take a limit of this theory where the entire description of
chiral symmetry breaking is encoded into the boundary
conditions imposed on the gauge fields [30,31] and the
holographic theory contains only gauge fields in the bulk.
This simplified holographic dual model turns out to be a
reasonable approximation [30,31], giving good results at
least at the level of the two-point functions. The reason is
that the condensate is an infrared (IR) effect, so that its
influence can be modeled by an IR boundary condition.
The complexity of the calculation of four-point current
correlators in AdS/QCD means that this simpler form of
holographic QCD, with only gauge fields in the bulk,
provides an important starting point that can then be further
refined.

Our results are encouraging for AdS/QCD. As we dis-
cuss in detail in Secs. V and VI, we find that at leading
order in a low-momentum expansion, the behavior of the
relevant correlators calculated in holographic QCD agrees
with previous calculations using chiral perturbation theory,
while at high momentum we obtain the behavior predicted
by perturbative QCD. In the intermediate region, the mo-
mentum behavior is governed by the exchange of meson
resonances, and a significant advantage of the holographic
calculation is that it automatically and consistently in-
cludes the contribution of the infinite tower of meson
resonances to the relevant correlators. Turning to a com-
parison with the experimental data, the results of a fit of the
holographic predictions agree well, with an accuracy of
25% or better, which for quantities as difficult to calculate
as the isospin amplitudes ReA0 and ReA2, is remarkable.
Finally, we hope that the techniques developed here may be
useful for more general calculations of n-point global
symmetry current correlators in many AdS/CFT holo-
graphic dual models.

This paper is organized as follows: In Secs. II and III we
introduce the holographic QCD model that we use and
present the relevant 5D propagators and interactions. In
Sec. IV we discuss the �I � 1=2 observables from the
viewpoint of QCD, as well as a related but simpler observ-
able B̂K, parametrizing K0 � �K0 mixing. We shall also
define the nature of the four-current correlators that we
calculate using the holographic dual model, and the de-
pendence of the parameters g8, g27, and B̂K on these
correlators. We also review the �PT predictions for the
various observables. In Sec. V we discuss the philosophy
of the calculation and present the sum of the 5D Witten
diagrams relevant for four-point functions. Section VI con-
tains our numerical results, and our conclusions are given
in Sec. VII, where we also briefly address the limitations of
the model and possible avenues of improvement. Finally,
four appendices contain technical details of the holo-
graphic calculation.

Before we start upon our analysis we think it may be
useful to offer the readers a ‘‘road map’’ to follow the
contents of this paper, depending on their particular inter-
ests. For readers interested in the AdS/QCD model and
calculations of n-point correlators, and, in particular, four-
point current correlators, Secs. II, III, and V, supplemented
with Appendices A, B, C, and D are recommended. For
those interested in the physics of the kaon decays from
�PT and perturbative QCD, Sec. IV is relevant. Readers
interested in the comparison of the holographic calculation
with the experimental results are directed towards Sec. VI.

II. THE 5D HOLOGRAPHIC MODEL

Motivated by the AdS/CFT correspondence, and follow-
ing on from the work of Refs. [29–33], we consider a 5D
bulk theory defined in a constant curvature spacetime with
the minimal field content as to describe current-current
correlators in QCD. The spacetime metric is that of AdS5

space

 ds2 � a2�z� ����dx�dx� � dz2�; (1)

where a�z� � L=z, L being the curvature scale of the anti-
de Sitter space. The 5th-dimensional coordinate z holo-
graphically represents the energy scale of the 4D theory.
We take z to extend from a UV boundary at z � L0 to an IR
boundary at z � L1 > L0.

We are only interested in spin-1 4D operators such as
�qL��taqL and �qR��taqR, where q can be u, d, and s
quarks. Using the well-known AdS/CFT relation between
the dimension of such spin-1 boundary-theory operators �
and the mass of the bulk vector fields m5, ��� 1����
3� � m2

5, we find that � � 3 gives m5 � 0. We consider
the chiral limit of QCD where the quarks are massless, so
that global flavor currents are conserved and the boundary
symmetry group is a global SU�3�L � SU�3�R.

The rules of the holographic correspondence then tell us
that the bulk theory is a pure 5D Yang-Mills with gauge
group SU�3�L � SU�3�R. The boundary conditions on the
UV brane z � L0 are such that the zero modes of the gauge
fields in the � directions are eliminated, so that no mass-
less 4D gauge symmetry survives. The Lagrangian is given
by [29–31]

 L 5D �
���
g
p
M5 Tr��1

4LMNL
MN � 1

4RMNR
MN�: (2)

The scale M5 is some yet undetermined mass scale, g is the
determinant of the metric, and M � ��; 5�, where � �
1; � � �; 4. The trace Tr is taken over the gauge group
indices.

We have LM � LaMT
a and similarly for RM, where Ta

are the Hermitian generators for the Lie Algebra of the
SU�3�L and SU�3�R groups, satisfying the following com-
mutation relations and normalizations

 �Ta; Tb	 � ifabcTc and Tr�TaTb	 � �ab: (3)
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The fabc’s are real and antisymmetric in this basis. We
write the following expressions for the gauge field
strengths

 LMN � @MLN � @NLM � i�LM;LN	; (4)

 RMN � @MRN � @NRM � i�RM; RN	; (5)

which give us the following relation

 LaMN � @MLaN � @NL
a
M � f

abcLbML
c
M; (6)

and similarly for RMN.
We wish to work with the vector and axial-vector com-

binations of these gauge fields, so we define

 VM �
1��
2
p �LM � RM�; (7)

 AM �
1��
2
p �LM � RM�: (8)

The reason behind this choice is simple: the spontaneous
breaking of chiral symmetry mixes the LM and RM gauge
fields at the quadratic level. Therefore, the choice of basis
as vector and axial-vector rather than left- and right-
handed can be viewed as a diagonalization of the equations
of motion. Of course, at the cubic and quartic interaction
level, there is mixing between VM and AM, a fact which is
integral to the calculation presented in this article.

We can then express the Lagrangian above entirely in
terms of vector and axial-vector fields. To eliminate the
mixing between V� and V5 and between A� and A5, we
need to include the following R� gauge fixing terms

 L V
GF � �

M5a
2�

Tr
�
���@�V� �

�
a
@5�aV5�

�
2
; (9)

 L A
GF � �

M5a
2�

Tr
�
���@�A� �

�
a
@5�aA5�

�
2
; (10)

where � is the gauge parameter.
We will go into unitary gauge in what follows, taking the

limit �! 1 at the appropriate stages of the calculations.
Note that this will have different effects on the vector and
axial-vector sectors, due to the different boundary condi-
tions we impose, as explained below. In the next section,
we present the full Lagrangian in terms of VM and AM, and
discuss the IR boundary conditions at z � L1, which cor-
respond to spontaneously breaking the global SU�3�L �
SU�3�R symmetry down to its SU�3�V subgroup.

III. PROPAGATORS AND INTERACTIONS

As we later discuss in detail in Sec. IV, we wish to
calculate certain four-point current correlators involving
two left-handed and two right-handed currents. We can
expand the relevant desired correlator in terms of the vector
and axial-vector currents J�V and J�A , so that we can use the
bulk Lagrangian in terms of the vector and axial-vector
fields.

According to the AdS/CFT correspondence, the bound-
ary values of V� and A� are classical sources coupling to
J�V and J�A , respectively. In order to calculate tree-level
n-point functions for the currents, we need to solve the
bulk equations of motion for the vector and axial-vector
fields, substitute back into the action, and treat this as the
generating functional of the boundary theory. One thus has

 he
R

d4xJ�V �x�v��x��J
�
A �x�a��x�i � e�SAdS ; (11)

where SAdS is the Euclidean classical bulk action calcu-
lated with V�jUV � v� and A�jUV � a�. We therefore
need the bulk-to-bulk and bulk-to-boundary propagator
for each of the gauge fields in the AdS field theory
[3,38]. The former allows us to construct the solution to
the equations of motion from the interactions in the bulk of
the AdS space, and the latter allows the construction of the
solution of the equations of motion from the UV boundary
value of the field. Green’s second theorem gives us a
straightforward relation between the two types of
propagators.

The procedure of finding the on-shell AdS action subject
to certain boundary values of the fields can equivalently be
formulated in terms of Witten diagrams, where one uses
the vertices of the bulk theory to construct all the allowed
Feynman diagrams connecting the boundary operators.
The ingredients are the propagators and the vertices, as
calculated from the bulk Lagrangian. In this section, we
describe how to calculate the propagators. The vertices are
simply derived from the full Lagrangian given in
Eqs. (12)–(17). We first justify our choices of boundary
conditions for the various fields.

