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We classify the unitary, renormalizable, Lorentz violating quantum field theories of interacting scalars
and fermions, obtained improving the behavior of Feynman diagrams by means of higher space
derivatives. Higher time derivatives are not generated by renormalization. Renormalizability is ensured
by a ‘‘weighted power-counting’’ criterion. The theories contain a dimensionful parameter �L, yet a set of
models are classically invariant under a weighted scale transformation, which is anomalous at the
quantum level. Formulas for the weighted trace anomaly are derived. The renormalization-group
properties are studied.
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I. INTRODUCTION

The set of power-counting renormalizable theories is
considerably restricted by the assumptions of unitarity,
locality, causality and Lorentz invariance. If we relax one
or some of these assumptions we can enlarge the set of
renormalizable theories. However, usually the enlargement
is too wide. For example, there exists an infinite set of
renormalizable nonunitary theories. Improving the behav-
ior of propagators at large momenta with the help of
higher-derivative kinetic terms [1] it is possible to define
a renormalizable higher-derivative version of every theory,
including gravity [2]. Relaxing locality can in principle
make every theory renormalizable, smoothing away the
small distance singularities that originate the UV divergen-
ces [3]. Unitarity violations due to higher derivatives can in
some cases be traded for causality violations [4,5].

The purpose of this paper is to investigate the issue of
renormalizability in the presence of Lorentz violations,
while preserving both locality and unitarity. The UV be-
havior of propagators is improved with the help of higher
space derivatives. It is proved that, under certain
conditions, renormalization does not turn on terms with
higher time derivatives, thus preserving unitarity. Renor-
malizability follows from a modified power-counting cri-
terion, which weights time and space differently. The set
of consistent theories is still very restricted, yet consider-
ably larger than the set of Lorentz invariant theories.
Renormalizable models exist in arbitrary spacetime
dimensions.

The quadratic terms that contain higher space deriva-
tives, as well as certain vertices, are multiplied by inverse
powers of a scale �L. Despite the presence of the dimen-
sionful parameter �L certain models have a weighted scale

invariance, which is anomalous at the quantum level. The
weighted trace anomaly is worked out explicitly.

In this paper we concentrate on scalar and fermion
theories, leaving the study of gauge theories and gravity
to separate publications. Lorentz violating models with
higher space derivatives might be useful to define the
ultraviolet limit of theories that are otherwise nonrenorma-
lizable, including quantum gravity, and allow to remove
the divergences with a finite number of independent cou-
plings. Other domains where the models of this paper
might find applications are Lorentz violating extensions
of the standard model [6], effective field theory [7],
renormalization-group (RG) methods for the search of
asymptotically safe fixed points [8], nonrelativistic quan-
tum field theory for nuclear physics [9], condensed matter
physics and the theory of critical phenomena [10]. Certain
’4-models that fall in our class of renormalizable theories
are useful to describe the critical behavior at Lifshitz points
[11] and have been widely studied in that context [12], with
a variety of applications to real physical systems. Effects of
Lorentz and CPT violations on stability and microcausality
have been studied [13], as well as the induction of Lorentz
violations by the radiative corrections [14]. The renormal-
ization of gauge theories containing Lorentz violating
terms has been studied in [15]. For a recent review on
astrophysical constraints on the Lorentz violation at high
energy see Ref. [16].

The paper is organized as follows. In Sec. II we study the
renormalizability of scalar theories, while in Sec. III we
include the fermions. In Sec. IV we analyze the divergent
parts of Feynman diagrams and their subtractions. We
prove the locality of counterterms and study the renormal-
ization algorithm to all orders. The one-loop divergences
are computed explicitly. In Sec. V we analyze the renor-
malization structure and the renormalization group. In
Sec. VI we study the energy-momentum tensor, the
weighted scale invariance and the weighted trace anomaly.
In Sec. VII we generalize our results to nonrelativistic
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theories. Section VIII contains the conclusions. In the
appendices we collect more observations about the cancel-
lation of subdivergences and the locality of counterterms,
and some expressions of Euclidean propagators in coordi-
nate space.

Preliminaries. We use the dimensional-regularization
technique whenever possible. Since the analysis of diver-
gences is the same in the Euclidean and Minkowskian
frameworks, we write our formulas directly in the
Euclidean framework, which is more explicit. Yet, with
an abuse of language, we still speak of ‘‘Lorentz symme-
try,’’ since no confusion is expected to arise.

We first consider models where the d-dimensional
spacetime manifold Md is split into the product Md̂ �M �d

of two submanifolds, a d̂-dimensional submanifold Md̂,
containing time and possibly some space coordinates, and
a �d-dimensional space submanifold M �d. Lorentz and rota-
tional symmetries in the two submanifolds are assumed.
This kind of splitting could be useful to describe specific
physical situations (for example the presence of a non-
isotropic medium in condensed matter physics), but here it
is mainly used as a starting point to illustrate our arguments
in concrete examples. Indeed, most Lorentz violating theo-
ries contain a huge number of independent vertices, so it is
convenient to begin with models where unnecessary com-
plicacies are reduced to a minimum. The extension of our
construction to the most general case, which is rather
simple, will be described later. In the same spirit, a number
of discrete symmetries, such as parity, time reversal, ’!
�’, etc., are often assumed.

To apply the dimensional-regularization technique, both
submanifolds have to be continued independently. The
total continued spacetime manifold MD is therefore split
into the product MD̂ �M �D, where D̂ � d̂� "1 and �D �
�d� "2 are complex and D � D̂� �D. Each momentum p
is split into ‘‘first’’ components p̂, which live in MD̂, and
‘‘second’’ components �p, which live in M �D: p � �p̂; �p�.
The spacetime index � is split into hatted and barred
indices: � � ��̂; ���. Notations such as p̂�̂, p̂� and p�̂
refer to the same object, as well as �p ��, �p�, p ��. Frequently,
Latin letters are used for the indices of the barred compo-
nents of momenta. Finally, �4 � �@i �@i.

We say that Pk;n�p̂; �p� is a weighted polynomial in p̂ and
�p, of degree k and weight 1=n, where k is a multiple of 1=n,
if Pk;n��np̂; � �p� is a polynomial of degree kn in �. Clearly,

 Pk1;n�p̂; �p�Pk2;n�p̂; �p� � Pk1�k2;n�p̂; �p�:

We say that Hk;n�p̂; �p� is a homogeneous weighted poly-
nomial in p̂ and �p, of degree k and weight 1=n, if
Hk;n��p̂; �

1=n �p� � �kHk;n�p̂; �p�. It is straightforward to
prove that a weighted polynomial Pk;n of degree k can be
expressed as a linear combination of homogeneous
weighted polynomials Hk0;n of degrees k0 � k.

II. RENORMALIZABILITY BY WEIGHTED
POWER COUNTING

In this section we classify the renormalizable Lorentz
violating scalar field theories that can be constructed with
the help of quadratic terms containing higher space deriva-
tives and prove that renormalization does not generate
higher time derivatives.

