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A free quantum field in 1� 1 dimensions admits unitary Schrödinger picture dynamics along any
foliation of spacetime by Cauchy curves. Kuchař showed that the Schrödinger picture state vectors,
viewed as functionals of spacelike embeddings, satisfy a functional Schrödinger equation in which the
generators of time evolution are the field energy-momentum densities with a particular normal-ordering
and with a (nonunique) c-number contribution. The c-number contribution to the Schrödinger equation,
called the ‘‘anomaly potential,’’ is needed to make the equation integrable in light of the Schwinger terms
present in the commutators of the normal-ordered energy-momentum densities. Here we give a quantum
geometric interpretation of the anomaly potential. In particular, we show the anomaly potential corre-
sponds to the expression in a gauge of the natural connection on the bundle of vacuum states over the
space of embeddings of Cauchy curves into the spacetime. The holonomy of this connection is the
geometric phase associated with dynamical evolution along a closed path in the space of embeddings
generated by the normal-ordered energy-momentum densities. The presence of the anomaly potential in
the functional Schrödinger equation provides a dynamical phase which removes this holonomy, so that
there is no net phase change for quantum transport around closed loops in the space of embeddings.
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I. INTRODUCTION

Time evolution in a field theory is usually specified in
terms of the behavior of various dynamical variables as one
moves along a given foliation of spacetime by Cauchy
surfaces. One is often interested—particularly in applica-
tions to gravitational physics—in the possibility of con-
sidering dynamical evolution along any foliation by
Cauchy surfaces. In order to consider different foliations
it is convenient to view them as different curves in the
space of embeddings E of Cauchy surfaces into spacetime.
In this setting, dynamical variables can be viewed as func-
tionals on E and this more general type of dynamical
evolution is often called ‘‘functional time evolution’’ [1].
In classical field theory functional time evolution is quite
well understood (see e.g., Ref. [2] and references therein).
In quantum field theory considerably less is known about
functional time evolution; see Refs. [1,3–5].

For a free quantum field in a flat 1� 1 dimensional
spacetime it is a nontrivial fact that one can use a simple
Fock representation to implement functional time evolu-
tion in the Schrödinger picture [4]. Put differently, one has
unitary Schrödinger picture dynamics along any foliation
of spacetime by Cauchy curves, all within a single Fock
representation. In this setting the Schrödinger picture state
vector of the quantum field can be viewed as a mapping
from E into the Fock space. As shown in Refs. [4,6], the
state vector then satisfies a functional Schrödinger equa-
tion in which the role of the Hamiltonian density is played
by the quantized energy-momentum densities of the field.
The precise definition of these densities is, however, some-
what intricate. The energy-momentum densities are de-
fined as the sum of (i) the normal-ordered classical
expression, using an embedding-dependent set of creation

and annihilation operators, and (ii) a nonunique
embedding-dependent multiple of the identity operator.
The need for contribution (ii) was first recognized by
Kuchař, who called this c-number the ‘‘anomaly potential’’
[6]. This terminology arose because the c-number contri-
bution is needed to make the functional Schrödinger equa-
tion integrable in light of anomalous terms (‘‘Schwinger
terms’’) present in the commutators of the energy-
momentum densities. The presence of the anomaly poten-
tial can be viewed as an embedding-dependent adjustment
to the naive normal-ordering definition of the Schrödinger
picture energy-momentum densities. This adjustment guar-
antees that dynamical evolution of the state vector between
two time slices is independent of the choice of interpolat-
ing foliation.

In this note we expose the quantum theoretic origins of
the anomaly potential in the Schrödinger equation. A hint
is given in Ref. [6] where an analogy is drawn between the
anomaly potential and the vector potential for a particle
moving in an electromagnetic field. A geometrical inter-
pretation of the latter situation is, of course, that the vector
potential corresponds to a connection on a principal bundle
over spacetime. Is there a corresponding geometrical in-
terpretation of the anomaly potential? Here we give such an
interpretation for the anomaly potential using techniques
and results from the extensive investigations into the quan-
tum geometric phase [7].

