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We consider a Yang-Mills-Higgs theory with spontaneous symmetry breaking of the gauge group G!
U�1�r ! CG, with CG being the center of G. We study two vacua solutions of the theory which produce
this symmetry breaking. We show that for one of these vacua, the theory in the Coulomb phase has the
mass spectrum of particles and monopoles which is exactly the same as the mass spectrum of particles and
solitons of two-dimensional affine Toda field theory, for suitable coupling constants. That result holds also
for N � 4 super Yang-Mills theories. On the other hand, in the Higgs phase, we show that for each of the
two vacua the ratio of the tensions of the BPS ZN strings satisfy either the Casimir scaling or the sine law
scaling for G � SU�N�. These results are extended to other gauge groups: for the Casimir scaling, the
ratios of the tensions are equal to the ratios of the quadratic Casimir constant of specific representations;
for the sine law scaling, the tensions are proportional to the components of the left Perron-Frobenius
eigenvector of Cartan matrix Kij and the ratios of tensions are equal to the ratios of the soliton masses of
affine Toda field theories.
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I. INTRODUCTION

In SU�N� QCD, it is believed that the confinement of
particles in strong coupling regime happens by formation
of chromoelectric flux tubes, which we shall call QCD
strings, carrying charge on the discrete group ZN . There
are different ways to try to understand this phenomenon
(for nice reviews see [1,2]). In particular it is believed that
particle confinement in strong coupling could be a phe-
nomenon dual to the monopole confinement in weak cou-
pling. For some time, it was thought that QCD string could
be dual to strings solutions appearing in (effective) theories
with broken U�1� gauge group. However, it seems it does
not give the right spectrum of mesons [1]. For this reason,
we have studied many properties of topological ZN strings
solutions and monopole confinement in the Higgs phase of
theories with simple gauge groupsG (withoutU�1� factors)
[3–5]. More recently some works [6] also appeared ana-
lyzing semilocal strings [7] with gauge group SU�N� �
U�1� and global flavor symmetry SU�N�flavor.

Our motivation for considering chromomagnetic ZN
strings in the Higgs phase produced by breaking of gauge
groups G without U�1� factors is that the QCD’s chromo-
electric strings in confining phase should be formed only
by fields with SU�3� color charges and not U�1� gauge
fields. We consider general gauge groups G since it allows
us to consider more general and direct arguments which
may clarify some fundamental results common to different

groups. We also hope that these results might be useful for
lattice calculation of chromoelectric strings for groups
other than SU�N�.

Differently from string solutions associated with the
breaking of U�1� group which have just one fundamental
string and the string tensions proportional to the winding
number, for the ZN strings obtained by breaking simple
gauge groups G, we showed that they are associated with
weights of representations of the dual group G_ and the
string tensions seem to be consistent with the tensions of
QCD strings as discussed in [5] and in the present work.
Therefore, the chomomagnetic ZN string solutions we
consider have features similar to QCD strings. In particular
in [5], there were constructed ZN strings solutions which
appear in a theory with a symmetry breaking pattern

 G!
�vac

1 U�1�r!
�vac

2 CG; (1)

where r is the rank of G and CG its center. For each weight
of G one can construct a ZN string and we established how
these strings are separated into topological sectors for
general G. The string flux quantization condition was
also obtained and the flux matching between strings and
monopoles for any group G was shown. The set of strings
which should be attached to each monopole was shown to
belong necessarily to the trivial topological sector which is
consistent with the fact that only these configurations can
terminate at some point and can break as it happens for the
QCD strings. In particular, for G � SU�N�, a string solu-
tion was constructed for each weight (color) of the
N-dimensional fundamental representation. We deter-
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mined the set of strings which should be attached to each
non-Abelian monopole which appeared in the Coulomb
phase and showed that one could also have a confining
system composed by N monopoles besides the monopole-
antimonopole system. Since these monopoles have mag-
netic charges in the adjoint representation of the dual group
G_ [8], they should be dual to gluons and these confined
systems should be dual to the glueballs. Differently from
what is sometimes said, the ZN strings do not necessarily
point in a direction in the Cartan subalgebra. However,
since the monopoles’ magnetic flux is in the direction of
the Cartan subalgebra (CSA) [9], we only consider ZN
string solutions with flux in the CSA which are relevant
for confinement of these monopoles. This result is analo-
gous to the Abelian dominance observed in QCD.