Consider a generic scalar field theory with a propagator
defined by the quadratic terms

 L free �
1

2
�@̂’�2 �

1

2�2n�2
L

� �@n’�2; (2.1)

where �L is an energy scale. Up to total derivatives it is not
necessary to specify how the 2n derivatives �@ contract
among themselves. The n of (2.1) should be understood
as the highest power of �@ that appears in the quadratic
terms of the total Lagrangian. Other quadratic terms of the
form

 

am
2�2m�2

L
� �@m’�2; m < n; (2.2)

could be present, or generated by renormalization. They
are weighted monomials of degrees <2 and weight 1=n.
For the purposes of renormalization, it is convenient to
consider such terms as ‘‘interactions’’ (two-leg vertices)
and treat them perturbatively. Indeed, the counterterms
depend polynomially on the parameters am, because
when the integral associated with a graph is differentiated
a sufficient number of times with respect to the am’s it
becomes overall convergent. The am-polynomiality of
counterterms generalizes the usual polynomiality in the
masses. Thus we can assume that the propagator is defined
by (2.1) and treat every other term as a vertex. Then the
propagator is the inverse of a weighted homogeneous
polynomial of degree 2 and weight 1=n. The coefficient
of the term � �@n’�2 must be positive, to have an action
bounded from below in the Euclidean framework or,
equivalently, an energy bounded from below in the
Minkowskian framework.

Label the vertices that have N ’-legs with indices � to
distinguish different derivative structures. Each vertex of
type �N;�� defines a monomial in the momenta of the
fields. Denote the weighted degree of such a monomial
by ����N . Avertex with p1 derivatives @̂, p2 derivatives �@ and
N ’-legs is symbolically written as

 	@̂p1 �@p2’N
�

and its weighted degree is

 ����N � p1 �
p2

n
:

Consider a Feynman graph G made of L loops, E
external legs, I internal legs and v���N vertices of type
�N;��. The integral associated with G has the form
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 I G�k� �
Z dLD̂p̂

�2��LD̂

Z dL �D �p

�2��L �D

YI
i�1

P �i��2;n�p; k�

�
YV
j�1

V �j�
�j;n
�p; k�;

where p are the loop momenta, k are the external momenta,
P �i��2;n are the propagators, which have weighted degree

�2, and V �j�
�j;n

are the vertices, with weighted degrees �j.

The integral measure dD̂p̂d �D �p is a weighted measure of
degree Ð � D̂� �D=n. Performing a rescaling �k̂; �k� !
��k̂; �1=n �k�, accompanied by an analogous change of var-
iables �p̂; �p� ! ��p̂; �1=n �p�, it is immediate to prove that
IG�k� is a weighted function of degree

 LÐ� 2I �
XV
j�1

�j � LÐ� 2I �
X
�N;��

����N v���N :

By the locality of counterterms, once the subdivergences of
G have been inductively subtracted away, the overall di-
vergent part of G is a weighted polynomial of degree

 !�G� � L‘� 2I �
X
�N;��

����N v���N

in the external momenta, where ‘ � d̂� �d=n. The usual
relations

 L � I � V � 1; E� 2I �
X
�N;��

Nv���N ; (2.3)

allow us to write

 !�G� � d�E� �
X
�N;��

v���N 	�
���
N � d�N�
; (2.4)

where

 d�X� � ‘

�
1�

X
2

�
� X; (2.5)

The theory is i) renormalizable, if it contains all vertices
with ����N � d�N�, and only those: !�G� does not increase
when the number of vertices increases; ii) super-
renormalizable, if it contains all vertices with ����N <
d�N�, and only those: !�G� decreases when the number
of vertices increases; iii) strictly-renormalizable, if it con-
tains all vertices with ����N � d�N�, and only those: !�G�
does not depend on v���N ; iv) nonrenormalizable, if it con-
tains some vertices with ����N > d�N�:!�G� increases when
the number of those vertices increases.

The vertices with ����N � d�N� are called ‘‘weighted
marginal,’’ those with ����N < d�N� are called ‘‘weighted
relevant’’ and those with ����N > d�N� are called ‘‘weighted
irrelevant.’’

By locality, ����N cannot be negative. Moreover, polyno-
miality demands that there must exist a bound Nmax on the
number of legs that the vertices can contain. It is easy to
show that these requirements are fulfilled if and only if

 ‘> 2 (2.6)

and the bound is

 Nmax �

�
2‘

‘� 2

�
; (2.7)

where 	x
 denotes the integral part of x. The existence of
nontrivial interactions (Nmax � 3) requires ‘ � 6, while
the existence of nontrivial even interactions (Nmax � 4)
requires ‘ � 4.

To complete the proof of renormalizability, observe that
when ����N � d�N� the weighted degree of divergence!�G�
of a graph G satisfies

 !�G� � d�E�: (2.8)

The inequality (2.6) ensures also that!�G� decreases when
the number of external legs increases. Finally, since the
vertices that subtract the overall divergences of G are of
type �E;��with ����E � !�G�, it is straightforward to check
that the Lagrangian contains all needed vertices. Indeed,
(2.8) coincides with the inequality satisfied by ����E .

Now we prove that the renormalizable models just con-
structed are perturbatively unitary, in particular, that no
higher time derivatives are present, both in the kinetic part
and in the vertices, and no higher time derivatives are
generated by renormalization. Indeed, a Lagrangian term
with higher time derivatives would have ����N � 2 for N >
2 or ����2 > 2 (terms with N � 1 need not be considered,
since they cannot contain derivatives). This cannot happen
in a renormalizable theory, because (2.6) and ����N � d�N�
imply ����N � 2 in general and ����N < 2 for N > 2. In
particular, true vertices (N > 2) cannot contain any
@̂-derivative at all, because invariance under the reduced
Lorentz and rotational symmetries of MD̂ and M �D exclude
also terms containing an odd number of @̂’s or an odd
number of �@’s. Similar conclusions apply to the counter-
terms, because of (2.8). Therefore, renormalization does
not turn on higher time derivatives, as promised.

Weighted scale invariance. The strictly renormalizable
models have the ����N � d�N�. Their Lagrangian has the
form

 L �d̂; �d� �
1

2
�@̂’�2 �

1

2�2n�2
L

� �@n’�2

�
X
�N;��

��N;��

N!��n�1��N�d̂�d̂N=2�
L

	 �@nd�N�’N
�: (2.9)

Here 	 �@nd�N�’N
� denotes a basis of Lagrangian terms
constructed withN fields’ and nd�N� �@-derivatives acting
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on them, contracted in all independent ways, and ��N;�� are
dimensionless couplings.

In the physical spacetime dimension d � d̂� �d (the
continuation to complex dimensions will be discussed
later) the classical theories with Lagrangians L�d̂; �d� are
invariant under the weighted dilatation

 x̂! x̂e��; �x! �xe��=n; ’! ’e��‘=2�1�;

(2.10)

where � is a constant parameter. Each Lagrangian term
scales with the factor ‘, compensated by the scaling factor
of the integration measure ddx of the action.

We call the models (2.9) homogeneous. Homogeneity is
preserved by renormalization, namely, there exists a sub-
traction scheme in which no Lagrangian terms of weighted
degrees smaller than d�N� are turned on by renormaliza-
tion. This fact is evident using the dimensional-
regularization technique. Indeed, when ����N � d�N�, the
equality in (2.8) holds, so !�G� � d�E� � ����E .

The weighted scale invariance (2.10) is anomalous at the
quantum level. The weighted trace anomaly and its relation
with the renormalization group are studied in Sec. VI.