We consider the Fock representation used in Refs. [4,6]
for a free, massless scalar field on a flat spacetime R� S1

(Sec. II). The functional Schrödinger picture is defined by a
family of unitary transformations on the Fock space pa-
rametrized by the time slice, i.e., the embedding (Sec. III).
The Hilbert space of Fock state vectors is a principal U�1�
bundle Q! S over the manifold of Fock states; Q is
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equipped with a natural connection (Sec. IV). The
Schrödinger picture images of the Heisenberg picture vac-
uum state define a mapping from E to S. This mapping
determines an induced principal U�1� bundle B! E
(Sec. V). There is a connection on B induced from the
connection on Q. Its holonomy corresponds to the geo-
metric phase associated with the transport of state vectors
along closed curves in E. The expression of this connection
in a suitable gauge is precisely the Kuchař anomaly poten-
tial (Sec. VI). The effect of the anomaly potential in the
Schrödinger equation is then to provide a dynamical phase
which cancels the geometric phase associated with time
evolution along closed paths in E, the latter phase being
generated by the normal-ordered energy-momentum den-
sities (Sec. VII). From this it follows that dynamical evo-
lution of the state vector in the Schrödinger picture is
independent of the choice of foliation connecting given
initial and final time slices.

II. THE QUANTUM SCALAR FIELD ON R� S1

We will consider a free, massless, scalar quantum field
on a flat cylindrical spacetime (M, �). The spacetime
manifold is M � R� S1 with coordinates t 2 ��1;1�
and x 2 �0; 2��. The spacetime metric in these coordinates
is

 � � �dt � dt� dx � dx: (2.1)

We will also use null coordinates x� � t� x, where

 � � �
1

2
�dx� � dx� � dx� � dx��: (2.2)

The (real symplectic vector) space of smooth solutions to
the wave equation is given by

 ’;�� � 0; (2.3)

 

’ �
1�������
2�
p

�
q� pt�

1���
2
p

X1
n��1
n�0

1������
jnj

p

� 	a���n e�inx
�
� a���n e�inx

�



�
; (2.4)

where q and p are real and

 a����n � a����n (2.5)

define rapidly decreasing sequences of complex numbers.
Thus the classical field’ is a superposition of a topological
zero-frequency mode with left and right moving modes
with frequencies jnj � 1; 2; . . . .

Following Refs. [4,6], we define the operator represen-
tative of the field, ’̂, in the Heisenberg picture as follows.
Introduce symmetric Fock spaces F ��� for left and right
moving modes with associated annihilation and creation
operators â���n , â���yn , n � 1; 2; . . . , with nonvanishing
commutators

 

	â���n ; â���ym 
 � �nmÎ
���; 	â���n ; â���ym 
 � �nmÎ

���;

n; m > 0 (2.6)

in the usual way (Î��� are the identity operators on F ���).
Introduce a Hilbert space L2�R� with elements being
complex-valued functions  �  �p� upon which we define

 q̂ �p� � i
d 
dp

; p̂ � p �p�: (2.7)

We define the Hilbert space for the field as

 F � L2�R� �F ��� �F ���: (2.8)

On F the quantum scalar field is defined as an operator-
valued spacetime distribution via
 

’̂ �
1�������
2�
p

�
q̂� p̂t�

1���
2
p

X1
n��1
n�0

1������
jnj

p

� 	â���n e�inx
�
� â���n e�inx

�



�
; (2.9)

where

 â ���yn � â����n : (2.10)

Throughout this paper we use a hat ( ^ ) to denote an
operator on F .

For each  2 L2�R� there is a state vector, denoted by
j ; 0i, which we call ‘‘the’’ Heisenberg vacuum state, since
it satisfies

 â ���n j ; 0i � 0; n > 0: (2.11)

A basis for F is obtained from a basis for L2�R� and from
repeated applications of the creation operators to j ; 0i.

Throughout this article all kets and bras will denote
elements of F and F �.