Using the variational principle, the bulk equations of
motion can be derived, along with the constraints that must
be obeyed by any set of consistent boundary conditions.
The UV boundary conditions on the bulk-to-bulk propa-
gators can be chosen to be null Dirichlet for both the vector
and axial-vector sectors. The IR boundary conditions dis-
tinguish the sectors, and allow chiral symmetry breaking
(�SB) to be implemented into our model, by imposing null
Neumann and null Dirichlet conditions on the vector and
axial-vector sectors, respectively. This choice can be
understood via an elegant argument: one can consider a
bi-fundamental scalar living on the IR brane which ac-
quires a vacuum expectation value. The effect of this on the
boundary conditions is simple: it does not affect the vector
sector, but changes the boundary conditions on the axial-
vector fields from Neumann to mixed. This breaks the
chiral symmetry spontaneously, and in theory we have
one parameter to play with, analogous to the size of the
quark condensate. Now, imagine removing the brane scalar
from the theory by allowing its mass to go to infinity. The
boundary condition on the axial-vector fields is now found
to be a null Dirichlet condition. We also lose the parameter
that allows us to tune the size of the symmetry breaking
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relative to the scale 1=L1, which is set by the IR brane
position.

The final requirement is of course to account for the
pions, which form a massless pseudoscalar octet. We do
this as follows: we impose warped Neumann boundary
conditions on the A5 field on both branes. This guarantees
that even after going to unitary gauge in the axial sector, a
zero mode remains in A5 and cannot be gauged away. In the
vector sector, we impose Dirichlet conditions on both
branes for V5, so that going into unitary gauge here re-
moves V5 from the theory.

A. Interaction terms

Here, we display the full boundary Lagrangian and bulk
Lagrangian. Note that in the quadratic part, we have taken
the limit �! 1 inside the differential operator acting on
A� and V�, but not in the A5 operator. The quadratic part of
the Lagrangian is used to calculate the propagators as
shown below. The interaction Lagrangian provides the
vertices needed to construct the Witten diagrams relevant
for the calculation of any given n-point boundary current
correlator. The full 5D Lagrangian can be written as a sum
of the following terms, where the trace over the gauge
indices is implicit

 L boundary �

�
M5L
2z

����V�@5V� � A�@5A�

� 2A�@�A5�

�
L1

L0

; (12)

 

Lquadratic �
M5L
2z

�
V�

�
@2��� � z@z

�
1

z
@z

�
��� � @�@�

�

� V�A�

�
@2��� � z@z

�
1

z
@z

�
��� � @�@�

�
A�

� A5��@
2�A5 � �A5@z

�
z@
�
1

z
A5

���
; (13)

 L VAA5;VA5A5
� �i

M5L���
2
p
z
����@5V��A5; A�	

� @5A��A5; V�	 � @�A5�V�; A5	�; (14)

 L 3-vector � i
M5L���

2
p
z
��	��
�@�V��A	; A
	

� @�A��V	; A
	 � @�A��A	; V
	

� @�V��V	; V
	�; (15)

 

L4-vector �
M5L
4z

��	��
�V�V��V	; V
	

� A�A��A	; A
	 � 4V�V�A	A


� 2V�V�A
A	 � 2V�A�V	A


� 2V�A�A
V	 � A�V	A�V


� V�A	V�A
�; (16)

 L VVA5A5;AAA5A5
� �

M5L
2z

����V�A5�V�; A5	

� A�A5�A�; A5	�: (17)

Examining the boundary Lagrangian in Eq. (12), one im-
mediately sees the familiar terms that are bilinear in V�
and A�. These are responsible for the emission of vector
and axial-vector resonances by the boundary-theory cur-
rent. The unusual term here is the mixing term between A�
and A5, which says that a boundary axial current can emit
an A5 particle. This term survives the application of the
boundary conditions, and is in fact of paramount impor-
tance in the satisfaction of the Ward identities. This can be
seen from a calculation of the axial current two-point
function as described in Appendix C. The Ward identity
requires this correlator to be transverse, but this is only
achieved by the AdS/CFT computation if one takes into
account a diagram where the A5 field is emitted by one
current and absorbed by the other.

Finally, it is clear that the inclusion of the higher dimen-
sional operators Tr�L3

MN � R
3
MN� and Tr�L4

MN � R
4
MN� in

the Lagrangian of Eq. (2) results in other three-boson and
four-boson vertices. However, one can show that they are
subleading in the large M5L or, equivalently, the large-Nc
limit, once one recognizes that M5L goes like Nc para-
metrically, as in Refs. [29,30]. The argument goes as
follows: the Lagrangian in five dimensions has the sche-
matic form given by

 

L5D � M5L
� ���
g
p

L
Tr�F2� � c1

���
g
p

L
Tr�F3�

M2
5

� c2

���
g
p

L
Tr�F4�

M4
5

� � � �

�
; (18)

where Tr�F2� represents the leading terms of the gauge
field theory as written in Eq. (2), i.e. Tr�LMNL

MN �
RMNR

MN�, and the other terms signify higher dimensional
operators, an example being Tr�gMSgNQgPRLMN�
LSPLQR � L! R�. Now, when we write this in terms of
the fields A�, V� and A5, V5, we must remember that each
factor of field strength F comes in with a factor of gMN . A
factor of gMN brings with it a factor z2=L2. Recall also that���
g
p
� �L=z�5. Thus, we can schematically write:
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L5D � M5L
�

1

z
Tr�FddFdd� � c1

z

�M5L�2
Tr�FddFddFdd�

� c2
z3

�M5L�4
Tr�FddFddFddFdd� � � � �

�
; (19)

where Fdd simply means LMN , RMN , i.e. the field strength
with lower Lorentz indices. More generally, a gauge in-
variant operator with n factors of F will have a coefficient
that goes like cn�2z

2n�5=�M5L�
2�n�2�, where all the c

factors are of order one. This means that, in the large-Nc
limit, the contribution from these operators is subleading to
that from the term Tr�LMNLMN � RMNRMN�, as claimed.

B. SU�3�V sector propagators

The vector bulk-to-bulk propagator has a transverse and
longitudinal part, because we are working in the gauge
V5 � 0 (unitary gauge). The value of V� at the UV bound-
ary is the classical source to which the 4D current J�V
couples. On the IR boundary, we impose a Neumann
condition on the vector field. We write (following [39])

 hV�V�i � �iGV
p�z; z0�

�
��� �

p�p�

p2

�
� iGV

0 �z; z
0�

�

�
p�p�

p2

�
: (20)

Note that we are working in Lorentz indices, so we lower
and raise these indices with the 4D Poincaré metric ���. In
Fourier space in the x� directions, but position space for
the 5th direction, the propagators solve the equation

 

�
@2
z �

1

z
@z � p2

�
GV
p�z; z0� �

z
M5L

��z� z0�: (21)

In addition,GV
0 �z; z

0� solves the same equation with p set to
zero. The boundary conditions onGV

p�z; z
0� are Dirichlet on

the UV brane and Neumann on the IR brane, so that

 GV
p�z; z0�jz�L0

� 0; (22)

 @zGV
p�z; z0�jz�L1

� 0: (23)

From Green’s second theorem, the bulk-to-boundary
propagator is defined by the following limit

 hV�V�ij@ADS�z
0� � �

M5L
z

@zhV
�V�ijz�L0

; (24)

where
 

hV�V�ij@ADS�z
0� � �iKV

p �z
0�

�
��� �

p�p�

p2

�

� iKV
0 �z

0�

�
p�p�

p2

�
: (25)

The solutions are given by [29–31]

 

GV
p�z; z

0�z<z0 �
�zz0

2M5L�AD� BC�
�AJ 1�pz� � BY1�pz�	

� �CJ 1�pz
0� �DY1�pz

0�	; (26)

 

GV
p�z; z

0�z>z0 �
�zz0

2M5L�AD� BC�
�AJ 1�pz

0� � BY1�pz
0�	

� �CJ 1�pz� �DY1�pz�	; (27)

where

 A � �Y1�pL0�; C � �Y0�pL1�;

B � J 1�pL0�; D � J 0�pL1�;
(28)

and

 GV
0 �z; z

0�z<z0 � �
1

2M5L
�z2 � L2

0�; (29)

 GV
0 �z; z

0�z>z0 � �
1

2M5L
�z02 � L2

0�: (30)