Nonhomogeneous theories are those that contain both
weighted marginal and weighted relevant vertices. In these
cases the weighted dilatation (2.10) is explicitly broken by
the super-renormalizable vertices, and dynamically broken
by the anomaly.

Let us analyze some explicit examples, starting from the
homogeneous models.

Homogeneous models. We begin with the ’4-theories.
Setting Nmax � 4 in (2.7) we get

 

10

3
< ‘ � 4: (2.11)

One solution with ‘ � 4 is the usual Lorentz invariant
’4-theory in four dimensions (d̂ � �d � 2, n � 1). A sim-
ple Lorentz violating solution is the model with n � 2
described by the Lagrangian

 L �2;4� �
1

2
�@̂’�2 �

1

2�2
L

� �4’�2 �
�

4!�2
L

’4: (2.12)

in six dimensions, with d̂ � 2, �d � 4. The’4-theories with
n � 2 are used to describe the critical behavior at Lifshitz
points [11,12].

It is clear that (2.11) admits infinitely many solutions for
each value of ‘. For example, given a solution, such as
(2.12), infinitely many others are obtained multiplying �d
and n by a common integer factor. For ‘ � 4 we have the
family of 2�n� 1�-dimensional theories

 L �2;2n� �
1

2
�@̂’�2 �

1

2�2�n�1�
L

� �@n’�2 �
�

4!�2�n�1�
L

’4:

(2.13)

In general, for every Lorentz invariant renormalizable

theory there exists an infinite family of Lorentz violating
renormalizable theories.

Let us now concentrate on four dimensions. The space-
time manifold can be split as �d̂; �d� � �0; 4�, (1, 3), (2, 2),
(3, 1), (4, 0). There is no nontrivial solution with d̂ � 0.
Indeed, (2.7) implies

 Nmax �

�
4

2� n

�
;

so n can only be 1, which gives back the Lorentz invariant
’4-theory. For d̂ � 1 we get

 Nmax �

�
2�n� 3�

3� n

�
:

The only nontrivial solution is n � 2, which implies
Nmax � 10 and

 L �1;3� �
1

2
�@̂’�2 �

1

2�2
L

� �4’�2 �
�6

6!�4
L

’4� �@’�2

�
�10

10!�6
L

’10: (2.14)

For d̂ � 2 we get Nmax � 2�n� 1�: every integer n > 1
defines a nontrivial solution in this case. The simplest
example is �d̂; �d� � �2; 2�, n � 2. Listing all allowed ver-
tices we get the theory

 L �2;2� �
1

2
�@̂’�2 �

1

2�2
L

� �4’�2 �
�4

4!�2
L

’2� �@’�2

�
�6

6!�2
L

’6: (2.15)

This model belongs to a family of ‘ � 3, �2�
n�-dimensional ’6-theories, whose Lagrangian is

 L �2;n� �
1

2
�@̂’�2 �

1

2�2�n�1�
L

� �@n’�2 �
�6

6!�2�n�1�
L

’6;

(2.16)

when n is odd, and

 L �2;n� �
1

2
�@̂’�2 �

1

2�2�n�1�
L

� �@n’�2

�
1

4!�2�n�1�
L

X
�

��	 �@n’4
� �
�6

6!�2�n�1�
L

’6;

(2.17)

when n is even. Observe that (2.16) includes the Lorentz
invariant ’6-theory in three spacetime dimensions, which
is the case n � 1.

For d̂ � 3 we get

 Nmax �

�
2�3n� 1�

n� 1

�
:

The solution with n � 2 has Nmax � 4. However, this
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solution is trivial, since its unique vertex would have just
one �@-derivative. Instead, for every n � 3, Nmax is equal to
5. For example, the theory with n � 3 is

 L �3;1� �
1

2
�@̂’�2 �

1

2�4
L

� �@ �4’�2 �
�03

3!�3
L

’2 �42’

�
�3

3!�3
L

’� �4’�2 �
�4

4!�2
L

’2� �@’�2 �
�5

5!�L
’5;

which is clearly unstable. Imposing the symmetry ’!
�’ we have the modified ’4-theory

 L even
�3;1� �

1

2
�@̂’�2 �

1

2�4
L

� �@ �4’�2 �
�4

4!�2
L

’2� �@’�2;

which is stable for �4 > 0. Finally, for d̂ � 4 we get again
the Lorentz invariant ’4-theory.

Nonhomogeneous models. Nonhomogeneous theories
can be obtained from the homogeneous ones adding all
super-renormalizable terms, which are those that satisfy
the strict inequality ����N < d�N�. For example, keeping the
symmetry ’! �’, the nonhomogeneous extension of
(2.12) is just

 L nh
�2;4� �

1

2
�@̂’�2 �

a
2
� �@’�2 �

m2

2
’2 �

1

2�2
L

� �4’�2

�
�

4!�2
L

’4

and the one of (2.15) is

 L nh
�2;2� �

1

2
�@̂’�2 �

a
2
� �@’�2 �

m2

2
’2 �

1

2�2
L

� �4’�2

�
�4

4!�2
L

’2� �@’�2 �
�04
4!
’4 �

�6

6!�2
L

’6:

Splitting the spacetime manifold into the product of more
submanifolds. Instead of splitting the spacetime manifold
into two submanifolds, we can split it into the product of
more submanifolds, eventually one for each coordinate.
This analysis covers the most general case. We still need to
distinguish a d̂-dimensional submanifold Md̂ containing
time from the �di-dimensional space submanifolds M �di ; i �
1; . . . ‘, so we write

 Md � Md̂ �
Y‘
i�1

M �di :

Denote the space derivatives in the ith space subsector with
�@i and assume that they have weights 1=ni. Then the
kinetic term of the Lagrangian reads

 Lkin �
1

2
�@̂’�2 �

1

2
’P2� �@i;�L�’;

where P2� �@i;�L� is the most general weighted homoge-
neous polynomial of degree 2 in the spatial derivatives,
P2��1=ni �@i;�L� � �2P2� �@i;�L�, invariant under rotations

in the subspaces M �di . The �L-dependence is arranged so
that P2 has dimensionality 2. The previous analysis can be
repeated straightforwardly. It is easy to verify that the
weighted power-counting criterion works as before with

 ‘ � d̂�
X‘
i�1

�di
ni
:

Edge renormalizability. By edge renormalizable theories
we mean theories where renormalization preserves the
derivative structure of the Lagrangian, but the powers of
the fields are unrestricted. With scalars and fermions, such
theories contain arbitrary functions of the fields and there-
fore infinitely many independent couplings. The notion of
edge renormalizability is interesting in the perspective to
study gravity. Indeed, Einstein gravity is an example of
theory where all vertices have the same number of deriva-
tives, but are nonpolynomial in the fluctuation around flat
space. Yet, diffeomorphism invariance ensures that the
number of invariants with a given dimensionality in units
of mass is finite. Therefore, in quantum gravity a polyno-
mial derivative structure is sufficient to reduce the arbitra-
riness to a finite set of independent couplings.