III. EMBEDDINGS AND FUNCTIONAL TIME
EVOLUTION

We denote by X : S1 ! M a smooth, orientation-
preserving, spacelike embedding of a circle into the two-
dimensional spacetime. (See the Appendix for details on
embeddings.) Using coordinates x� and � 2 �0; 2�� on M
and S1, respectively, the embedding can be defined in terms
of 2 smooth functions X�:

 x� � X���� (3.1)

satisfying

 � � ���X
�0X�0 > 0 (3.2)

and

 �dx��X�0 > 0; (3.3)

where dx is the 1-form appearing in (2.1). Condition (3.2)
means the induced metric on the embedded circle is posi-
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tive definite (the ‘‘spacelike’’ requirement). Condition (3.3)
takes care of the ‘‘orientation-preserving’’ requirement.
Using null coordinates x� these two conditions are equiva-
lent to

 X�0 > 0; X�0 < 0: (3.4)

For future use we note that the manifold of smooth
orientation-preserving spacelike embeddings, denoted by
E, is contractible (see the Appendix).

Although the field operator ’̂ is defined as an operator-
valued distribution on M, the simplicity of two dimensions
allows one to restrict it and its derivatives to any embedded
circle thus defining operator-valued distributions on S1. In
particular, we define the canonical field operators associ-
ated to an embedding X as

 �̂	X
 � X�’̂; �̂	X
 �
����
�
p

X�Ln’̂; (3.5)

where � is the induced metric (3.2) on the embedded circle
and n is the future-pointing unit normal to the embedded
circle. In null coordinates x� on M and using � as a
coordinate on S1 these definitions are

 �̂	X
��� � ’̂�X����; X�����; (3.6)

 

�̂	X
��� � X�0���
@’̂�X����; X�����

@x�

� X�0���
@’̂�X����; X�����

@x�
: (3.7)

Such operators are functionals of the embeddings and can
be used, in conjunction with a choice of state vector, to
compute outcomes of measurements of observables asso-
ciated to any specific time slice in the Heisenberg picture.

The canonical field operators associated with any two
spacelike embeddings X1 and X2 are unitarily related [4],
that is, for each pair of embeddings there exists a unitary
transformation Û	X1; X2
 : F ! F such that
 

�̂	X2
 � Ûy	X1; X2
�̂	X1
Û	X1; X2
;

�̂	X2
 � Ûy	X1; X2
�̂	X1
Û	X1; X2
:
(3.8)

Thus functional time evolution is unitarily implemented in
the Heisenberg picture.

Because the Fock representation constructed in Sec. II is
irreducible, Û is unique up to a (possibly embedding-
dependent) phase. See Ref. [7] for an explicit expression
of Û.

Functional Heisenberg equations can be obtained from
(3.8) by viewing X2 as an infinitesimal deformation of X1.
We then get [4,6],

 

��̂	X
���
�X���0�

�
1

i
	�̂	X
���;Ĥ �	X
��

0�
; (3.9)

 

��̂	X
���
�X���0�

�
1

i
	�̂	X
���;Ĥ �	X
��0�
; (3.10)

where Ĥ �	X
 is the energy-momentum density of the
scalar field at the slice embedded by X, normal-ordered
in the operators (â���n , â���yn ). In null coordinates we have

 Ĥ �	X
 � �
1

4
�X�0��1: ��̂	X
 � �̂0	X
�2:: (3.11)

Just as the unitary transformation appearing in (3.8) can be
redefined by a (possibly embedding-dependent) phase fac-
tor, so one can also redefine the energy and momentum
densities by the addition of a (possibly embedding-
dependent) multiple of the identity without disturbing the
validity of (3.9) and (3.10).

In the (functional) Schrödinger picture the canonical
field operators are defined once and for all, independently
of the embedding, and the state vectors are embedding-
dependent. To construct this picture of dynamics we pick
once and for all a fiducial embedding X0 —the initial
slice—upon which we identify the Heisenberg and
Schrödinger canonical field operators. Given an initial state
vector j�i 2 F characterizing the state of the system at
the time defined by X0, the state vector j�; Xi 2 F on the
embedding X is defined by

 j�; Xi � Û	X0; X
j�i: (3.12)

We remark that, as Û is only determined up to a (possibly
embedding-dependent) phase, the state vector on the slice
defined by X is determined only up to such a phase.