Here J and Y are Bessel functions of the first and second
kind in the conventions of Ref. [40]. From these bulk-to-
bulk propagators, we find that the bulk-to-boundary propa-
gators are given by

 KV
p �z0� � �

z0

L0

�CJ 1�pz
0� �DY1�pz

0�	

�AD� BC	
; (31)

 KV
0 �z

0� � 1: (32)

Note that in calculating the bulk-to-boundary propagator,
we use the bulk-to-bulk propagator for z < z0, so that

 KV
p �z

0� � �
M5L
z

@zG
V
p�z; z

0�z<z0 jz�L0
; (33)

 KV
0 �z

0� � �
M5L
z

@zGV
0 �z; z

0�z<z0 jz�L0
: (34)

C. SU�3�A sector propagators

We here list the propagators for A� and A5. As explained
above, the IR boundary conditions in this sector are chosen
so that the SU�3�L � SU�3�R global chiral symmetry is
spontaneously broken:

 GA
p�z; z0�jz�L0

� 0; (35)

 GA
p�z; z

0�jz�L1
� 0: (36)

Similar to the SU�3�V sector we define
 

hA�A�i � �iGA
p�z; z

0�

�
��� �

p�p�

p2

�

� iGA
0 �z; z

0�

�
p�p�

p2

�
: (37)
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The equation to be solved is the same as in the SU�3�V
sector. The results are [29–31]
 

GA
p�z; z0�z<z0 �

�zz0

2M5L�A �D� B �C�
�AJ 1�pz� � BY1�pz�	

� � �CJ 1�pz0� � �DY1�pz0�	; (38)

 

GA
p�z; z

0�z>z0 �
�zz0

2M5L�A �D� B �C�
�AJ 1�pz

0� � BY1�pz
0�	

� � �CJ 1�pz� � �DY1�pz�	; (39)

where A and B are as for the SU�3�V sector, and

 

�C � �Y1�pL1�; �D � J 1�pL1�: (40)

This gives us

 GA
0 �z; z

0�z<z0 � �
1

2M5L
�z2 � L2

0�
z02 � L2

1

L2
0 � L

2
1

; (41)

 GA
0 �z; z

0�z>z0 � �
1

2M5L
�z02 � L2

0�
z2 � L2

1

L2
0 � L

2
1

: (42)

From these propagators, we obtain the bulk-to-boundary
propagators as for the SU�3�V case, to find that

 KA
p�z
0� � �

z0

L0

� �CJ 1�pz0� � �DY1�pz0�	

�A �D� B �C	
; (43)

 KA
0 �z
0� �

z02 � L2
1

L2
0 � L

2
1

: (44)

We also note that the current-current correlator as p! 0 is
now given by (see Appendix C)

 �A�p
2�jp�0 � F2

� �
2M5L

L2
1 � L

2
0

: (45)

This is a direct consequence of the IR boundary condition.
The A5 propagator in this gauge is simply given by

 hA5A5i � �iG5
p�z; z0�; (46)

where G5
p�z; z0� is the limit as �! 1 of the solution to the

equation

 

�
�@2

z � �
1

z
@z � �

1

z2 � p
2

�
G5
p�z; z0� � �

z
M5L

��z� z0�;

(47)

with the boundary conditions

 @z�aG5
p�z; z0��jz�L0

� 0; (48)

 @z�aG5
p�z; z0��jz�L1

� 0; (49)

giving3

 G5
p�z; z

0� �
�2zz0

M5L�L
2
1 � L

2
0	

�
1

p2

�
: (50)

IV. FOUR-POINT OBSERVABLES

A. The �I � 1=2 rule

Neglecting CP violation effects, there are two indepen-
dent K ! �� decay amplitudes, K0 ! ���� and K0 !
�0�0. These amplitudes can be written in terms of the
�I � 1=2 amplitude A0 and the �I � 3=2 amplitude A2 as

 A�K0 ! ����� � A0e
i�0
�

��������
1=2

p
A2e

i�2 ; (51)

 A�K0 ! �0�0� � A0e
i�0
�

���
2
p
A2e

i�2 : (52)

The measured values of these amplitudes are

 ReA0 � 2:72� 10�4 MeV;

ReA2 � 1:22� 10�5 MeV;
(53)

which gives

 

1

!



ReA0

ReA2



Re�K ! ����I�0�

Re�K ! ����I�2�
� 22:2: (54)

The large value of ReA0=ReA2 is the so-called �I � 1=2
rule.

In the following, we use holographic QCD to calculate
ReA0 and ReA2 in the chiral limit. In this limit, at order p2

in the chiral counting, all the �S � 1 transitions can be
obtained from the standard �S � 1 effective Lagrangian,
involving the usual g8 and g27 coupling constants (neglect-
ing the small electromagnetic contribution, see for ex-
ample [36,41])

 L �S�1
eff � �

GF���
2
p VudV�us�g8L8 � g27L27	; (55)

where

 L 8 �
X

i�1;2;3

�L��2i�L
��i3 and

L27 �
2

3
�L��21�L

��13 � �L��23�L
��11;

(56)

with

 L � � �iF2
�U�x�yD�U�x�; (57)

and Vud � 0:974, Vus � 0:224. The pion decay constant
F� is taken in the chiral limit, where the masses of the u, d,
and s quarks are neglected (F� ’ 87 MeV). The matrix
field U collects the Goldstone bosons of the spontaneously
broken chiral symmetry of the QCD Lagrangian with three
massless flavors, and D�U denotes the covariant deriva-
tive: D�U � @�U� ir�U� iUl�, in the presence of ex-
ternal chiral sources l� and r� of left- and right-handed
currents. The parameters g8 and g27 encode the dynamics

3Note the factor 2 difference between the A5 propagator here
and the (incorrect) one used in our previous paper [37].
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of the integrated-out degrees of freedom in the chiral limit.
These include the heavy quark flavors as well as the light
hadronic flavor states. Notice that the octet term propor-
tional to g8 induces pure �I � 1=2 transitions, while the
term proportional to g27 induces both �I � 1=2 and �I �
3=2 transitions:

 A0 � �
GF���

2
p VudV

�
us

���
2
p
F�

�
g8 �

1

9
g27

�
�M2

K �m
2
��; (58)

 A2 � �
GF���

2
p VudV�us2F�

5

9
g27�M2

K �m
2
��; (59)

where MK and m� are the masses of the kaon and the pion,
respectively, and GF is the Fermi four-point interaction
parameter.

To calculate g8 and g27, we separate the long and short
distance contributions as usual and perform an operator
product expansion (OPE), obtaining the effective
Hamiltonian for j�Sj � 1 transitions [42–44],

 H �S�1
eff �

GF���
2
p �u

X8

i�1

ci���Qi���

��<mc � charm quark mass�;

(60)

 ci��� � zi�����yi���; ����t=�u; �q� V
�
qsVqd:

(61)

The arbitrary renormalizsation scale� separates short- and
long-distance contributions to the decay amplitudes. The
Wilson coefficient functions ci��� contain all the informa-
tion on heavy-mass scales. For CP conserving processes,
the contribution involving the Cabibbo-Kobayashi-
Maskawa (CKM) elements of the top quark, encoded in
yi���, is negligible and only the zi��� are numerically
relevant. The coefficient functions can be calculated for a
scale � * 1 GeV using perturbative renormalization
group techniques. They were computed in an extensive
next-to-leading logarithm analysis by two groups [45,46].
After Fierz reordering, the local four-quark operators
Qi��� can be written in terms of color singlet quark bi-
linears
 

Q1�4�sL��dL �uL��uL; Q2�4�sL��uL �uL��dL;

Q3�4
X
q

�sL��dL �qL��qL; Q4�4
X
q

�sL��qL �qL��dL;

Q5�4
X
q

�sL�
�dL �qR��qR; Q6��8

X
q

�sLqR �qRdL;

Q7�4
X
q

3

2
eq �sL��dL �qR��qR;

Q8��8
X
q

3

2
eq �sLqR �qRdL; (62)

where the sum goes over the light flavors (q � u, d, s) and

 qR;L �
1
2�1� �5�q; eq � �2=3;�1=3;�1=3�: (63)

The operators Q3; . . . ; Q6 arise from QCD penguin dia-
grams involving a virtual W and a c or t quark, with gluons
connecting the virtual heavy quark to light quarks. They
transform as �8L; 1R� under SU�3�L � SU�3�R and solely
contribute to �I � 1=2 transitions. It is important to note
that they are present only below the charm threshold, i.e.
for �<mc. Similarly the Wilson coefficients z7;8 of the
electroweak penguin operators Q7;8 are nonzero only for
�<mc. Thus, in the following, only Q1 and Q2 will be
considered as we will always work in the regime � * mc.
Long-distance contributions to the amplitudes AI are con-
tained in the hadronic matrix elements of the four-quark
operators,

 hQi���iI 
 h��; IjQi���jK0i: (64)