Edge renormalizable theories are those where!�G� does
not decrease when E increases, rather it is independent of
E. By formula (2.8) this means ‘ � 2 (Nmax � 1), in
which case !�G� is always equal to 2. Since ‘ � 2, d̂
can be either 0 or 1. The theories with d̂ � 0 contain higher
time derivatives, so they are not unitary. Thus we must take
d̂ � 1. The homogeneous theory in four dimensions has
Lagrangian

 L � Lfree �LI; (2.18)

where

 L free �
1

2
�@̂’�2 �

1

2�4
L

� �@ �4’�2

and

 L I � V1�’��@̂’�2 � V2�’�	�@i’�2
3 � V3�’� �4’�@i’�2

��@j’�2 � V4�’��@i@j’��@i@j �4’�

� V5�’� �42’�@i’�2 � V6�’�� �4’�3 � V7�’�

� �@i �4’�2 � V8�’��@i@j@k’�2 � V9�’� �43’;

(2.19)

where the Vi’s are unspecified functions of’with V1�’� �
O�’�, V4�’�; V7�’�; V8�’�; V9�’� � O�’2�.

The Lagrangian of the most general nonhomogeneous
theory is (2.18) with

 L free �
1

2
�@̂’�2 �

1

2
’
�
a �4� b

�42

�2
L

�
�43

�4
L

�
’

and LI equal to (2.19) plus
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 V10�’� � V11�’� �4’� V12�’� �42’� V13�’�� �4’�2

� V14�’�	�@i’�
2
2;

with V11�’�; V12�’� � O�’2�, V13�’� � O�’�.

III. INCLUSION OF FERMIONS

In this section we classify the models of interacting
fermions and scalars. We start from pure fermionic theo-
ries, with quadratic Lagrangian

 L free � � ^6@ �
1

�n�1
L

� �6@n ;

where n is the maximal number of �@-derivatives. The
propagator

 

�i ^6p� ��i�n
�6pn

�n�1
L

p̂2 � � �p2�n

�2n�2
L

;

is, in momentum space, a weighted function of degree�1.
The loop-integral measure is, as usual, a weighted measure
of degree ‘. For the purposes of renormalization, the
kinetic terms with fewer than n �@-derivatives can be treated
as vertices.

Label the vertices that have 2N  - � -legs by means of
indices � and denote their weighted degree with ����N .
Consider a diagram G with 2E external  - � -legs, con-
structed with v���N vertices of type �N;��. Once the sub-
divergences have been subtracted away, its overall
divergence is a weighted polynomial of degree

 !�G� � ‘� E�‘� 1� �
X
�N;��

v���N 	�
���
N � ‘�1� N� � N


in the external momenta. Renormalizability demands

 ����N � ‘�1� N� � N � dF�N�: (3.1)

Polynomiality demands

 ‘> 1;

in which case the maximal number of external  - � -legs is

 Nmax �

�
‘

‘� 1

�
:

Pure fermionic homogeneous models have strictly renor-
malizable vertices, namely, those with ����N � dF�N�. Their
Lagrangian has the form

 L � � ^6@ �
1

�n�1
L

� �6@n �
X
�N;��

��N;��

�N!�2��n�1��N�d̂�Nd̂�
L

�	 �@ndF�N� � N N
�:

Here 	 �@ndF�N� � N N
� denotes a basis of Lagrangian terms
constructed with N fields  , N fields � and ndF�N�
�@-derivatives, invariant under the reduced Lorentz symme-

try. For simplicity, we can assume also invariance under
parities in both portions of spacetime.

Let us concentrate on four spacetime dimensions. The
Lorentz split (1, 3) gives Nmax � 1� 	n=3
, which admits
infinitely many nontrivial solutions, beginning from n � 3.
For example, the n � 3 and n � 6 theories read
 

L�1;3� � � ^6@ �
1

�2
L

� �� �6@ �
X
�

��
�2
L

	 � 2 2
�;

L0�1;3� �
� ^6@ �

1

�5
L

� ��3 �
X
�

��
�5
L

	 �@3 � 2 2
�

�
X
�

�0�
�5
L

	 � 3 3
�;

respectively. The Lorentz splits (2, 2) and (3, 1) do not
admit nontrivial solutions, since Nmax � 1 in those cases.

Now we study the models containing coupled scalars
and fermions. It is important to note that when different
types of fields are involved, they must have the same n. We
classify the vertices with labels �N ;N’; ��, where 2N is
the number of  - � -legs, N’ is the number of ’-legs and �
is an extra label that distinguishes vertices with different
structures. Call ����

�N ;N’�
the weighted degree of the �-th

vertex. Consider a diagram G with 2E external  - � -legs,

E’ external ’-legs and v���
�N ;N’�

vertices of type

�N ;N’; ��. Once the subdivergences have been sub-
tracted away, the overall divergent part ofG a is a weighted
polynomial of degree
 

!�G� � ‘� E �‘� 1� �
E’
2
�‘� 2� �

X
�N ;N’;��

v���
�N ;N’�

�

�
����
�N ;N’�

� ‘

�
1� N �

N’
2

�
� N � N’

�
in the external momenta. Renormalizability demands

 ����
�N ;N’�

� ‘

�
1� N �

N’
2

�
� N � N’ � d�N ;N’�:

Because ����
�N ;N’�

is non-negative, the numbers of fermionic

and bosonic legs are bound by the inequality

 N �‘� 1� �
N’
2
�‘� 2� � ‘:

Polynomiality demands ‘> 2.
The homogeneous models have a Lagrangian of the

form

 L � � ^6@ �
�

�n�1
L

� �6@n �
1

2
�@̂’�2 �

1

2�2n�2
L

� �@n’�2

�
X

�N ;N’;��

��N ;N’;��

N’!�N !�2�
�n�1��N’�N �d̂�d̂N �d̂N’=2�
L

�	 �@nd�N ;N’� � N  N ’N’
�:
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In four dimensions the splitting (1, 3) has a unique non-
trivial solution, which is the model (2.14) coupled to
fermions. It has n � 2 and its Lagrangian reads

 L �1;3� � � ^6@ �
�

�L

� �� �
1

2
�@̂’�2 �

1

2�2
L

� ��’�2

�
�2

2�2
L

’2� � �6@
$

 � �
�02

2�2
L

’2 �@  � � �� �

�
�4

4!�3
L

’4 �  �
�6

6!�4
L

’4� �@’�2 �
�10

10!�6
L

’10:

The splitting (2, 2) admits infinitely many solutions. The
simplest one is the theory with n � 2, symmetric under
’$ �’, that couples (2.15) to fermions:

 L �2;2� � � ^6@ �
�

�L

� �� �
1

2
�@̂’�2 �

1

2�2
L

� ��’�2

�
�2

2�L
’2 �  �

�4

4!�2
L

’2� �@’�2 �
�6

6!�2
L

’6:

The splitting (3, 1) admits, again, infinitely many solutions.

IV. RENORMALIZATION

In this section we study the structure of Feynman dia-
grams, their divergences and subdivergences and the local-
ity of counterterms. For definiteness, we work with scalar
fields, but the conclusions are general.

One-loop. Consider the most general one-loop Feynman
diagram G, with E external legs, I internal legs and v���N
vertices of type �N;�� and weighted degree ����N .
Collectively denote the external momenta by k. The diver-
gent part of G can be calculated expanding the integral in
powers of k. We obtain a linear combination of contribu-
tions of the form

 I �I;n��1�2rjj1j2s
k̂	1
   k̂	u

�ki1   
�kiv ; (4.1)

where

 I �I;n��1�2rjj1j2s
�
Z dD̂p̂

�2��D̂

Z d �D �p

�2�� �D

�
p̂�1
   p̂�2r

�pj1
   �pj2s

�p̂2 � � �p2�=�2�n�1�
L �m2�I

:

To avoid infrared problems we insert a mass m in the
denominators. For the purposes of renormalization, it is
not necessary to think of m as the real mass. It can be
considered as a fictitious parameter, introduced to calculate
the divergent part of the integral and set to zero afterwards.
The real mass, as well as the other parameters am of (2.2),
can be treated perturbatively, so they are included in the set
of ‘‘vertices.’’