An important quantity in particle confinement in QCD
are the string tensions. The spectrum of string tensions has
been extensively studied in lattice calculations in recent
years [10,11]. The main conjectures for the QCD string
tensions are the Casimir scaling [12] and the sine law
scaling [13]. In supersymmetric theories it was possible
to arrive at these scalings by using analytical calculation.
For softly broken N � 2 super Yang-Mills theories with
gauge group G � SU�N� and a hypermultiplet in funda-
mental representation, it was obtained an effective
Lagrangian with spontaneously broken U�1�N�1 Abelian
gauge group and Nielsen-Olesen strings [14] with tensions
satisfying the sine law scaling [13]. On the other hand, in
[5] a softly broken N � 4 super Yang-Mills theory was
considered and the Casimir scaling was obtained for ten-
sions of the BPS ZN strings when G � SU�N�. The sine
law scaling was also derived in the M theory description of
N � 1 SU�N� super Yang-Mills theory [15] and in the
AdS/CFT correspondence [16].

In the present work we show that for the BPS ZN strings,
one can obtain the Casimir scaling and the sine law scaling
by considering two different vacua of the same theory
which give rise to the symmetry breaking (1). This result
shows that these scalings are not necessarily ‘‘universal
laws,’’ but they depend on the vacuum which is responsible
for the symmetry breaking. From the dual superconductor
picture this result may indicate that if the tensions of the
QCD strings satisfy one of these scalings, it may be due to
a non-Abelian monopole condensate (in the adjoint repre-
sentation) in one of these two vacua. We also generalize the
Casimir and sine law scalings to groups other than SU�N�.
It is important to note that in [13], the sine law scaling was
obtained for the tensions of Z strings which appear due to
the spontaneously broken U�1�N�1 Abelian gauge group,
which gives rise to a different meson spectrum [1] from ZN
strings we consider. Since in this paper we are interested in
studying some general properties at the classical level of
these ZN strings which might be useful for QCD and not
necessarily confinement in supersymmetric theories, we
shall not restrict the potential to be supersymmetric.

Similarly to the monopole solutions, for the ZN string
one can construct moduli spaces of solutions. However,
for the determination of the properties of the ZN string
solution as string flux and tension, it is not necessary to
construct moduli spaces since for all solutions in a moduli
space these properties are the same.

In this paper we introduce in Secs. II and III some
general results for Bogomol’nyi-Prasad-Sommerfield
(BPS) ZN string and Lie algebra which will be used in
the following sections. In Sec. IV we obtain two different
vacuum solutions which give rise to the symmetry break-
ing (1) for any group G. The first stage of the symmetry
breaking corresponds to the Coulomb phase which is ana-
lyzed in Sec. V. In particular we show that for one of the
vacua, the mass spectrum of particles and monopoles of the
four-dimensional theories in the Coulomb phase is exactly
the same as the mass spectrum of particles and solitons of
two-dimensional affine field Toda theories (ATFTs), if the
couplings of the two theories satisfy some suitable rela-
tions. That result holds also for N � 4 super Yang-Mills
theories. Then, in Sec. VI we analyze the Higgs phase. We
start reviewing the construction of the ZN strings solutions,
where for each weight of the dual gauge group G_ one can
construct a solution, and how these solutions are classified
in topological sectors for any group G. Next we obtain the
BPS string tension for each topological sector and show
that, depending on the vacuum, the ratios of the tensions
satisfy the sine law scaling or the Casimir scaling when the
gauge group is SU�N�. These scalings are generalized to
other groups, and, in particular, the tensions which appear
in the sine law scaling are identified with components x�1�i
of left Perron-Frobenius eigenvector of the Cartan matrix
Kij, and the ratios of tensions are equal to the ratios of
soliton masses of the corresponding affine Toda field the-
ory, for any gauge group G.