In the strict large-Nc limit, i.e. considering only the W
exchange diagram with z2 � 1 we get g8 � g27 � 3=5,
while experimentally, from Eqs. (53), (58), and (59), leads
to both an enhancement of the I � 0 and a suppression of
the I � 2 final state. The octet enhancement [42] in the
�Q1; Q2� sector is dominated by the increase of z2 when �
evolves from MW down to � ’ 1 GeV, whereas the sup-
pression of the �I � 3=2 transition results from a partial
cancellation between the contributions from theQ1 andQ2

operators. Taking into account the running of z1 and z2

between MW and � ’ mc � 1300 MeV, which gives z1 ’
�0:5, z2 ’ 1:3, and still considering the matrix elements in
the large-Nc limit, i.e. considering only the factorizable
contribution, one gets g8 ’ 1 and g27 ’ 0:5. This gives
values closer to the experimental ones but a factor 5
(3=5) is still missing for g8 (g27). Thus, perturbative
QCD effects are far from sufficient to describe the �I �
1=2 rule and QCD dynamics at low energies must be
addressed beyond the leading Nc limit, that is to say, at
the level of the nonfactorizable contribution [36,47–50].

Further progress was made when, in addition to the
O�p2� weak �S � 1 Lagrangian of Eq. (55), the O�p4�
�S � 1 Lagrangian was also considered. A full fit of all
the weak Lagrangian constants was then carried out, taking
into account not only the experimental K ! �� ampli-
tudes but also the experimental K ! ��� amplitudes. It
was found that the O�p2� contribution is expected to ac-
count for g8 � 3:3 and g27 � 0:23. The rest of the experi-
mental amplitudes are expected to be explained by the
O�p4� �S � 1 Lagrangian. Numerically, this O�p4�
higher-order (HO) contribution is equivalent to adding by
hand a contribution of �1:8 and �0:06 to g8 and g27,
respectively. In the following, we will only calculate the
O�p2� Lagrangian constants g8 and g27, which should
account for about two thirds of ReA0 and three quarters
of ReA2. Therefore, for comparison with experiment, there
are two equivalent possibilities: we either compare the
values of g8;27 we obtain from Eqs. (69) and (70) with
the values 3.3 and 0.23 above, or, adding the O�p4� con-
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tribution by hand, we compare the values we get for

 gTOT
8 � g8 � g

HO
8 ; (65)

 gTOT
27 � g27 � g

HO
27 ; (66)

with the values 5.1 and 0.29, with gHO
8 � 1:8 and gHO

27 �
0:06.

To calculate the nonfactorizable contribution to g8 and
g27, one can make use of the chiral symmetry properties of
the �S � 1 effective Lagrangian of Eq. (55). Instead of
calculating the K ! �� amplitudes explicitly, it is much
simpler to calculate them taking U � 1 in Eq. (55), i.e.
considering the processes with no external pseudoscalar
and only two external sources coming from the covariant
derivatives of U. For reasons explained in Ref. [36] it is
convenient to consider the processes with two external
right-handed sources (for instance for L8 we consider
L8 3

P
i�1;2;3F

4
��r��2i�r

��i3). The nonfactorizable contri-
bution to this process of four-quark operators is then given
by Green’s functions involving, on the one hand, the two
left-handed currents of the four-quark operator inducing
this process, and, on the other hand, the two right-handed
currents coupling to the right-handed sources. More pre-
cisely, including the leading Nc nonfactorizable contribu-
tion from Q1 and Q2, the parameters g8 and g27 are given
by the Q2 integrals (with p the Minkowski momentum
flowing between the two left-handed currents) of the two
Green’s functions [36,51]:
 

W���
LRLR �p� � lim

l!0
i3
Z
d4xd4yd4zeipx�il�y�z�

� h0jTfL��sd�x�R
�
�ds
�y�L��sd�0�R


�ds
�z�gj0ijconn;

(67)

 

W���
LLRR �p� � lim

l!0
i3
Z
d4xd4yd4zeipx�il�y�z�

� h0jTfL��su�x�L
�
�ud�0�R

�
�du
�y�R�us�z�gj0ijconn;

(68)

with
 

g8��� � z1���
�
�1�

3

5
g�S�2���

�

� z2���
�

1�
2

5
g�S�2���

�
Z �2

0
dQ2 WLLRR�Q2�

4�2F2
�

�
; (69)

 g27��� � �z1��� � z2����
3
5g�S�2���; (70)

and

 g�S�2��� � 1�
1

32�2F2
�

Z �2

0
dQ2WLRLR�Q

2�; (71)

while

 WLRLR�Q2� � �
4

3

Q2

F2
�
�����

Z d�p

4�
W���
LRLR �p�; (72)

 WLLRR�Q2� � �
1

3

Q2

F2
�
�����

Z d�p

4�
W���
LLRR �p�: (73)

Notice that we use the notation Q2 for the Euclidean
momentum (i.e. Q2 � �p2).

From the above equations we see that the factorizable
contributions to g8 and g27 are

 gF8 ��� � �
2
5z1��� �

3
5z2���; (74)

 gF27��� �
3
5�z1��� � z2����: (75)

The remaining nonfactorizable parts of Eqs. (69)–(71) are
the subject of the calculations of this paper.

In the above, we only consider, as necessary, the con-
nected parts of the four-point functions. The currents are
defined by R��q1q2

� �q1�
� �1��5�

2 q2, L��q1q2
� �q1�

� �1��5�
2 q2,

and the subscript of g�S�2 comes from the fact that this
quantity also determines the �S � 2 transitions (see
below).4

In order to calculate the integrals of Eqs. (69)–(71), the
Q2 dependence of WLLRR and WLRLR must be determined.
However, this dependence is known only in the asymptotic
regimes Q2 ! 0 and Q2 ! 1. In the limit when Q2 ! 0,
from �PT [36,51,52], and after a long calculation, one gets

 WLRLR�Q2� � 6–24�2l1 � 5l2 � l3 � l9�
Q2

F2
�
� . . . ; (76)

while for the other correlator only one group has calculated
the �PT result [36],

 WLLRR�Q
2� � �

3

8
�

�
�

15

2
l3 �

3

2
l9

�
Q2

F2
�
� . . . (77)

In these expressions the li are the standard renormalized
O�p4� chiral Lagrangian coefficients, usually denoted by
Li.

In the limit Q2 ! 1, and using Shifman-Vainshtein-
Zakharov (SVZ) OPE techniques [43], one obtains [36,51]

 lim
Q2!1

WLRLR�Q2� � �24�2 �s
�
F2
�

Q2 ; (78)

4Notice that Eq. (72) has been modified by a normalization
factor 4, of which we were not aware in our previous paper [37].
This normalization is correct when one sums over all possible
planar flavor contractions, as we do here.
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 lim
Q2!1

WLLRR�Q
2� � �

1

3
�2 �s

�
F2
�

Q2 �
16

3
�2 �s

�
h �  i2l5
F4
�Q2 ;

(79)

where �s is the strong coupling constant, h �  i is the quark
condensate, and l5 is one of the O�p4� chiral Lagrangian
coefficients. Note that in Eq. (79) the term depending on
h �  i is numerically dominant. Using 4D large-Nc dia-
grammatics, one can see that WLRLR and WLLRR are given
by a sum of simple to triple poles in Q2 multiplied by
polynomials in Q2. Combining this constraint with
Eqs. (76)–(79), we then get the most general form for the
Green’s functions [36,51]

 WLRLR �
X1
i�1

�
�i

�Q2 �M2
i �
�

i
�Q2 �M2

i �
2 �

�i
�Q2 �M2

i �
3

�
;

(80)

 WLLRR �
X1
i�1

�
�0i

�Q2 �M2
i �
�

0i
�Q2 �M2

i �
2 �

�0i
�Q2 �M2

i �
3

�
;

(81)

where theMi’s are the masses of the resonances and �i,i,
�i, and �0i, 

0
i, �

0
i are constants.