From the weighted power-counting analysis of Sec. II
we know that the numerator of (4.1), namely

 p̂ �1
   p̂�2r

�pj1
   �pj2s

k̂	1
   k̂	u

�ki1   
�kiv ;

is a weighted monomial Pq;n�p̂; k̂; �p; �k� of weight 1=n and
degree

 q � u� 2r�
v
n
�

2s
n
�

X
�N;��

����N v���N :

At one-loop the number of vertices equals the number of
propagators. Using (2.3) and ����N � d�N� we get

 u�
v
n
� 2

�
I � r�

s
n

�
� E

�
1�

‘

2

�
: (4.2)

By symmetric integration, we can write
 

I �I;n��1�2rjj1j2s
� ��1��1�2r�

�2�
j1j2s

I �I;n�r;s ;

I �I;n�r;s �
Z dD̂p̂

�2��D̂

Z d �D �p

�2�� �D

�
�p̂2�r� �p2�s

�p̂2 � � �p2�n=�2�n�1�
L �m2�I

;

where ��1��1�2r and ��2�j1j2s
are appropriately normalized

completely symmetric tensors constructed with the
Kronecker tensors of MD̂ and M �D, respectively.
Performing the change of variables

 �p i � �p0i

�
�2
L

�p02

�
�n�1�=�2n�

; (4.3)

the integral I �I;n�r;s can be calculated using the standard
formulas of the dimensional-regularization technique. We
obtain

 I �I;n�r;s �
1

n
��2s�

�D��n�1�=n
L

Z dD̂p̂

�2��D̂

Z d �D �p0

�2�� �D

�p̂2�r� �p02��2s� �D�n �D�=�2n�

�p̂2 � �p02 �m2�I

�
��2s�

�D��n�1�=n
L �m2�r�I�s=n�Ð=2��2s�

�D
2n ���

2r�D̂
2 ���I � r�

s
n�

Ð
2 �

n�4��D=2��D̂=2��� �D=2���I�
:

The factor 1=n is due to the Jacobian determinant of the transformation (4.3). The singularities occur for

 I � r�
s
n
�

‘

2
: (4.4)
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Combining this inequality with (4.2) we find that the
divergent contributions satisfy

 u�
v
n
� ‘� E

�
1�

‘

2

�
� d�E�: (4.5)

The counterterms are a Pu�v=n;n�k̂; �k�:

 

1

"
k̂	1
   k̂	u

�ki1   
�kiv ; where " � ‘� Ð � "1 �

"2

n
:

Thus (4.5) ensures that the divergent terms can be sub-
tracted away renormalizing the fields and couplings of the
initial Lagrangian. Observe that while the poles are pro-
portional to 1=", the residues of the poles can depend on "1

and "2 separately. We know that taking a sufficient number
of derivatives with respect to the masses, the external
momenta and the parameters am of (2.2), the integral
becomes convergent. Therefore, the finite parts are regular
in the limits "1; "2 ! 0, which can be safely taken in any
preferred order. Objects such as "1=" and "2=" multiply
only local terms, so they parametrize different scheme
choices and never enter the physical quantities. These
observations generalize immediately to all orders. We
define the minimal subtraction schemes as the schemes
where

 "1 � �"; "2 � n�1� ��";

with � � constant, and only the pure poles in " are sub-
tracted away, with no finite contributions.

Overall divergences and subdivergences. Before consid-
ering Lorentz violating theories to all orders in the loop
expansion it is convenient to briefly review the usual
classification of divergences and the proof of locality of
counterterms [17] in Lorentz symmetric theories. Consider
the L-loop integral

 I �k� �
Z YL

i�1

dDp�i�

�2��D
Q�p�1�; . . . ; p�L�; k�

with Lorentz invariant propagators 1=�p2 �m2�, where k
denotes the external momenta. The ultraviolet behavior of
I�k� is studied letting any (sub)set of the momenta
p�1�; . . . ; p�L� tend to infinity with the same velocity.
Proper subsets of the momenta test the presence of sub-
divergences, while the whole set tests the presence of
overall divergences. i) When any subconvergence fails,
counterterms corresponding to the divergent subdiagrams
have to be included to subtract the subdivergences. ii) Once
all subdivergences are removed, the subtracted integral
I sub�k� can still be overall divergent. Taking an appropriate
number M of derivatives with respect to the external mo-
menta k the integral @Mk I sub�k� becomes overall conver-
gent. This proves the locality of counterterms.

The overlapping divergences can be tested sending mo-
menta to infinity with different velocities. For example,
rescale p1; . . . ; pL as �p1; . . . ; �pl; �2pl�1; . . . ; �2pL. This
test, however, is already covered by the previous ones,

since there is always a (sub)set sfast of momenta tending
to infinity with maximal velocity. In the example just
given, sfast � �pl�1; . . . ; pL�. The other momenta sslow

grow slower, so they can be considered fixed in the first
analysis and taken to infinity at a second stage. Weinberg’s
theorem [18] ensures that when sfast tends to infinity the
behavior of the relevant subintegral is governed by power
counting and can generate logarithmic corrections depend-
ing on the momenta of sslow. Then, when sslow tends to
infinity the behavior of the integral over sslow is still
governed by power counting, because the corrections due
to the integrals over sfast do not affect the powers of the
momenta sslow. Thus the power-counting analysis done in
steps i) and ii) suffices.

Now we generalize the analysis to Lorentz violating
theories. We say that the components p̂ and �p of each
momentum are rescaled with the same ‘‘weighted veloc-
ity’’ when

 p̂! �p̂; �p! �1=n �p:

Step i) is modified studying the convergence when any
subset of momenta tends to infinity with the same weighted
velocity. Whenever a subconvergence fails the counter-
terms associated with the divergent subdiagrams have to
be included. Once the subdivergences are subtracted away,
step ii) consists of taking an appropriate number of
‘‘weighted derivatives’’ (see below) with respect to the
external momenta, to eliminate the overall divergences. It
is easy to check that this procedure automatically takes
care of the overlapping divergences.

Weighted Taylor expansion. Every Taylor expansion

 f�k̂; �k� �
X1
u�0

X1
v�0

f	1	u;i1iv

u!v!
k̂	1
   k̂	u

�ki1   
�kiv

can be rearranged into a ‘‘weighted Taylor expansion’’

 f�k̂; �k� �
X1
‘�0

1

‘!
f�‘��k̂; �k�;

where
 

f�‘��k̂; �k� �
X	‘=n

u�0

‘!

u!�‘� nu�!

� f	1	u;i1i‘�nu k̂	1
   k̂	u

�ki1   
�ki‘�nu

is a weighted homogeneous polynomial of degree ‘=n:

 f�‘���k̂; �1=n �k� � �‘=nf�‘��k̂; �k�:

The ‘-th weighted derivatives with weight 1=n are the
coefficients f	1	u;i1i‘�nu .