Differently from the SU�n� group which, at fixed k and
large n, the Casimir and the sine law scaling coincide, for
G � Spin�2n� [the universal covering group of SO�2n�],
the Casimir and the sine law scaling give different results
in the large n limit. With the generalization of the Casimir
and sine law scaling for the ZN strings to other gauge
groups, it could be interesting to analyze, using lattice
calculation, the chromoelectric string tensions of QCD
for groups other than SU�n�, as for example G �
Spin�2n�. It is important to note that the Casimir scaling
and the sine law scaling we obtained are lower bounds for
the non-BPS ZN string tensions and they hold exactly only
for the BPS ZN strings, which exist only on the boundary
between a type I and type II superconductor. Therefore, the
small deviation from the Casimir scaling observed in [11]
could be due to fact that QCD strings would not be BPS.
Recently the interest on topological solutions in (super-
symmetric) field theory [17] has increased. We hope that
the results may also be useful for the study of other
topological solutions.
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TABLE I. Extended Dynkin diagrams, nodes symmetrically related to the node 0 and center groups CG.

G Extended Dynkin diagram of g W0 CG

SU�n� 1�

1 2       3             n−2   n−1      n

0

. . . . . . .
0; 1; 2; . . . ; n Zn�1

Spin�2n� 1�

0

2        3             n−2    n−1     n

1

. . . . . . .
0, 1 Z2

Sp�2n� 0        1        2            n−2    n−1     n
. . . . . . .. . . . . . .

0, n Z2

Spin�4n�
0

1

2        3           2n−3  2n−2

2n−1

2n

. . . . . . .
0, 1, 2n� 1, 2n Z2 � Z2

Spin�4n� 2�

1

0

2n+1

2n

2        3           2n−2  2n−1
. . . . . . .

0, 1, 2n, 2n� 1 Z4

E6
6

0

1        2        3         4         5

0, 1, 5 Z3

E7

7

0        1        2         3        4         5        6

0, 6 Z2

E8

8

1         2        3        4         5         6        7         0

0 1

F4 0        1         2        3         4
0 1

G2 0         1        2
0 1
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II. BPS ZN STRINGS

Let us consider Yang-Mills-Higgs theories with arbi-
trary gauge groupGwhich is simple, connected and simply
connected. In order to have strings and confined monopoles
we shall consider theories with two complex scalars fields1

�s, s � 1, 2, in the adjoint representation of G. We also
consider that the vacuum solutions �vac

1 , �vac
2 produce the

symmetry breaking (1).
In order to exist stable ZN string solutions for the sym-

metry breaking (1), CG must be nontrivial. Therefore, we
shall not consider the groups E8, F4, and G2. In Table I we
list the centers of simply connected simple Lie groups. In
[3,4] we consider an alternative symmetry breaking in
which stable strings exist even in theories with gauge
groups with a trivial center.

The Lagrangian of the theory we study is

 L � �1
4Ga��G

��
a �

1
2�D��s�

�
a�D

��s�a � V��;�
��;

(2)

where D� � @� � ie�W�; 	. Let D
 � D1 
 iD2 and
Bai � ��ijkGajk=2 is the non-Abelian magnetic field. As
analyzed in [3,5], the BPS string conditions for a theory
with gauge group G without U�1� factors are

 Ba3 � �da; (3)

 D��s � 0; (4)

 V��;��� �
1

2
�da�2 � 0; (5)

 Eai � Ba1 � Ba2 � D0�s � D3�s � 0; (6)

with

 da �
e
2
���sbifabc�sc� � Xa;

where Xa is a real scalar quantity which transforms in the
adjoint representation with dimension of mass. From its
transformation properties we can consider

 Xa �
em
2

Re��1a�; (7)

where m is a mass parameter which is considered to be
nonnegative. This term was introduced in [3] as a general-
ization of the Fayet-Iliopolous term in the sense that it is
responsible for the symmetry breaking which gives rise to
stable string solutions for theories with non-Abelian gauge
groups. In this case, the string tension satisfies [3,5]

 T �
me
2
j�vac

1 jj�stj; (8)

where

 �st �
1

j�vac
1 j

Z
d2x�Re��1�aB3a	 (9)

is the string flux, with the integral being taken in the plane
orthogonal to the string. The equality in Eq. (8) happens
only for the BPS strings satisfying the conditions (3)–(6).
In order to fulfill (5), we shall consider

 V��;��� � 1
2�da�

2: (10)

Note that condition (5) does not restrict the potential to
have this form. In [3–5] it was considered different
potentials.