By considering deformations of the embedding in (3.12),
it follows that the Schrödinger picture state vector satisfies
the following functional Schrödinger equation [4]:

 i
�

�X����
j�; Xi � �Ĥ�	X
��� � A�	X
���Î�j�; Xi

(3.13)

 � Ĥ�	X
���j�; Xi: (3.14)

Here

 Ĥ �	X
 � Û	X0; X
Ĥ �	X
Û
y	X0; X
; (3.15)

represents the normal-ordered Schrödinger picture energy-
momentum densities associated with the slice embedded
by X. We note that Ĥ�	X
 is not normal-ordered in the (â,
ây) operators. Rather, Ĥ�	X
 is normal-ordered in the
Schrödinger picture image of the creation and annihilation
operators:

 b̂ ���n 	X
 � Û	X0; X
â
���
n Ûy	X0; X
: (3.16)

In particular, this means the Schrödinger image of the Fock
vacuum state vector associated to the slice X, given by

 jvac; Xi :� Û	X0; X
j ; 0i; (3.17)
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satisfies

 b̂ ���k 	X
jvac; Xi � 0; k > 0; (3.18)

and

 hvac; XjĤ�	X
jvac; Xi � 0: (3.19)

See Ref. [4] for an explicit expression for jvac; Xi.
The c-number contribution to (3.13), A� � A�	X
, is

Kuchař’s anomaly potential [6], and is explicitly computed
from Û in Ref. [4]. Because Û	X0; X
 and hence j�; Xi is
only determined up to a phase, the expression for A� is
likewise nonunique. We have
 

j�; Xi ! ei�	X
j�; Xi;

)

A�	X
��� ! A�	X
��� �
��	X

�X����

: (3.20)

Given a foliation of M, i.e., a 1-parameter family of
embeddings X�s�, the functional Schrödinger Eq. (3.13)
defines the Schrödinger equation for evolution of the state
vector j��s�i � j�; X�s�i along the foliation. We have

 i
d
ds
j��s�i � Ĥ	X�s�
j��s�i; (3.21)

where

 Ĥ	X�s�
 �
Z 2�

0
d� _X��s�Ĥ�	X�s�
���: (3.22)

IV. THE BUNDLE OF STATE VECTORS

Each normalized state vector,

 j�i 2 F ; h�j�i � 1; (4.1)

defines a pure quantum state, i.e., a projection operator

 P̂� � j�ih�j: (4.2)

Let us denote the set of pure quantum states by S. Each
element of S corresponds to a family of normalized vectors
in F , each element of the family differing by a phase. The
set Q of normalized state vectors in F , equipped with the
projection � : Q! S given by

 ��j�i� � j�ih�j; (4.3)

defines a principal fiber bundle with structure group U�1�
[7]. The action on Q of an element ei� 2 U�1� is

 j�i ! ei�j�i: (4.4)

A tangent vector to Q at j�i is any vector jti 2 F such
that

 Re �h�jti� � 0: (4.5)

A vertical tangent vector jvi to Q at j�i satisfies
���jvi� � 0 and is of the form

 jvi � i�j�i; � 2 R: (4.6)

The bundle � : Q! S has a natural connection [7].
Horizontal tangent vectors jhi at j�i are defined by this
connection to satisfy

 Im �h�jhi� � 0: (4.7)

In light of (4.5), we see that horizontal vectors at j�i are
elements of F orthogonal to j�i. The associated connec-
tion 1-form � defines a map from the tangent space to Q at
j�i to the Lie algebra u�1� (the Lie algebra of imaginary
numbers) given by

 jti ! ��jti� � h�jti: (4.8)

We have, in particular,

 ��jvi� � ��i�j�i� � i�; (4.9)

and

 ��jhi� � 0: (4.10)