The weighted Taylor expansion is useful to subtract the
overall divergences. The overall-subtracted version of an
integral whose weighted degree of divergence is ! reads
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Z dLD̂p̂

�2��LD̂
dL �D �p

�2��L �D
	Q�p̂; �p; k̂; �k� �

Xn!
‘�0

1

‘!
Q�‘��p̂; �p; k̂; �k�
;

where Q�‘� denotes the ‘-th homogeneous polynomial of
the weighted Taylor expansion of Q in k̂; �k.

Subtraction algorithm. Consider an L-loop diagram with
V vertices and I propagators. The integrand, which we
denote with QG, is a ratio of weighted polynomials and
has degree equal to dQ �

P
�N;���

���
N v���N � 2I. The inte-

gral I is a weighted function of degree dI � dQ � ÐL. It
has the form

 I �
Z dLD̂p̂

�2��LD̂

Z dL �D �p

�2��L �D
QG�p̂; �p; k�; (4.6)

where p̂ and �p collectively denote the components of the
momenta circulating in the loops, while k � �k̂; �k� collec-
tively denotes the external momenta. The overall degree of
divergence of I is !�G� � dQ � ‘L.

The subtraction of divergences can be arranged accord-
ing to the following table:

 

QG�p̂; �p; k̂; �k� �
P
�2�

�Q��p̂; �p; k̂; �k�

�
Pn!�G�
‘�0

1
‘!Q

�‘�
G �p̂; �p; k̂; �k�

P
�2�

Pn!�G�
‘�0

1
‘!

�Q�‘�� �p̂; �p; k̂; �k�

(4.7)

Here � denotes the set of divergent subdiagrams � of the
diagram G. The rational function �Q� is obtained replacing
the subintegrand with the appropriate, truncated, weighted
Taylor expansion in the external momenta of �. In the
arrangement of (4.7) subdivergences are subtracted row-
wise. Overall divergences are subtracted columnwise.

A potential caveat comes from certain ‘‘extra subdiver-
gences,’’ those that occur when a subdiagram �0 is con-
vergent in QG, but becomes divergent in one of the �Q�’s.
Then �0 does not belong to �, so its subdivergence is not
subtracted row-wise. Nevertheless, it is easy to show that
the extra subdivergences are automatically subtracted col-
umnwise in (4.7). Details and an explicit example are given
in Appendix A.

Thus, once the subdivergences have been subtracted
away, the divergent part of every Feynman diagram is a
weighted polynomial of degree !�G� (second row of (4.7))
and can be removed renormalizing the Lagrangian (2.18).

V. RENORMALIZATION STRUCTURE AND
RENORMALIZATION GROUP

In this section we study the renormalization group. We
illustrate it first in the ‘ � 4 models (2.13). For the reasons
that we explain below, it is convenient to parametrize the
bare Lagrangian as

 L �2;2n�B �
1

2
�@̂’B�

2 �
1

2�2�n�1�
LB

� �@n’B�
2

�
�B

4!��n�1��2�"2=n�
LB

’4
B (5.1)

with
 

’B � Z1=2
’ ’; �LB � Z��L;

�B � ��"Z�; " � "1 �
"2

n
:

(5.2)

Observe that Ð � 4� ". The weighted scale invariance
(2.10) can be extended to a transformation that rescales
also �:
 

x̂! x̂e��; �x! �xe��=n;

’! ’e��Ð�2�=2; �! �e�:
(5.3)

The invariance under this transformation is not a symme-
try. It just tells us that at the quantum level the weighted
scale invariance (2.10) is equivalent to a�-rescaling. What
is important in (2.10) and (5.3) is that �L is unmodified.
Because of (5.3), every renormalization constant in (5.2) is
just a function of � (otherwise it could also depend on
evanescent powers of the ratio �=�L). Thus, in the mini-
mal subtraction scheme the �-beta function has the usual
form

 �
d�
d�
� 
̂� � �"�� 
���:

The finiteness of 
̂� proves that all poles contained in Z�
are inverse powers of ".

In more detail, let us consider the contribution of a graph
G with E external legs, I propagators and V vertices to the
generating functional of one-particle irreducible diagrams.
Such a contribution has the schematic form

 I �
Z

dDx
�V�V"

�V�n�1��2�"2=n�
L

G’E;

where G denotes the value of the Green function. The
dimensionality of G in units of mass is

 	G
 � D
�
V �

E
2
� 1

�
� E� 4V;

while its weighted degree is

 !�G� � 	G
 � �	G
 � 4� E��!�G�;

where
 

�!�G� � �"
�
V �

E
2
� 1

�
;

�	G
 �
�
2�

"2

n

�
�n� 1�

�
V �

E
2
� 1

�
:

Recalling that I is invariant under the weighted scale
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transformation (5.3), we find that G transforms as

 G! e�!�G�G: (5.4)

Once the subdivergences have been inductively subtracted
away, the divergent part Gdiv is a weighted polynomial of
degree 4� E in the external momenta. Matching the di-
mensionality and the weighted rescaling (5.4) we find

 Gdiv � P4�E;n�@̂; �@; �L��
�	G

L ��!�G�;

where P4�E;n�@̂; �@; �L� is a homogeneous weighted poly-
nomial of degree 4� E and dimensionality equal to its
degree. The corresponding Lagrangian counterterm reads
 

Idiv � �
Z

dDx
�

��"

��n�1��2�"2=n�
L

�
V
��!�G���	G


L

� 	P4�E;n�@̂; �@; �L�
’
E;

where 	P
 means that the derivatives contained in P act on
the scalar legs’E as appropriate. In particular, summing up
all contributions for E � 4, we get

 �
Z

dDx
��"

��n�1��2�"2=n�
L

’4
X1
L�1

cL�L;

where cL are divergent constants. Thus the renormalization
constant of � is a power series in �,

 Z� � 1�
X1
L�1

cL�
L;

with no spurious dependence on �=�L. The same conclu-
sion holds for the other renormalization constants. We have

 �
d�L

d�
� �L�L; �L��� � �

d lnZ�

d ln�
:

The Callan-Symanzik equation has the same form as
usual. Calling

 Gk�x̂1;    ; x̂k; �x1;    ; �xk;�;�L;�� � h’�x1�   ’�xk�i;

we have
 �
�

@
@�
� 
̂�

@
@�
� �L�L

@
@�L

� k�’

�
�Gk�x̂1;    ; x̂k; �x1;    ; �xk;�;�L;�� � 0: (5.5)

The equation can be immediately integrated to give

 Gk�x̂1;    ; x̂k; �x1;    ; �xk;�;�L; ���

� z�k�t�Gk�x̂1;    ; x̂k; �x1;    ; �xk;��t�;�L�t�; ��;

where t � ln� and

 z�t� � exp
�Z t

0
�’���t

0��dt0
�
;

d��t�
dt
� �
̂����t��;

�L�t� � �L exp
�
�
Z t

0
�L���t0��dt0

�
;

with ��0� � �. Now the renormalization-group flow speci-
fies how the correlation function changes under a weighted
overall rescaling. Indeed, the weighted scale invariance
(5.3) and (5.4) tells us that

 Gk�x̂1; ; x̂k; �x1; ; �xk;�;�L;���

��k�Ð�2�=2Gk��x̂1; ;�x̂k;�1=n �x1; ;�1=n �xk;�;�L;��:

A one-loop calculation for the models (2.13) gives
 


̂� � �"��
3�2

�4��n�1n!
�O��3�; �’ � O��2�;

�L � O��2�;

so these models are IR free. Only the beta function has a
nonvanishing one-loop contribution. Indeed, using the
dimensional-regularization technique tadpoles vanish in
homogeneous models, so �’ and �L start from two loops.