III. MATHEMATICAL RESULTS

Let us start by giving some conventions and useful
mathematical results which will be used later. Let g be
the Lie algebra associated with the group G. Let us adopt
the Cartan-Weyl basis in which

 Tr �HiHj� � �ij; Tr�E�E�� �
2

�2 ����;

where the trace is taken in the adjoint representation. The
generatorsHi, i � 1; 2; . . . ; r form a basis for the CSA h. In
this basis, the commutation relations read

 �Hi; E�	 � ���iE�; �E�; E��	 �
2�

�2 H; (11)

where � are roots and the upper index in ���i means the
component i of �. Then, �i and �i, i � 1; 2; . . . ; r, are,
respectively, the simple roots and fundamental weights of
g, and

 �_i �
2�i
�2
i

; �_i �
2�i
�2
i

(12)

are the simple co-roots and fundamental co-weights, which
satisfy the relations

 �i  �
_
j � �_i  �j � �ij: (13)

�_i and �_i are simple roots and fundamental weights of the
dual algebra g_. Moreover,

 �i � Kij�j (14)

where

 Kij �
2�i  �j
�2
j

is the Cartan matrix associated with g.
The fundamental weights form a basis for the weight

lattice of G,

 �w�G� �
�
! �

Xr
i�1

ni�i; ni 2 Z

�
: (15)

This lattice includes as a subset, the root lattice of G,
1Note that, if one only wants string solutions, it is enough to

have only one complex scalar.
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 �r�G� �
�
� �

Xr
i�1

ni�i; ni 2 Z

�
; (16)

which has the simple roots �i as basis. Similarly, the
fundamental co-weights �_i are basis of the weight lattice
of the dual group2 G_

 �w�G_� �
�
! �

Xr
i�1

ni�_i ; ni 2 Z

�
; (17)

which is also called the co-weight lattice of G and which
has the root lattice of the dual group G_ (or co-root lattice
of G)

 �r�G
_� �

�
� �

Xr
i�1

ni�
_
i ; ni 2 Z

�
(18)

as subset.
Let

 Iij � 2�ij � Kij;

which is called the incident matrix. One can show that the
eigenvalues of Iij are

 ���� � 2 cos
	�
h
;

where h is the Coxeter number of g and � are the exponents
of g. For g � su�n�, the exponents are � � 1; 2; . . . ; n� 1
and h � n.

Let x���i be the left eigenvector of Iij associated with the
eigenvalue ����. Then

 y���i � �2
i x
���
i =2

is the right eigenvector of Iij with same eigenvalue ����.
We shall adopt the normalization

 x���i y���i � ���:

Clearly x��� and y��� are also eigenvectors of the Cartan
matrix with

 Kijy
���
j � 2

�
1� cos

	�
h

�
y���i � 4sin2 	�

2h
y���i : (19)

The incident matrix Iij has strictly positive entries and it is
irreducible since we are considering g simple. Therefore,
we can apply the Perron-Frobenius theorem which says
that for a given nonnegative irreducible matrix M, there
exists a eigenvalue � such that � � j�j for all eigenvalues
� of M and this eigenvalue � can be associated with
strictly positive left and right eigenvectors. Since for any
algebra g, � � 1 is always the smallest exponent and � �
h� 1 is the largest one, then

 ��1� � 2 cos
	
h

is the largest eigenvalue of Iij, and we conclude that the

corresponding eigenvector components x�1�i and y�1�i never
vanish and can be taken positive. The other eigenvectors
necessarily have negative components. Therefore, we call
x�1�i (y�1�i ) the components of the left (right) Perron-
Frobenius eigenvector of Iij and Kij. Some of these (non-
normalized) vectors are listed in Table II, using the Dynkin
diagram numbering convention of Table I.

IV. VACUUM SOLUTIONS

Let us now analyze some vacuum solutions of our
theory. A vacuum solution �vac breaks the gauge group
G to a subgroup G� which consist of the group elements
which commutes with �vac. Considering that �vac can be
embedded in a Cartan subalgebra, we can write

 �vac � v H; (20)

where v is an r component real vector which can be
expanded in the basis of the fundamental co-weight vectors

 v � vi�_i : (21)

If all coefficients vi do not vanish, then G is broken to the

TABLE II. Some (nonnormalized) left Perron-Frobenius eigenvectors x�1�i and Coxeter numbers h.

SU�n� 1� (h � n� 1) Spin�2n� (h � 2n� 2) E6 (h � 12)

x�1�1 � sin�	=h�
x�1�2 � sin�2	=h�
x�1�3 � sin�3	=h�

..