V. THE INDUCED VACUUM BUNDLE

The Schrödinger image jvac; Xi on the slice embedded
by X of the Heisenberg vacuum state vector defines an
embedding-dependent family of states

 Pvac	X
 � jvac; Xihvac; Xj: (5.1)

We remark that while both the Heisenberg and Schrödinger
vacuum vectors are only determined up to a phase, the
projection operator Pvac	X
 is uniquely determined.
Pvac	X
 defines a mapping from E, the space of embed-
dings, into the space S of Fock states,

 Pvac : E ! S: (5.2)

There is then a canonically defined principal U�1� bundle
over E obtained by copying each fiber from Q over Pvac	X

to sit over X. This is the induced (or ‘‘pull-back’’) bundle
[8]. More precisely, the induced bundle B! E is defined
as the subset of points �X; j�i� 2 E �Q such that

 Pvac	X
 � j�ih�j: (5.3)

This means for each point p � �X; j�i� in B there is a
phase ei�p such that

 j�i � ei�p jvac; Xi: (5.4)

The projection mapping � : B! E is given by

 ��X; j�i� � X: (5.5)

The action of ei� 2 U�1� on B is given by

 �X; j�i� ! �X; ei�j�i�: (5.6)

Because the set E of orientation-preserving spacelike em-
beddings is contractible, the bundle B is trivial.

As for any induced bundle, there is a bundle morphism
f : B!Q satisfying
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 � 
 f � Pvac 
�: (5.7)

In our case, this mapping is given by

 f�X; j�i� � j�i: (5.8)

A tangent vector to B at �X; j�i � ei�jvac; Xi� is a pair
�V; jTi�, where V : S1 ! TXM is a deformation of an
embedding,

 V �
Z 2�

0
d�V�	X
���

�
�X����

; (5.9)

and jTi is an element of F of the form

 jTi � i	j�i � ei�j�i; (5.10)

where 	; � 2 R and

 j�i �
Z 2�

0
d�V�	X
���

�
�X����

jvac; Xi: (5.11)

VI. THE INDUCED CONNECTION AND THE
ANOMALY POTENTIALS

Using the mapping f : B!Q defined in the previous
section, we can pull back the connection 1-form � on Q to
define an induced connection 1-form ! � f�� on B. By
definition, the action of ! on a tangent vector �V; jTi� at
�X; j�i� is given by the action of � on the push-forward of
�V; jTi� at f�X; j�i� � j�i on Q. The push-forward is
given by

 f��V; jTi� � jTi: (6.1)

We then have (with jTi given by (5.10))

 !�V; jTi� � ��jTi� (6.2)

 � h�jTi (6.3)

 � i	� hvac; Xj�i; (6.4)

from which it follows the horizontal vectors �V; jTi� on B
at �X; j�i� have jTi orthogonal to j�i.

We are now ready to make explicit the link between the
induced connection and the anomaly potential of Kuchař.
We do this by evaluating the 1-form! in a gauge. A choice
of gauge corresponds to a choice of cross section 
 : E !
B, which can be defined by a mapping � : E ! R via

 
�X� � �X; ei�	X
jvac; Xi�: (6.5)

In light of the triviality of the induced bundle, this cross
section can be defined globally; for simplicity we assume
this in what follows. We define the gauge potential to be
the 1-form on E defined by A � i
�!. Let V be a tangent
vector to E at X, as in (5.9). The push-forward 
��V� is a
tangent vector to B at 
�X� given by

 
��V� � �V;rV�ei�	X
jvac; Xi��; (6.6)

where

 rV�ei�	X
jvac; Xi� �
Z 2�

0
d�ei�	X
V�	X
���

�

�
�

�X����
jvac; Xi

� i
��	X

�X����

jvac; Xi
�
: (6.7)

At the point X we have
 

A�V� � i!�
�V�

�
Z 2�

0
d�V�	X
���

�
ihvac; Xj

�
�X����

jvac; Xi

�
��	X

�X����

�
: (6.8)

Writing

 A �V� �
Z 2�

0
d�A����V

����; (6.9)

then using (3.13) and taking account of the normal-
ordering of H�, we have

 A ���� � i
�
hvac; Xj

�
�X����

jvac; Xi
�
�
��	X

�X����

(6.10)

 � A���� �
��	X

�X����

(6.11)

Thus the anomaly potential coincides with the gauge po-
tential of the connection !, i.e., to the expression of the
natural connection on the induced bundle in a particular
gauge.