Let us now consider the model (2.15). The bare
Lagrangian reads

 L �2;2�B �
1

2
�@̂’B�

2 �
1

2�2
LB

� �4’B�
2

�
�4B

4!�2�"2=2
LB

’2
B� �@’B�

2 �
�6B

6!�2�"2
LB

’6
B;

where

 ’B � Z1=2
’ ’; �LB � Z��L; �4B � �"��4 ��4�;

�6B � �2"��6 � �6�; " � "1 �
"2

2
:

The theory is invariant under the scale transformation (5.3)
with n � 2. At one-loop we find Z’ � 1; Z� � 1 and

 �4 �
5�2

4

2�12��2"
; �6 �

5�4�6

�8��2"
�

5�3
4

�48��2"
;

so the beta functions read
 


̂4 � �"�4 �
5�2

4

2�12��2
;


̂6 � �2"�6 �
5�4�6

�8��2
�

5�3
4

�48��2
:

The asymptotic solutions of the RG flow equations are

 �4 �
2�12��2

5t
; �6 �

1

20
�2

4;

where t � lnjxj� and jxj is a typical weighted scale of the
process. Since �4 and �6 must be non-negative, the theory
is IR free.

VI. WEIGHTED TRACE ANOMALY

The weighted scale invariance (2.10) of the homogene-
ous models can be anomalous due to the radiative correc-
tions. In this section we calculate the weighted trace
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anomaly, following [19]. For definiteness, we work with
the model (2.12), but the discussion generalizes immedi-
ately to the other models.

Weighted dilatation. In the case of the model (2.12),
write the Lagrangian as L�’; @̂�’; �4’�. The infinitesimal
version of the transformation (2.10) reads

 �’ � �
�
1� x̂  @̂�

1

2
�x  �@

�
’ � � �D’;

with �� 1. The conserved Noether current J� �
�Ĵ�; �J�� is given by

 Ĵ � � �x̂�L�
@L

@�@̂�’�
�D’;

�J� � �
1

2
�x�L�

@L

@� �4’�
�@
$� �D’:

We continue the spacetime dimensions to complex values
as explained in Sec. I. The continued transformation �’0

and the continued current J0� are obtained replacing �D’ in
�’ and J� with

 

�D 0’ �
�
Ð
2
� 1� x̂  @̂�

1

2
�x  �@

�
’ (6.1)

(see (5.3)), where Ð � 4� ". At the bare level, the anom-
aly of (6.1) is expressed by the divergence of J0�. We find

 @�J0� � �"
�B’

4
B

4!�2
BL

: (6.2)

Improved energy-momentum tensor and its weighted
trace. The anomaly of the weighted dilatation is encoded
also in the energy-momentum tensor, precisely in its
‘‘weighted trace.’’ Let us start from the energy-momentum
tensor given by the Noether method. For the model (2.12)
we have

 T�	 �
@L

@�@̂�’�
@	’�

@L

@� �4’�
�@
$

�@	’� ��	L: (6.3)

This tensor is not symmetric, but conserved: it is easy to
check that @�T�	 � 0, using the field equations. Next,
define the improved energy-momentum tensor

 

~T �	 � @̂�’@	’�
1

�2
L

@	’ �@
$

�
�4’� ��	L

�
Ð� 2

4�D̂� 1�
�̂�	’2

�
3Ð� 2 �DÐ� 3 �D� 5

� �D� 1��2
L

���	�’ �4’�

�
3� 2Ð

2� �D� 1��2
L

���	� �@�’�2

�
3� 2Ð

�2
L

�����’ ���	’�; (6.4)

where �̂�	 � @̂�@̂	 � �̂�	@̂
2 and ���	 � �@� �@	 � ���	 �@2.

The first three terms of (6.4) correspond to the Noether
tensor (6.3), while the rest collects the improvement terms,
identically conserved. Define the weighted trace

 � � ~T�̂ �̂ �
1

n
~T �� ��:

Using the field equations, it is easy to show that ~T�	 is
conserved and that its weighted trace � vanishes in the
physical spacetime dimension d � d̂� �d. Moreover, ~T�	
is conserved also in the continued spacetime dimension.
The coefficients of the improvement terms are chosen so
that in the free-field limit � vanishes also in the continued
dimension D � D̂� �D. Finally, it is straightforward to
check that the weighted trace � coincides with the diver-
gence (6.2) of the current J0�.

Anomaly. We need to write � in terms of renormalized
operators. When we differentiate a renormalized correla-
tion function with respect to � or �L we obtain a renor-
malized correlation function containing additional
insertions of �@S=@� or �@S=@�L, respectively. Thus,
�@S=@� and �@S=@�L are renormalized operators.
Following a standard procedure [19] we can find which
operators O they are the renormalized versions of. In the
minimal subtraction scheme, it is sufficient to express the
renormalized operators as bare operators OB plus poles.
Schematically,

 finite � OB � poles) finite � 	O
;

where 	O
 denotes the renormalized version of the operator
O. We find
 

@S
@�
� finite �

1


̂�

�
�’	E’
 � �L�L

@S
@�L

� "
�B

4!�2
BL

Z
’4

B

�
�

�"

4!�2
L

Z
	’4
;

�
1

2
�L

@S
@�L

� finite �
1

2�2
BL

Z
� �4’B�

2 �
�B

4!�2
BL

Z
’4

B

�
1

2�2
L

Z
	� �4’�2
 �

��"

4!�2
L

Z
	’4
;

where 	E’
 �
R
’��S=�’� is the operator that counts the

number of ’-insertions. Thus,

 

Z
� � �

Z
"
�B’4

B

4!�2
BL

�
�
̂� � 2��L��

"

4!�2
L

Z
	’4
 �

�L
�2
L

Z
	� �4’�2


� �’	E’
:

The result agrees with the Callan-Symanzik Eq. (5.5),
which can be expressed as
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�Z
�’�x1�   ’�xk�

�
� �

@
@�
h’�x1�   ’�xk�i:

Indeed,

 

Z
� � ��

@S
@�
� 
̂�

@S
@�
� �L�L

@S
@�L

� �’	E’
:

VII. NONRELATIVISTIC THEORIES

Nonrelativistic theories can be studied along the same
lines. The action contains only a single time derivative @̂,

 L � �’
�
@̂�

�4

2m
� �

�42

m2 �   

�
’� � �’2 �4’2 �   

� �� �’’�2 �   

so the theory is more divergent. The dimensional-
regularization is not easy to use, since there is no simple
way to continue the single-derivative term �’ @̂’ to com-
plex dimensions. Thus we assume an ordinary cutoff
regularization.