Quite a few calculations have been proposed in the 1=Nc
expansion to estimate the Q2 integrals [36,47–49]. They
all found a large enhancement of ReA0 together with a
decrease of ReA2, so that the bulk of the �I � 1=2 rule can
be explained. In those references, the size of the enhance-
ment is determined essentially by two distinct factors. The
first is the �PT behavior at low scale, as determined by the
chiral Lagrangian parameters, and the second is the size of
the hadronic scales, namely, the masses of the hadronic
resonances, which will modify and terminate this behavior
at some higher scale. In particular, see Ref. [36], which
explains in detail why the interplay of the relevant hadronic
scales—the small chiral constants F� and h �  i on the
factorizable side and larger resonance masses on the non-
factorizable side—means that such a large nonfactorizable
contribution must be present. However, the effect of the
resonances was not calculated explicitly in Refs. [36,47–
49], but introduced in an indirect way. In [47,48] only �PT
results (Eqs. (76) and (77)) were considered, with a cutoff
put by hand at the mass of the resonances. The work of [36]
used the form of Eqs. (80) and (81) to interpolate between
Eqs. (76)–(79) with a minimum number of resonances,
while [49] employed Nambu-Jona-Lasinio models. The
implicit assumption of these procedures is that the contri-
bution to WLRLR and WLLRR from the intermediate mo-
mentum region (0:5–2 GeV2) can be obtained via a gentle
interpolation (i.e. without ‘‘bumps’’) between the chiral
behavior and the OPE behavior. In any case, it is clear that
a method incorporating resonances explicitly would be
highly preferable. This is precisely where the power of
holographic QCD lies, at least for these observables, since

it is a method where the effect of the entire tower of
resonances for each channel can, in principle, be
calculated.

B. The BK parameter

From the Green’s function WLRLR, there is another ob-
servable whose nonfactorizable contribution can be calcu-
lated in the chiral limit and at leading Nc order, and which
can be used as a test of the holographic method described
below. This is the B̂K observable, parametrizing K0 � �K0

mixing. At the quark level, K0 and �K0 mix due to a box
one-loop diagram where the K0 transforms itself into a �K0

through a pair of W bosons. This diagram leads to the
following effective Hamiltonian [53]:

 H �S�2
eff �

G2
FM

2
W

4�2 ��
2
cF1 � �2

t F2

� 2�c�tF3	C�S�2���Q�S�2�x�; (82)

with

 Q�S�2�x� 
 � �sL�x��
�dL�x����sL�x���dL�x��; (83)

and C�S�2 is the Wilson coefficient. From this effective
Hamiltonian, defining

 h �K0jQ�S�2�0�jK
0i 
 4

3f
2
KM

2
KBK���; (84)

the parameter B̂K is defined as

 B̂ K 
 C�S�2���BK���: (85)

The large-Nc limit (i.e. the factorizable contribution) gives
BK � 3=4.

In the chiral limit and at leading Nc order, it turns out
that the nonfactorizable contribution is determined by the
same integral of WLRLR as the one found in parts of g8 and
in g27, Eqs. (69)–(71). This gives

 BK��� �
3
4g�S�2���: (86)

These relations come from a dynamical symmetry [54]
relating part of the matrix elements of Q1 and Q2 with
those of Q�S�2.

Unfortunately, there is no precise experimental determi-
nation of the B̂K parameter. Thus, for our purposes, we will
take B̂K � 0:36� 0:15 as a reference value, as obtained in
the chiral limit in Refs. [36,51,55]. Similar values have
been obtained in the chiral limit, analytically in Refs. [56]
and on the lattice in Refs. [57]. However, note that lattice
calculations with physical quark masses [58] have been
shown to be sizably larger than the chiral limit results,
suggesting that the corrections beyond the chiral limit are
large [51,59].
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V. ANALYTIC RESULTS

A. Sum of the 5D Witten diagrams

In this section, we show how to calculate the four-
current correlators of Eqs. (67) and (68) in momentum
space, i.e.

 W���
LRLR �p� � i3lim

l!0
h0jTf ~L��sd�p� ~R

�
�ds
�l� ~L��sd��p� ~R


�ds
��l�gj0i;

(87)

 W���
LLRR �p� � i3lim

l!0
h0jTf ~L��su�p� ~L

�
�ud��p� ~R

�
�du
�l� ~R�us��l�gj0i:

(88)

These expressions are in momentum space, so we use the
tildes to refer to the Fourier transformed flavor currents. As
we explain above, we use the vector and axial-vector field
combinations, so that the vector and axial-vector currents
are

 

~L�
�sd�p� �

1��
2
p �~J�V;�sd�p� � ~J�A;�sd�p��;

~R��sd�p� �
1��
2
p �~J�V;�sd�p� � ~J�A;�sd�p��:

(89)

We have the following expansion forW���
LLRR �p� in terms of

the vector and axial-vector currents

 

i3

4
lim
l!0
�~J�V �p�~J

�
V��p�~J

�
V�l�~J


V��l�

� ~J�V �p�~J
�
V��p�~J

�
A�l�~J


A ��l�

� ~J�A �p�~J
�
V��p�~J

�
V�l�~J


A��l�

� ~J�A �p�~J
�
V��p�~J

�
A�l�~J


V ��l�

� ~J�V �p�~J
�
A��p�~J

�
V�l�~J


A��l�

� ~J�V �p�~J
�
A��p�~J

�
A�l�~J


V��l�

� ~J�A �p�~J
�
A��p�~J

�
V�l�~J


V��l�

� ~J�A �p�~J
�
A��p�~J

�
A�l�~J


A��l�	; (90)

and similarly for W���
LRLR �p�.

Having calculated in the previous sections the propaga-
tors for all the fields in our Lagrangian, it is a lengthy but
straightforward operation to construct all of the Witten
diagrams for our four-point functions. One simply uses
the bulk-to-boundary propagators to connect the four
boundary points together through the vertices coming
from the bulk interaction Lagrangian. Connecting points
inside the bulk requires a bulk-to-bulk propagator.

The inclusion of the boundary term Eq. (12) involving
A5 obviously increases the number of diagrams that con-
tribute to any n-point function containing the axial-vector
current. However, as shown in Appendix D, the Ward
identities satisfied by W���

LLRR and W���
LRLR can be used to

demonstrate that one gets the full result by considering
purely the diagrams where only vectors and axial-vectors

are connected to the boundary, and where only the trans-
verse part of their bulk-to-boundary propagators is taken
into account. This means that one need not consider the
boundary term given by A�@�A5 for the purpose of this
paper.

For both WLLRR�Q
2� and WLRLR�Q

2�, the 5D Witten
diagram sum can be split into three distinct classes: dia-
grams where A5 propagates in the bulk, X-diagrams in-
volving the four-boson vertex, and Y-diagrams, which
involve two three-boson vertices. Each class of diagrams
contributes to the Green’s functions at a different order of
the momentum p: the A5 class contributes with order p0

and higher, the X-diagrams to order p2 and higher, and the
Y-diagrams to order p4 and higher. We refer the reader to
Appendix A for an example of each class of diagram, for
the ~J�V;�sd�p�~J

�
V;�sd�l�~J

�
A;�sd��p�~J


A;�sd��l� contribution to the

WLRLR correlator.5

Once we sum the diagrams including all the contribu-
tions, we find that the two four-point functions are propor-
tional to each other with a factor �16. This factor comes
from the SU�3� group theory structure. The proportionality
is strictly correct only in the l� ! 0 limit, which is the
limit required for the computation of the g8 and g27 pa-
rameters. We therefore have

 WLRLR�Q
2� �

4i
3

Q2

F2
�

��p � iQ�; (91)

 WLLRR�Q2� � �
i

12

Q2

F2
�

��p � iQ�; (92)

where � denotes the sum of the diagrams and can be
written as � � �X ��A5

� �Y , referring to the distinct
classes of diagrams. The �X and �A5

components are given
by
 

�X�p� � �i
�
M5L

2

�
�d� 1	3

d

Z dz
z
��KV2

0 � K
A2

0 	

� �KV2

p � K
A2

p 	 � 4KV
0 K

A
0K

V
pK

A
p�; (93)

and

 �A5
�p� � �i

�
M5L���

2
p

�
2 �d� 1	2

d

Z dz
z

�
Z dz0

z0
G5
p�z; z0�A0�z; z0�; (94)

5Note that we must respect the quark-flavor contractions,
which eliminates some of the Witten diagrams. We then draw
all the Witten diagrams which contribute to each term in this
sum, and add all the various parts. It turns out that for WLLRR
there are 36 distinct diagrams, which gets reduced to 24 dia-
grams upon enforcing the order of quark contraction. ForWLRLR,
we find 40 such diagrams which give a nonvanishing contribu-
tion. These diagrams are the totality of planar diagrams when
the order of quark-flavor contractions is respected.
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where d � 4 is the dimension of spacetime and
 