Neither of the connections ! or � is flat. In particular,
the gauge-invariant field strength dA—which is i times the
pull-back to E of the curvature d� by f 
 
—is non-
vanishing. The components of dA correspond to the
Schwinger terms in the commutator algebra of the opera-
tors Ĥ�. This can be easily seen from our geometric
construction as follows. Let U and V be tangent vectors
to E:

 U �
Z 2�

0
d�U�	X
���

�
�X����

;

V �
Z 2�

0
d�V�	X
���

�
�X����

:

(6.12)

We have
 

dA�U;V� � i
Z 2�

0
d�d�0	U����V���0� �U���0�V����


�

��
�

�X����
hvac; Xj

��
�

�X���0�
jvac; Xi

��
:

(6.13)

Using the functional Schrödinger Eq. (3.13), we then get
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 dA�U;V� � i
Z 2�

0
d�d�0U����V���0�

� �hvac; Xj	Ĥ����; Ĥ���
0�
jvac; Xi�:

(6.14)

The commutators of the normal-ordered operators Ĥ�

close back into the Ĥ� up to embedding-dependent multi-
ples of the identity—the Schwinger terms [6]:
 

	Ĥ�	X
���; Ĥ�	X
��0�
 �
Z 2�

0
d�00C���	X
��;�

0; �00�

� Ĥ�	X
��00�

�F ��	X
��;�
0�Î: (6.15)

See Ref. [6] for explicit expressions. The Schwinger terms
are then produced by the vacuum expectation value appear-
ing in (6.14) for dA.

VII. DYNAMICAL PHASE, GEOMETRIC PHASE,
AND FOLIATION INDEPENDENCE OF TIME

EVOLUTION

As pointed out in Ref. [6], the anomaly potentials in
(3.13) are needed for integrability of the functional
Schrödinger equation and this integrability implies that
time evolution of the Schrödinger picture state vector
between given initial and final slices is independent of
the interpolating foliation. This latter conclusion is based
upon consideration of the algebra of infinitesimal hyper-
surface deformations [9,10]. Our geometric interpretation
of the anomaly potentials in terms of the natural induced
connection on the vacuum bundle over the space of embed-
dings allows us to see this foliation independence directly
in terms of solutions to (3.21). In particular, using this
connection the net phase change of a state vector upon
time evolution along a given foliation can be decomposed
into a ‘‘geometrical’’ part and a ‘‘dynamical’’ part. We
shall show that the geometrical part of the net phase can be
obtained from time evolution generated by the normal-
ordered energy-momentum densities alone—without the
anomaly potentials. If the Hamiltonian in (3.21) were
defined without the anomaly potentials, the geometric
phase would lead to foliation dependence in time evolution
of the state vector. As we shall see, when considering time
evolution along alternative foliations connecting given
initial and final slices, the presence of the anomaly poten-
tial in (3.21) adds a dynamical part which precisely cancels
the geometric contribution. In this way one can see the
foliation independence of dynamical evolution of the
Schrödinger picture state vector.