.

x�1�n�1 � sin��n� 1�	=h	
x�1�n � sin�n	=h�

x�1�1 � sin�	=h�

x�1�2 � sin�2	=h�

..

.

x�1�n�2 � sin��n� 2�	=h	
x�1�n�1 � 1=2

x�1�n � 1=2

x�1�1 � sin�	=h�
x�1�2 � sin�2	=h�
x�1�3 � sin�3	=h�

x�1�4 � sin�2	=h�

x�1�5 � sin�	=h�

x�1�6 � sin�8	=h� � sin�2	=h�

2We shall consider the dual group G_ as the covering group
associated with the dual algebra g_.
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maximal torusU�1�r [18] associated with the CSA h which
corresponds to the first symmetry breaking in (1). The
compact U�1� factors are associated with the group ele-
ments3

 expf2	ia�i��_i Hg; i � 1; 2; . . . ; r; (22)

where a�i� are real parameters.
In [5] we considered a vacuum solution of the form

 �vac
1 / � H; � �

Xr
j�1

�_j �
1

2

X
�>0

�_;

�vac
2 /

Xr
i�1

����
ci
p

E��i ; ci �
Xr
j�1

�K�1
ij � � �i  �;

(23)

where � is the dual Weyl vector. There was also a third
complex field in order for the theory to be supersymmetric
which did not produce any extra symmetry breaking. This
vacuum configuration produces the symmetry breaking
(1). This result follows from the fact that since �vac

1 be-
longs to the Cartan subalgebra with all the coefficients of
�_i not vanishing, it produces the first symmetry breaking
in (1). Then, as

 expf2	ia�i��_i HgE��j expf�2	ia�i��_i Hg

� expf�2	ia�i��ijgE��j;

the U�1� group elements (22) will only commute with �vac
2

if the constants a�i� are integers. Remembering that the
center CG of a group G is formed by group elements

 exp2	i! H; (24)

where ! is a vector of the co-weight lattice �w�G_�, we
can conclude that �vac

2 only commutes with the center
elements (24) and produces the second symmetry breaking
in (1). We showed [5] that for this vacuum configuration,
the tensions of the BPS strings satisfy the Casimir scaling
when G � SU�N�. Let us now analyze some vacuum
solutions which produce the same symmetry breaking (1).

From the above example we can conclude that in order
to produce the symmetry breaking (1) we can consider a
general vacuum solution
 

�vac
1 � v H; v � vi�

_
i ;

�vac
2 �

Xr
l�1

blE��l ;
(25)

where vi are nonvanishing real constants and bl must be
nonvanishing complex constants in order for G to be
broken to CG.

The vacua of our theory are solutions of

 G�� � D��s � V��;��� � 0:

The condition V��;��� � 0 for the potential (10) implies
that

 ��y1 ; �1	 � ��
y
2 ; �2	 � mRe��1�:

Using the configuration (25) in this condition gives the
result

 m�K�1�ijvj � jbij
2: (26)

From this equation, we conclude that when m � 0, then
bi � 0 and �vac

2 � 0, and it happens the first symmetry
breaking in (1), which corresponds to the Coulomb phase.
In order for the second symmetry breaking to happen, all
components vi and bi must be nonvanishing, and therefore
we must have m � 0, which means that the term Xa, given
by Eq. (7), must not vanish.

In principle, Eq. (26) has various solutions depending on
G. However, there are two which hold for any G. One
solution is

 vi � a; bi �

�����������������������������
am

Xr
j�1

�K�1�ij

vuut ; (27)

where a is a positive real constant. This solution gives rise
to the vacuum (23).

The other solution is to consider that vj are the compo-
nents of a right eigenvector of the Cartan matrix Kij.
However, the components vj cannot vanish and from the
relation (26) we also see that they cannot be negative since
m and the eigenvalues of Kij are positive. Therefore, from
the discussion in the previous section we can conclude that
vj can only be proportional to the Perron-Frobenius right
eigenvector of Kij. Hence,

 vi � ay�1�i ; bi �
1

2 sin	2h

��������������
amy�1�i

q
(28)

is a solution where a is a positive constant and the corre-
sponding vacuum solution

 �vac
1 � a

Xr
i�1

y�1�i �
_
i H;

�vac
2 �

�������
am
p

2 sin	2h

Xr
i�1

�������
y�1�i

q
E��i ;