A0�z; z0� � 2�KA
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V
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V
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V
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V
0 � K
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0 @zK
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p��KA

p@z0K
V
0 � K

V
0 @z0K

A
p�: (95)

As for the Y-diagrams, the integrations are more involved, but the sum can be written as �Y�p� � Y1 � Y2 � Y3 � Y4 �
2Y5 � 2Y6, where

 Y1 � �i
�
M5L���

2
p

�
2
�d� 1	p2

Z dz
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KV
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(96)

We perform all the integrals with the limits L1 and L0, and
show the full results in Appendix B. The results are very
complicated expressions, but one can then take the limit
L0 ! 0 smoothly. All the divergent contributions cancel,
and we obtain the simple result

 ��Q�L0!0 � 3iM5L
�

16

Q6L6
1

�
14

5Q4L4
1

�
299

240I2
1

�
7

20Q2L2
1I

2
1

�
299

240I2
0

�
2

15Q2L2
1I

2
0

�
7

5Q4L4
1I

2
0

�
16

Q6L6
1I

2
0

�
32

Q6L6
1I0

�
13

12QL1I0I1

�
; (97)

where I0;1 � I0;1�QL1� are the modified Bessel functions
of zeroth and first order, respectively, and Q is the

Euclidean momentum. This simplified form is more ap-
propriate for the analysis of the high and lowQ behavior of
the correlators. See Fig. 1 for a plot of WLRLR against
momentum, with 1=L1 � 280 MeV. Note that WLRLR is
found to be positive definite, while WLLRR is negative
definite because of the proportionality. Both correlators
also approach zero as Q! 1, and satisfy the ‘‘sum of
poles’’ functional form of Eqs. (80) and (81). More pre-
cisely, the high Q behavior of the correlators is given by
1=Q2, which is the correct functional form predicted by
perturbative QCD, Eqs. (78) and (79).

B. The limit Q! 0 and connection with chiral
perturbation theory

The pole structure of the propagators for low momentum
constitutes a strong check on our calculation. Another
check is whether our results agree with �PT which, as
explained above, gives us a constraint on the behavior of
the correlators as Q! 0, Eqs. (76) and (77). Taking that
limit in the expression of ��Q�, we obtain

 lim
Q2!0

��Q� � 3iM5L
�
�3

Q2L2
1

�
105

64
�

1521

2560
Q2L2

1

�O�Q4�

�
: (98)

This is indeed the functional form required by �PT, the Q2

pole being due to the massless pions. Our correlators there-
fore have the low Q behavior given by

 lim
Q2!0

WLRLR�Q2� � 6�
105M5L

16

Q2

F2
�
�O�Q4�; (99)
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FIG. 1. A plot of WLRLR against Q, in the limit L0 ! 0. The
correlator WLLRR is �16 times smaller.
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 lim
Q2!0

WLLRR�Q
2� � �

3

8
�

105M5L
256

Q2

F2
�
�O�Q4�: (100)

This is to be compared with the expressions obtained via
�PT in the chiral limit, Eqs. (76) and (77). A plot of our
results versus those of �PT makes things clearer, for a
value of 1=L1 � 280 MeV (Fig. 2). The matching obtained
for WLRLR is very good for the range of validity of �PT,
while WLLRR does not exhibit as good a matching (see
below). Note also that the �PT results shown in the plots do
not contain any O�p6� contribution, while our 5D result is
to full order in p.

In Ref. [31], the coefficients of the O�p4� chiral
Lagrangian were calculated in an AdS setting with identi-
cal field content to the one used in this work. This allows us
to compare our predictions in the low-momentum limit to
those of �PT with the AdS li coefficients calculated in
Ref. [31]. Using those results, and the relations found
between the li coefficients, i.e. l2 � 2l1 and l3 � �6l1,
Eqs. (99) and (100) can be rewritten as

 lim
Q2!0

WLRLR�Q2� � 6–24�2l1 � 5l2 � l3 � l9�
Q2

F2
�
� . . .

(101)

and

 lim
Q2!0

WLLRR�Q2� � �
3

8
�

3

2
�l9 � l3�

Q2

F2
�
� . . . (102)

Notice that the first expression coincides exactly with the

pure �PT calculation, Eq. (76). Similarly, for WLLRR, the
O�p2� coefficient �3=8 and the O�p4� l9 coefficient �3=2
coincide with the corresponding coefficients of Eq. (77).
However, the holographic calculation does not reproduce
the O�p4� l3 coefficient of Eq. (77), yielding a factor�3=2
in place of�15=2, so that the totalQ2 coefficient inWLLRR
differs by a factor two approximately from the �PT result.
We do not understand this discrepancy. We have performed
a variety of consistency checks on the 5D calculation, and
we do not see any possibility of deviations which would
alter the proportionality between WLLRR and WLRLR. This
makes us confident that our results are correct. It seems
possible to us that the problem might lie with the sole and
rather subtle �PT calculation of the l3 dependence of
WLLRR. Note also that this difference in the l3 coefficient
forWLLRR is not significant enough to alter the fact that we
find a large enhancement for g8 below.

VI. NUMERICAL RESULTS AND DISCUSSION

In this section we present our numerical results for the
�I � 1=2 rule and the BK mixing parameter. To obtain the
values of the parameters g8 and g27, we must integrate the
two four-current correlators over the Euclidean momentum
as explained in Eqs. (69)–(71). This integral should ideally
be regularized in the same scheme as the Wilson coeffi-
cients of the four-quark operators responsible for the kaon
decay. These are z1 and z2, and they are usually renormal-
ized using dimensional regularization in three distinct
schemes: leading order (LO), t’Hooft-Veltman (HV), and
naive dimensional regularisation (NDR). On the other
hand, the sharp UV boundary at z � L0 in the 5D calcu-
lation implies that a hard cutoff at scale 1=L0 should be
employed in the momentum integral, and that one should
use the appropriate values of the Wilson coefficients z1 and
z2 at this energy scale. We therefore focus upon the Wilson
coefficients calculated in the LO renormalization scheme
as this provides a closer, though admittedly not exact,
match to the holographic part of the calculation. One
may justify this choice as follows: our results for the
correlators have the functional form expected from QCD
calculations in Eqs. (78) and (79). The integrals carried out
in the computation of g8 and g27 will therefore have a
logarithmic divergence with respect to the cutoff, rendering
the integration stable under changes of the high-
momentum scale.

We employ two choices of the high-momentum cutoff:
1300 MeV, which is approximately the mass of the charm
quark, and 1500 MeV.6 Below, we also demonstrate that

100 200 300 400
Q MeV

1

2

3

4

5

6

50 100 150 200 250 300
Q MeV

-0.3

-0.2

-0.1

0.1

FIG. 2. The low Q behavior of WLRLR (top) and WLLRR (bot-
tom) in the L0 ! 0 limit: the dashed line is the AdS prediction,
the solid line is �PT.

6In taking the cutoff to be 1500 MeV, which is above the
charm threshold, we should also consider the contribution of
four-quark operators involving the charm quark (see. e.g. [60]).
However, for a scale not larger than 1500 MeV, which is well
below the mass of the charmed resonances, their contribution is
expected to be quite small, and in the following we neglect them.
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the results of our calculation are stable against changes in
this cutoff. The values of the Wilson coefficients z1 and z2

that we use, as calculated in the work of [60] for the LO
scheme, are z1 � �0:625, z2 � 1:345, at 1300 MeV and
z1 � �0:5699, z2 � 1:307, at 1500 MeV. For C�S�2 we
use the values 1.17 and 1.21, respectively.