Consider a closed curve � in E. Physically this corre-
sponds to considering time evolution from an initial slice
X0 to a final slice X1 along a foliation X�s�, s 2 	0; 1

followed by evolution from X1 to X0 along a different
foliation ~X�s�, s 2 	1; 2
. The mapping Pvac (see (5.7))

defines a closed curve C � Pvac��� in S, corresponding
to the various Schrödinger picture images of the
Heisenberg vacuum state at each time slice labeled by s.
Because the quantum state only defines the state vector up
to a phase, there are infinitely many curves in Q associated
to C—these are the lifts of C. These lifts need not be closed
curves. We now consider a couple of lifts of C—a geomet-
ric lift and a dynamical lift—to demonstrate, respectively,
that (i) the geometric phase—the holonomy of the con-
nection !—corresponds to a foliation dependence in the
time evolution of state vectors generated by the
Schrödinger picture densities Ĥ� (evaluated on a foliation)
and (ii) the presence of the anomaly potential in (3.21)
provides a contribution to the net phase which precisely
cancels the geometric phase and removes the foliation
dependence. For simplicity we follow our earlier discus-
sion and focus only on time evolution of the Schrödinger
picture vacuum state. It is straightforward to generalize the
discussion to any Fock state.

The geometric lift [7] of C, denoted by j��s�igeom, is the
horizontal lift defined by the connection �. This is not a
closed curve; we have

 j��2�igeom � ei�j��0�igeom; (7.1)

where the phase factor is the gauge-invariant holonomy of
the connection �—it is the geometric phase for this closed
path in S. It can be computed by integrating A (i.e., the
anomaly potential) around the closed curve � in E,

 ei� � exp
�
i
Z 2

0
ds _X��s�A�	X�s�


�

� exp
�
i
Z 2

0
ds _X��s�A�	X�s�


�
; (7.2)

where � is represented by the 1-parameter family of em-
beddings:

 X �s� �
�
X�s�; s 2 	0; 1

~X�s�; s 2 	1; 2
:

(7.3)

That this phase is nontrivial follows from the nontriviality
of the curvature of A. As we have seen this curvature is
determined by the Schwinger terms in the commutator
algebra of Ĥ�; see (6.14). Thus the Schwinger terms are
responsible for the geometric phase.

The geometric lift obeys a Schrödinger equation with a
dynamical phase removed [7]:

 i
d
ds
j��s�igeom � �Ĥ	X�s�
 � E	X�s�
Î�j��s�igeom:

(7.4)

Here

 Ĥ	X�s�
 �
Z 2�

0
d� _X��s�fĤ�	X�s�
 � A�	X�s�
Îg;

(7.5)
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and
 

E	X�s�
 �
geom
h��s�jĤ	X�s�
j��s�igeom

�
Z 2�

0
d� _X��s�A�	X�s�
; (7.6)

so that

 Ĥ	X�s�
 � E	X�s�
Î �
Z 2�

0
d� _X��s�Ĥ�	X�s�


� Ĥ	X�s�
: (7.7)

Thus the geometric phase is the phase arising when con-
sidering cyclic evolution of the (vacuum) state vector
generated by the normal-ordered Schrödinger picture en-
ergy Ĥ	X�s�
 associated with the slicing. The presence of
the geometric phase implies a foliation dependence in the
evolution of state vectors generated by Ĥ. The foliation
dependence can be seen as follows.

The unitary time evolution operator for the geometric lift
going from X0 to X1 along the foliation X�s� is given by

 Û�0; 1� � T exp
�
�i

Z 1

0
dsĤ	X�s�


�
: (7.8)

Here T exp is the time-ordered exponential. Similarly, the
time evolution operator for the geometric lift going from
X1 to X0 along the foliation ~X�s� is given by

 Û�1; 2� � T exp
�
�i

Z 2

1
dsĤ	 ~X�s�


�
: (7.9)

We then have

 ei�j��0�i � Û�1; 2�Û�0; 1�j��0�i; (7.10)

and it follows that

 Û�0; 1�j��0�i � ei�Ûy�1; 2�j��0�i: (7.11)

Now, Ûy�1; 2� is the time evolution operator for the geo-
metric lift going from X0 to X1 along the slicing deter-
mined by ~X�s�. We see then that the time evolution of the
initial (vacuum) state vector generated by Ĥ along two
different foliations connecting the same initial and final
slices leads to final state vectors which differ by the geo-
metric phase.