(29)

also produces the symmetry breaking (1). This vacuum is
very interesting since it gives rise to the sine law scaling for
the ratios of BPS string tensions and a possible connection
with affine Toda field theories as we shall see in the next
sections.3No summation is assumed for the index i.
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V. THE COULOMB PHASE

Let us analyze the Coulomb phase which happens when
m � 0. In this phase there exist free monopoles. For a
symmetry breaking produced by an arbitrary vacuum con-
figuration (25), with vi � 0 and bi � 0, one can construct
monopole solutions for each root � such that �  v � 0,
which has magnetic charge [19]

 g� �
1

j�vac
1 j

I
d2Si�Re��1�aB

i
a	 �

2	
e
v  �_

jvj
: (30)

Since in our case the scalar product �  v with any root �
never vanishes, we can then construct monopoles for any
root �. The vacuum solution �vac

1 � v H singles out a
particular U�1� direction which we call U�1�v. This mag-
netic charge is equal to the monopole magnetic flux in this
U�1�v direction.

The mass of the BPS monopole associated with a root �
is [19]

 Mmon
� �

4	
e
jv  �_j:

However, the stable or fundamental BPS monopoles are the
ones associated with the simple roots �i [20]. In particular,
for the vacuum (28), the vector v (25) can be written as

 v � ay�1�i �
_
i � ax�1�i �i �

a

4sin2�	=2h�
x�1�i �i; (31)

where in the last equality was used Eqs. (14) and (19).
Therefore, for this vacuum, the masses for the stable BPS
monopoles are

 Mmon
�i �

4	
e
jv  �_i j �

4	a
e
x�1�i ; i � 1; 2; . . . ; r:

(32)

Likewise, for each root � there is a massive gauge particle
associated with the step operator E�, but the stable massive
particles are the ones associated with the simple roots �i
with masses [19]

 MW
�i � ejv  �ij � aey�1�i ; i � 1; 2; . . . ; r: (33)

Let us now see that this spectrum of masses of stable
massive particles and monopoles coincide with the spec-
trum of masses of particles and solitons of affine Toda field
theories.

Affine Toda field theories are two-dimensional inte-
grable theories. For each affine Lie algebra ĝ we can
associate an ATFT. For simplicity only the untwisted
case will be considered. It has r scalar fields �i where r
is the rank of the Lie algebra g, from which ĝ is con-
structed. The Lagrangian can be written as

 L �
1

2
@��  @����2

Xr
i�0

nie��i�;

where � is a mass parameter and � is an adimensional

constant. The scalar product is defined in the r-dimensional
space of fields �i and the integers ni are defined from the
expansion of the highest root  in the basis of simple roots:

  �
Xr
i�1

ni�i: (34)

Moreover, we are considering that �0 � � and n0 � 1.
In particular, for g � su�n�, ni � 1, for i � 1; 2; . . . ; n�
1.

We shall consider that � is imaginary which implies that
the theory has a degenerated vacuum and solitons interpo-
lating these vacua. In this case, the theory has r species of
particles and r species of solitons [21,22], one for each
node of the Dynkin diagram of g. The particle masses are
[23–25]

 Mpart
i � �j�j

������
2h
p

y�1�i ; i � 1; 2; . . . ; r: (35)

Here h is the Coxeter number of g. The soliton masses are
[21,22]

 Msol
i �

2h

j�j2
2

�2
i

Mpart
i �

��2h�3=2

j�j
x�1�i ; i � 1; 2; . . . ; r:

(36)

Each soliton species may have many topological charges,
with same masses.

One can easily check that the spectrum of masses of
particles and solitons of an ATFT associated with the affine
algebra ĝ coincide, respectively, with the spectrum of
masses of stable massive gauge particles and BPS mono-
poles of our theory in the Coulomb phase with the gauge
group associated with the algebra g, if the couplings of the
two theories satisfy the relations

 

e2

4	
�
j�j2

2h
; (37)

 a �
�h����
	
p : (38)

Note that this result holds also for Yang-Mills theories with
gauge groups E8, F4, and G2 which, although do not have
stable ZN strings in the Higgs phase, they have monopoles
in the Coloumb phase. This result indicates a possible
relation or ‘‘duality’’ between ATFTs in two dimensions
and Yang-Mills-Higgs in four dimensions with the vacuum

 �vac
1 � a

Xr
i�1

y�1�i �
_
i H; �vac

2 � 0: (39)