Below, we employ a self-consistent prescription to carry
out two distinct fits. In the first, we fit to the following
observables: the mass of the rho mesonm	, the mass of the
a1 axial-vector meson ma1

, F�, g8, and g27. The values of
F�,mexp

	 , andmexp
a1

that we fit to are 87 MeV, 776 MeV, and
1230 MeV, respectively. For g8 and g27, as explained in
Sec. IV, the values we fit to are g8 � 3:3 and g27 � 0:23,
equivalent to gTOT

8 � g8 � gHO
8 � 5:1, and gTOT

27 � g27 �
gHO

27 � 0:29, Eqs. (65) and (66). In the second type of fit,
we fit to ! and BK instead of g8 and g27, taking the values
! � 1=22:2 and B̂K � 0:36, see Sec. IV. The only free
parameters in both fits are M5L and L1. Inside the integral,
we use our full result for finite L0, the Minkowski version
of which is shown in Appendix B. The predictions of the
model for F�, m	, and ma1

, entering in the fits, are [29–
31,37]

 Fth
� �

������������������
2M5L

L2
1 � L

2
0

s
; (103)

and, to a good approximation in the range of interest,

 mth
	 

2:12

L1

�L1 � 0:282L0�

�L1 � L0�
; (104)

 mth
a1


3:38

L1

�L1 � 0:085L0�

�L1 � L0�
: (105)

The results for both fits are given in Table I and are quite
similar. Taking into account the relative crudeness of our
model, and the use of the large-Nc expansion of QCD, we
find these results quite good. The discrepancy with experi-

ment never exceeds �25%, and for some observables is
much smaller. It must be emphasized again that, having
picked the values for the upper cutoff to be 1300 MeV and
1500 MeV and thereby fixed L0, the only remaining free
parameters are L1 and M5L. Therefore, we fit five inde-
pendent observables with only two free parameters.

To understand the structure of the g8 and g27 results in
Table I, it is useful to decompose the numerical results into
three components: the leading Nc factorized part of
Eqs. (69)–(71) given explicitly in Eqs. (74) and (75), the
1=Nc nonfactorizable contribution of Eqs. (69)–(71) (en-
coded in the WLRLR and WLLRR Green’s functions we
calculated), and the contribution from the higher-order
corrections, gHO

8 and gHO
27 , which as said above we take

from Ref. [41]. For example, for the results of column A
this decomposition goes as follows: gTOT

8 � 1:06� 0:92�
1:8 � 3:78 and gTOT

27 � 0:43� 0:24� 0:06 � 0:25,
whereas the experimental values to compare with are
gexp

8 � 5:1 and gexp
27 � 0:29, respectively. We see that, for

g8, the nonfactorizable chiral limit contribution of 0.92 is
of the same order as the factorized contribution of 1.06,
and effectively doubles it. For g27, the nonfactorizable
contribution of �0:24 effectively divides the factorized
result of 0.43 by more than two. As already mentioned
above, the fact that the 1=Nc contribution can be as large as
the factorized part, even though the 1=Nc series is still
expected to converge, can be naturally explained by the
interplay of the various hadronic scales involved in g8 and
g27 [36].

For a rather conservative estimate of the error7 involved
in our calculation, it is interesting to compare the results of
Table I with the values we obtain by fitting only F�, m	,
andma1

. In this case, for example, with L�1
0 � 1300 MeV,

we get Fth
�=F

exp
� � 1:00, mth

	 =m
exp
	 � 0:98, mth

a1
=mexp

a1
�

1:02, and gTOT
8 � 1:06� 1:32� 1:8 � 4:18, which gives

gTOT
8 =gexp

8 � 0:82. In this case, the nonfactorizable chiral
limit contribution of 1.32, is �40% larger than the value
0.92 above. For g27 we get a smaller result: gTOT

27 � 0:43�
0:35� 0:06 � 0:14, so that the nonfactorizable chiral limit
contribution of �0:35, is also �40% larger than the value
�0:24 above. The small total result it gives is not surpris-
ing, as g27 involves the difference of two large positive
contributions, i.e. a 1=N2

c correction of order�30% of our
1=Nc contribution would bring g27 close to the experimen-
tal value.

Note that our results are similar to what has been ob-
tained in other analytical calculations utilizing the 1=Nc
expansion [36,48,49]. In particular, in Ref. [36] the values
gTOT

8 =gexp
8 � 0:76 and gTOT

27 =gexp
27 � 0:79 have been ob-

tained. The two methods are, however, quite different, as
explained in Sec. IV. The main advantage of our model is
that it allows the calculation of the four-point functions in

TABLE I. Columns A, B show a fitting to m	, ma1
, F�, g8, and

g27. Columns C, D show a fitting to m	, ma1
, F�, 1=!, and B̂K .

Note that, as explained in Sec. IV, gTOT
8 � g8 � 1:8, gTOT

27 �
g27 � 0:06, where g8 and g27 are the quantities we calculated
from the AdS model. We use the values F� � 87 MeV, mexp

	 �
776 MeV, mexp

a1
� 1230 MeV, gexp

8 � 5:1, and gexp
27 � 0:29.

Observable A B C D

L�1
0 1300 MeV 1500 MeV 1300 MeV 1500 MeV
L�1

1 274 MeV 275 MeV 277 MeV 280 MeV
mth
	 =m

exp
	 0.91 0.90 0.93 0.92

mth
a1
=mexp

a1
0.95 0.93 0.97 0.95

Fth
�=F� 1.15 1.17 1.12 1.14
gTOT

8 =gexp
8 0.74 0.72 0.75 0.74

gTOT
27 =gexp

27 0.85 0.85 0.79 0.78
1=! 19.5 19.2 21.4 21.3
B̂th
K 0.38 0.38 0.34 0.34

7This is also useful as an estimate of higher-order 1=Nc
correction effects.

FOUR-POINT FUNCTIONS AND KAON DECAYS IN A . . . PHYSICAL REVIEW D 76, 125017 (2007)

125017-13



the entire relevant momentum region within one consistent
setting, thereby removing the need for interpolation in any
specific momentum range.

One could ask why we took the parameter M5L as a free
parameter in the fits. In Refs. [29–33,37,61], it has been
shown that this parameter determines the high Q2 loga-
rithm of the vector-current two-point correlator, so that it
can be fixed from a matching with the corresponding QCD
coefficient [62], yielding

 M5L �
Nc

12�2 : (106)

The point is that, for two-point functions only, there is
enough parameter freedom to match the QCD logarithm
(see in particular [29–31]), unlike the more complicated
case presented here. Clearly, it is not expected that the
model we consider, based on a simple slice of AdS with a
hard cutoff in the UV at the scale L�1

0 , would lead to the
exactly correct QCD behavior. However, comparing our
results with those of QCD in Eqs. (78) and (79), we observe
that for both WLRLR and WLLRR we reproduce the good
functional behavior (i.e. the 1=Q2 dependence). We also
observe that we get the correct sign for the coefficients of
1=Q2 and, amazingly, we even get values for these coef-
ficients which are within a factor 2–3 of the perturbative
QCD result, for Q2 � 2–5 GeV2. Note that this is a very
surprising outcome, especially for WLLRR, because the
high-momentum dependence of the latter involves the
quark condensate contribution, as seen in Eq. (79). In
fact, the dominance of the quark condensate term in
Eq. (79) guarantees that WLLRR is negative in the far UV,
and so we predict its sign correctly, although our model has
no equivalent of the quark condensate (or of �s for that
matter). As mentioned above, one way of introducing a
tunable condensate is by adding a scalar field in the bulk. It
would be interesting to see whether the calculation of
WLLRR in that case gives a more accurate description of
the high-momentum behavior.

We showed in Sec. III A that the 5D bulk Lagrangian we
employ is the leading order Lagrangian in the large-Nc
expansion, and that operators of higher mass dimension are
subleading in Nc. In principle, these operators may con-
tribute to the four-point functions calculated here. In this
section, we have presented the results of a fit of five
observables using only two independent parameters, which
are the IR brane position L1 and the dimensionless combi-
nation M5L. Thus, the fact that a fit using only the leading
operator of Eq. (2) gives good agreement to the data is
nontrivial. If we were to introduce the full set of subleading
operators that contribute, then we increase the number of
free parameters of the model (because the coefficients of
the new operators are unconstrained by bulk gauge invari-
ance or other symmetries) and the fit loses predictivity.
Therefore, the success of the restricted fit performed here
shows that the coefficients of the subleading operators are
not anomalously large.

A technical, but important, issue to mention concerns
the gauge symmetry of the 5D theory. To carry out the 5D
calculations, we had to choose a specific gauge to work in,
and we picked the convenient R� gauge taken in the limit
�!1. Now, it is clear that the results of the holographic
calculation must be independent of the gauge parameter �,
and of any choice of gauge fixing. This must, in fact, be a
feature of any holographic calculation involving gauge
freedom in the AdS theory. In previous AdS/QCD compu-
tations there had been no need for concern, since these
calculations only involved two-point functions and all the
propagators in the 5D theory were boundary-to-boundary
ones. Boundary-theory current conservation then automati-
cally projects out the longitudinal gauge-dependent com-
ponent of the 5D propagators, rendering the results gauge
independent. Unfortunately, the situation is less clear in the
case of four-current correlators, because the latter involve
Witten diagrams with explicitly gauge-dependent propa-
gators (exchange diagrams [38]). In the above, we trust that
the power of AdS/CFT guarantees that any such holo-
graphic calculation will yield results that are independent
of the 5D gauge fixing.