The propagator is defined by the term �’ @̂’ plus the
Lagrangian quadratic term with the highest number of
�@-derivatives, say 2n,

 L free � �’
�
@̂�

�@2n

�2n�1
L

�
’:

For the purposes of renormalization, the other quadratic
terms, if present, can be treated perturbatively, as explained
in Sec. II. Thus the nonrelativistic propagator is the inverse
of a homogeneous weighted polynomial of degree 1 and
weight 1=n. The integral measure has weighted degree ‘ �
1� �d� 1�=�2n�. A Feynman diagram G with E total
external legs, I propagators and v���N N-leg vertices of
weighted degrees ����N is a weighted function of degree

 !�G� � L‘� I �
X
�N;��

����N v���N :

Formulas (2.3) still hold. We have
 

!�G� � ‘�
E
2
�‘� 1��

X
�N;��

�
����N �

�
N
2
� 1

�
‘�

N
2

�
v���N :

Renormalizable theories are those that contain the vertices
with

 ����N �
N
2
�

�
N
2
� 1

�
‘: (7.1)

Strictly renormalizable theories are those that have

 ����N �
N
2
�

�
N
2
� 1

�
‘:

Polynomiality requires now

 ‘> 1;

which ensures also that !�G� decreases when the number
of external legs increases. The maximal number of legs is

 Nmax �

�
2‘

‘� 1

�
: (7.2)

It is straightforward to check that E � N implies

 !�G� � ‘�
N
2
�‘� 1�;

so by (7.1) the type of vertex that subtracts the divergence
of G is already present in the Lagrangian, which proves
renormalizability. No terms with more than one time de-
rivative are turned on by renormalization.

Let us now see some examples of homogeneous models,
beginning from the ’4-theories. Setting Nmax � 4 in (7.2)
we get

 

5

3
< ‘ � 2:

For ‘ � 2 we have d � 2n� 1 and the family of odd-
dimensional theories

 L �1;2n� � �’i@̂’�
1

�2n�1
L

�’ �@2n’�
�

4�2n�1
L

� �’’�2: (7.3)

Setting Nmax � 6 we have 7=5< ‘ � 3=2. For ‘ � 3=2
we have d � n� 1. If n is odd we have the family

 L �1;n� � �’i@̂’�
1

�2n�1
L

�’ �@2n’�
�6

36�2n�1
L

� �’’�3:

In particular, we see that there exist four-dimensional (n �
3) nonrelativistic renormalizable ’6-theories. If n is even
we must include additional vertices,

 L �1;n� � �’i@̂’�
1

�2n�1
L

�’ �@2n’�
X



�

4�2n�1

L

	 �@n �’2’2



�
�6

36�2n�1
L

� �’’�3:

VIII. CONCLUSIONS

In this paper we have classified the unitary Lorentz
violating renormalizable quantum field theories that can
be obtained improving the UV behavior of propagators
with the help of higher space derivatives. The removal of
divergences is governed by a weighted power-counting
criterion. If the Lagrangian has an appropriate form, time
derivatives are ‘‘protected,’’ in the sense that no higher
time derivatives are turned on by renormalization. The so-
defined theories are unitarity, but have modified dispersion
relations. We have studied their main properties, including
the renormalization-group flow and the weighted trace
anomaly.

Natural extensions of this work are those that aim to
include gauge fields and gravity. Possible applications
range from high-energy physics, effective field theory,
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nuclear physics and the theory of critical phenomena. In
the high-energy physics domain, it would be interesting to
explore the work-hypothesis that Lorentz invariance is
violated at very high energies, to define the ultraviolet limit
of quantum gravity, or study new types of Lorentz invariant
extensions of the standard model. It would also be interest-
ing to embed the weighted scale invariance into a
‘‘weighted conformal group,’’ generalizing the Galilean
conformal group that characterizes a class of nonrelativis-
tic theories [20].

APPENDIX A: EXTRA SUBDIVERGENCES

In this appendix we give more details on the extra
subdivergences mentioned in Sec. IV. By construction,
every row of table (4.7) is free of ‘‘ordinary’’ subdivergen-
ces, namely, those originated by the subdiagrams �. Every
column is free of overall divergences. Extra subdivergen-
ces are those that occur when a subdiagram �0 is conver-
gent in QG, but becomes divergent in one of the �Q�’s,
after replacing � with its counterterms. Here we prove that
the extra subdivergences are automatically subtracted
columnwise.

It is useful to have an explicit example in mind, such as
the two-loop diagram depicted in Fig. 1, in the four-
dimensional ’4-theory. The diagram is the p-q integral of

 QG �
1

�p2 �m2�	�p� k�2 �m2


�
1

�q2 �m2�	�q� p� k0�2 �m2

:

The p-integral is convergent, the q-integral is not. The
q-subdivergence is subtracted by

 � �Q� � �
1

�p2 �m2�	�p� k�2 �m2


1

�q2 �m2�2
:

(A1)

In this expression, however, the p-integral is divergent.
This divergence is what we call an extra subdivergence.
The table reads

 

QG � �Q�

� 1
�p2�m2�2

1
�q2�m2�	�q�p�2�m2


� 1
�p2�m2�2

1
�q2�m2�2

: (A2)

In the general case, assume that the subdiagram � con-
tains l loops and that �Q� contains some extra subdivergen-
ces. The extra subdivergences can be overall or not. We call
them overall if they arise letting all of the remaining L� l
loop momenta tend to infinity. They are not overall if they
arise letting only a subset of the remaining L� l loop
momenta tend to infinity. Proceeding inductively, we can
assume that the nonoverall extra subdivergences have al-
ready been subtracted away. Thus, we need to consider
only the overall extra subdivergences. It is not difficult to
see that they are subtracted columnwise in (4.7). Indeed, as
in (A1), the integrands that generate extra overall subdi-

vergences factorize (or split into a sum of terms each of
which factorizes): one factor is responsible for the extra
subdivergence (see the first factor of � �Q� in (A1)), while
the other factor is the �-counterterm (see the second factor
of� �Q� in (A1)). The second factor is the same throughout
the column. Thus, the column subtracts away the overall
divergence of the first factor, which is precisely the extra
subdivergence. Recapitulating, the rows are free of ordi-
nary subdivergences and the columns are free of extra
subdivergences and overall divergences. Thus the table
(4.7) is convergent. In the example (A2), it is clear that
the column of � �Q� is p-convergent.

APPENDIX B: EUCLIDEAN PROPAGATORS

Let us examine some propagators

 

1

p̂2 � � �p2�n

�2n�2
L

in coordinate space. The Euclidean (2,2)-propagator in
four dimensions with n � 2 reads

 G�2;2��x̂; �x;�L� �
�L

16jx̂j
	I0��L �x2=4jx̂j�

� SL0��L �x2=4jx̂j�
;

where I denotes the modified Bessel function of the first
kind, while SL denotes the modified Struve function. For
^jxj � �L �x2 and ^jxj � �L �x2 we have

 G�2;2� �
�L

16jx̂j
and G�2;2� �

1

2� �x2 ;

respectively.
Instead, the Euclidean (1,3)-propagator with n � 2

reads

 G�1;3��x̂; �x;�L� �
�L

8�j �xj
Erf

� �����������
�L �x2

4jx̂j

s �
:

In the two limits considered above we have the behaviors

 G�1;3� �
�3=2
L

8�3=2jx̂j1=2
and G�1;3� �

�L

8�j �xj
;

respectively.

FIG. 1. Simple example of diagram that generates an extra
subdivergence.
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