The dynamical lift is simply the curve j��s�i in Q
solving the Schrödinger equation defined from (3.13) and
the foliation X (see (3.21)):

 i
d
ds
j��s�i � Ĥ	X�s�
j��s�i: (7.12)

The time evolution generated by Ĥ along X�s� is given by

 j��2�i � T exp
�
�i

Z 2

0
ds _X��s��Ĥ�	X�s�


� A�	X�s�
Î�
�
j��0�i: (7.13)

It is permissible to factor out the exponential of the anom-
aly potential since the exponent is a multiple of the iden-
tity. We then get
 

j��2�i � exp
�
�i

Z 2

0
ds _X��s�A�	X�s�


�

�T exp
�
�i

Z 2

0
dsĤ	X�s�


�
j��0�i: (7.14)

The first factor in (7.14) represents the contribution of the
anomaly potential to the total phase. The second factor in
(7.16) is the contribution of the geometric phase to the total
phase. We have seen that

 T exp
�
�i

Z 2

0
dsĤ	X�s�


�
j��0�i � ei�j��0�i: (7.15)

In light of (7.2), the anomaly potential leads to a dynamical
phase which cancels the geometric phase caused by the
Schwinger terms in the algebra of energy-momentum den-
sities. Thus we have

 j��2�i � j��0�i: (7.16)

Reasoning as before, we see that the dynamical evolution
generated by Ĥ is foliation independent.

APPENDIX: SPACELIKE EMBEDDINGS

Here we provide some details concerning smooth,
orientation-preserving spacelike embeddings X : S1 !
R� S1. In particular we show that the manifold E of
such embeddings is contractible. For our purposes we
can define the cylindrical spacetime M as the Cartesian
product of R and the interval 	0; 2�
 with the points 0 and
2� identified. Inertial coordinates x� � �t; x� have t 2 R
and x 2 	0; 2�
 with a metric

 g � �dt � dt� dx � dx: (A1)

A smooth embedding of S1 into M can then be defined in
terms of smooth mappings X : 	0; 2�
 ! R� 	0; 2�

with appropriate identifications. More explicitly, we have

 x� � X���� � �T���; X����; (A2)

where � 2 	0; 2�
. T��� and X��� are smooth functions
such that

 T�2�� � T�0�; X�0� � 0; X�2�� � 2� (A3)

and X : 	0; 2�
 ! 	0; 2�
 has a smooth inverse, i.e., X���
defines an orientation-preserving diffeomorphism of the
circle. Introducing null coordinates x� � t� x the embed-
dings are characterized by a pair of functions X���� sat-
isfying

 X��2�� � X��0� � 2�; X��0� � X��0�: (A4)

As indicated in Sec. III, an embedding is orientation-
preserving and spacelike if and only if
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 X�0 > 0; X�0 < 0: (A5)

Both X� and X� are diffeomorphisms of the circle.
We note that the set of spacelike embeddings of hyper-

surfaces into Lorentz spacetimes can be given the structure
of a smooth infinite-dimensional manifold [11]. We now
show that, at least in the case of 1� 1 dimensional space-
times, E is contractible. Consider X0, X1 2 E. For any � 2
	0; 1
 define the mapping from S1 ! M by

 X� � �X1 � �1� ��X0: (A6)

In null coordinates we have

 X�� ��� � �X�1 ��� � �1� ��X
�
0 ���: (A7)

Clearly Eqs. (A4) and (A5) for X�� are satisfied and X�� are
diffeomorphisms of the circle. Thus X� 2 E for any � 2
	0; 1
. Recall that a manifold N is (smoothly) contractible
to a point p0 2 N if there exists a (smooth) mapping h :
N � 	0; 1
 ! N such that for any p 2 N

 h�p; 1� � p; h�p; 0� � p0: (A8)

With N � E, p0 � X0, p � X1 we see that h � X� is such
a mapping, so that E is contractible to a point. Essentially
the same results can be obtained for embeddings in a
spacetime of topology R�R.

[1] K. Kuchař, in The Fourth Canadian Conference on
General Relativity and Relativistic Astrophysics, edited
by G. Kunstatter, D. Vincent, and J. Williams (World
Scientific, Singapore, 1992).
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