The model has many shortcomings, due to its crude
nature. For example, a concern for this class of models is
the behavior of the masses of the resonances MVn and MAn
as n approaches infinity. One finds that the simple treat-
ment presented here shows that the masses of the Kaluza-
Klein modes go like n for large n, in sharp contrast to the
predictions of large-Nc theories, in which the masses of the
resonances go like

���
n
p

. A recent paper [63] has shown,
however, that with a more sophisticated handling of the IR
truncation of the AdS space, one can indeed recover the
large-Nc Regge behavior. Whether this will improve the
results obtained here remains to be seen. Finally, one must
keep in mind that the calculations done here were all in the
chiral limit. In order to account for massive quarks, one
would have to introduce the bi-fundamental scalar of
Refs. [29,30]. In particular, this would allow the inclusion
of the mass of the strange quark, whose effect could easily
be as large as 20%–25% for g8, or even more for g27, due
to the cancellation of factorizable and nonfactorizable
contributions in the latter.

VII. CONCLUSIONS

In this paper we have calculated, within the simplest
possible version of holographic QCD, the four-point flavor
current correlators crucial to the resolution of the �I �
1=2 puzzle of QCD. We believe that our results are quite
encouraging for the AdS/QCD approach. The holographic
theory automatically and consistently includes the contri-
butions of the infinite tower of meson resonances to the
four-point correlators. We also reproduce, to a good level
of accuracy, the low-momentum and high-momentum be-
havior of these correlators, as deduced from chiral pertur-
bation theory and perturbative QCD, respectively. This
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agreement is particularly impressive for the correlator
WLRLR. Moreover, the results of a fit of the holographic
predictions to the experimental data agree well, with 25%
accuracy or better, showing that the dynamics of the � �
1=2 rule is operative in AdS/QCD. For quantities as diffi-
cult to calculate as the isospin amplitudes of kaon decay
ReA0 and ReA2, this is remarkable.

A rather obvious limitation of the model concerns the
description of �SB. As explained above, although the
imposition of IR boundary conditions on the bulk
SU�3�L � SU�3�R gauge fields correctly incorporates the
leading �SB behavior, a bi-fundamental bulk scalar is
needed to fully account for the physics of �SB. The
inclusion of this field will directly introduce pseudoscalar
resonances into the 4D field content, and these will indeed
have relevant contributions to the four-current correlators
calculated here. We will also have an extra parameter that
can be tuned [29,30], corresponding to the quark conden-
sate. We have also not included the effects of the anoma-
lous U�1�A symmetry of QCD, nor the explicit breaking of
chiral symmetry due to bare quark masses. One envisions
these improvements having a complicated yet positive
effect on the calculation of four-point current correlators
presented in this paper.

We believe that the results of this paper for four-point
functions show that it is worth investigating further the
predictions of AdS/QCD.
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APPENDIX A: THE DIFFERENT CLASSES OF 5D
WITTEN DIAGRAMS

We adopt the following conventions in labeling the
vector, axial-vector, and pseudoscalar propagators:

Using the vertices calculated from the full Lagrangian, we
can then draw all the Feynman diagrams that contribute to
a specific four-point function in momentum space. To
illustrate this, we consider here the hJVJVJAJAi piece
contributing to WLRLR. This is given by the following
sum of diagrams:

In principle, one could have two more ‘‘cross diagrams,’’
but they are eliminated by the large-Nc condition that
diagrams must be planar.

APPENDIX B: THE SUM OF WITTEN DIAGRAMS
FOR FINITE L0

Here we present the results of the Witten diagram sum-
mation for finite L0 in Minkowski space. As in Sec. V, we
write � � �X ��A5

� �Y . Defining

 Cn�z� � CJ n�pz� �DYn�pz�;

�Cn�z� � �CJ n�pz� � �DYn�pz�;

F�z� � p2�z2C2�z� � L
2
1C0�z�	;

G�z� � p4z4C2�z� � 2p3z3C3�z� � p4L2
1z

2C2�z�

we obtain

 �A5
�

36iM5L

L2
0�L

2
1 � L

2
0�

3�AD� BC�2p4 ��z
2C2�z�	j

L1
L0
�2;

and
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 �X � 3iM5
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��
1

L2
0�AD� BC�

2

�
z2

2
�C1�z�

2 � C0�z�C2�z��
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�
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L2
0�A �D� B �C�2

�
z2

2
� �C1�z�

2 � �C0�z� �C2�z��
�

�
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L2
0�L

2
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��z4� 6
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Writing �Y�p� � Y1 � Y2 � Y3 � Y4 � 2Y5 � 2Y6, we obtain
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APPENDIX C: THE AXIAL TWO-POINT
FUNCTION

The axial two-point function is defined by

 hJ�A �x�J
�
A�x
0�i � �i

Z
d4pe�ip�x�x

0����
A �p�:

The Ward identities require a transversal ���
A �p�, so that

we may write ���
A �p� � �A�p

2�T��, where T�� is the
transversal projector in p. To calculate this two-point
function in our AdS/QCD setup, we have to use the bound-
ary Lagrangian as shown in Eq. (12). This allows us to
write an expression for the axial current by differentiating
the full Lagrangian with respect to the boundary source a�.
Schematically, we obtain the following expression

 J�A �x� �
M5L
z
��@zA��x; z� � @�A5�x; z�	jL0

:

Plugging this expression into the equation for the axial
two-point function, we find that we can write the result as
the sum of the propagators of the A� and A5 fields, giving

 

hJ�A �x�J
�
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0�i�

M5L
z0

@z0
�
M5L
z
@zhA��x;z�A��x0z0�i

���������z;z0�L0

�

�
M5L
L0

�
2
@0�@�hA5�x;L0�A5�x0;L0�i:

Now, making use of the definitions of the axial propagators
found in Sec. V above, it is easy to see that the A5 propa-
gator cancels the longitudinal part of the A� bulk-to-
boundary propagator. Thus, the boundary term containing
A5 is essential for the satisfaction of the transversality
condition.

APPENDIX D: SIMPLIFICATION TO
TRANSVERSE BOUNDARY PROPAGATORS

The proof that only the transverse part of the boundary
propagators is necessary for the calculation of WLLRR�Q

2�
andWLRLR�Q

2� is as follows: Consider a general four-point
function with external momenta p�, p�, l�, and l. We
assume the most general boundary propagators, i.e. with
transverse and longitudinal parts. We can write this general
four-point function as

 W���
4 � c1T

�TT�T� � d1T
�TT�p� � d2T

�Tp�T� � d3T
�lT�T� � d4l

�TT�T� � e1T
�Tp�p�

� e2l�lT�T� � e3T�lT�p� � e4T�lp�T� � e5l�Tp�T� � e6l�TT�p� � f1T�lp�p�

� f2l
�Tp�p� � f3l

�lT�p� � f4l
�lp�T� � g1l

�lp�p�:

In this expression, T� and T� are transverse projectors in
p� and p�, respectively, whereas T� and T are transverse
projectors in l� and l. We omit the second index of every
transverse projector, since it is contracted inside the coef-
ficient functions ci ! gi, where all the vertex and gauge
structure resides. For instance, d1T�TT�p� is really
d1;�00�0�0T��

0
T

0
T��

0
p�p�

0
, where this term can origi-

nate from the longitudinal part of a bulk-to-boundary
vector or axial-vector propagator, or from an A5 particle
emitted from an axial-vector current at the boundary. Now,
the Ward identities obeyed by the four-point functions
calculated above are

 l�lW
���
4 � 0 and p�p�W

���
4 � 0:

Applying the first Ward identity to the general form for the
correlator, we obtain that

 e2T�T� � g1p�p� � f4p�T� � f3T�p� � 0:

But this can only mean that each term in this equation
separately vanishes, because these terms are linearly inde-
pendent. Arguing similarly, one can apply the second Ward
identity to find that the coefficients which must be zero are
e1, e2, f1, f2, f3, f4, and g1. Now, what we are really after
is the Lorentz singlet quantity given by the contraction of
W���

4 with ����� (the equivalent of WLLRR�Q2� and
WLRLR�Q

2�). This contraction trivially removes all the
remaining nonzero terms, apart from the c1 term, which
is precisely the one composed entirely of transverse exter-
nal propagators. Thus, we have shown that the only term
that contributes to the scalar functions WLLRR�Q2� and
WLRLR�Q2� is the one obtained by using the transverse
propagators only on the external lines of the Witten
diagrams.
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