One must observe that all these mass spectra we mentioned
are at the classical level. Therefore, these possible relations
probably only hold exactly (i.e., at the quantum level)
when these theories are embedded in supersymmetric theo-
ries, as usual. Since�vac

1 is in Cartan subalgebra, it is direct
to see that the field configuration (39), together with an

BPS ZN STRING TENSIONS, SINE LAW AND . . . PHYSICAL REVIEW D 76, 125010 (2007)

125010-7



extra field �vac
3 � 0, is a vacuum solution of the bosonic

part of the N � 4 potential

 V �
1

2
Tr
�
e
2

X3

s�1

����s ; �s	�

�
2

and therefore gives rise to the same mass spectrum (32) and
(33) for the gauge particles and BPS monopoles in N � 4
superYang-Mills theoreis.

It is interesting to note that [26] also observed a relation
between BPS mass spectra for some two- and four-
dimensional theories. On the other hand, a relation be-
tween non-Abelian monopoles and conformal invariant
Toda theory was shown in [27,28]. In those works it was
shown that for a particular spherically symmetric BPS
monopole associated with the maximal SU�2� subalgebra,
T3 � � H, T
 �

Pr
i�1

������������
�  �i
p

E
�i [like the vacuum
configuration (23)], the monopole’s radial function satis-
fies the equation of motion of conformal Toda field theory.

Note that our theory in the Coulomb phase when em-
bedded in an N � 4 super Yang-Mills theory should
satisfy the Montonen-Olive duality [8], with the mono-
poles and particles of the theory with gauge group G and
coupling e being mapped, respectively, to the particles and
monopoles of the theory with gauge group G_ and cou-
pling 4	=e. Therefore, combining the above duality with
Montonen-Olive duality should imply a duality between
ATFT associated with ĝ with coupling constants ��;�� and

ATFT associated with cg_ with coupling constants
��; 2h=��. This is consistent with the classical spectrum
of the masses of these theories. One can see that fact
remembering that if Kij is the Cartan matrix associated
with the algebra g then the transposed �KT�ij is the Cartan
matrix of the dual algebra g_ and the right (left) vectors of
Kij are left (right) vectors of �KT�ij. Therefore, the mass
spectrum for particles (solitons) of the ATFT associated
with ĝ with coupling constants ��;�� is the same as the
mass spectrum for solitons (particles) of the ATFT associ-

ated with cg_ with coupling constants ��; 2h=��. However,
one must keep in mind that each soliton species has many
different topological charges. Therefore, similar to the
Yang-Mills theory in four dimensions, this duality proba-
bly should hold only when ATFT is embed in a super-
symmetric theory where the number of particles is
increased.

VI. THE HIGGS PHASE: THE SINE LAW AND THE
CASIMIR SCALING

When m � 0, G is broken to its center CG, which
corresponds to the Higgs phase and there exist ZN string
solutions. In [5] we analyzed many properties of these
solutions for the vacuum given by Eq. (23). Let us extend
these results for a general vacuum configuration given by
Eq. (25) which breaks G to its center CG. In order to have

finite string tension, asymptotically these solutions have
the form

 �s�’;
! 1� � g�’��vac
s g�’��1; s � 1; 2;

WI�’;
! 1� � �
1

ie
�@Ig�’��g�’�

�1;
(40)

where �vac
s are the vacuum solutions (25), 
 and ’ are the

radial and angular coordinates, and the capital Latin letters
I, J denote the coordinates 1 and 2 orthogonal to the string.
In order for the configuration to be single valued, g�’�
2	�g�’��1 2 CG. Considering

 g�’� � expi’M;

whereM is a generator of g, it results that exp2	iM 2 CG.
From this condition we can consider

 M � ! H

with ! 2 �w�G_�. Then, the asymptotic form of the ZN
string solution can be written as

 �1�’;
! 1� � v H;

�2�’; 
! 1� �
Xr
i�1

bifexp��i’!  �i�gE��i ;

WI�’;
! 1� �
�IJxJ

e
2 ! H; I � 1; 2:

(41)

One can see that for each element ! in the co-weight
lattice �w�G_� we can associate a string solution. Let us
review how the ZN string solutions are associated with
distinct topological sectors of �1�G=CG� [5] for a general
group G. In order to do that we must remember that since
�r�G_� is a sublattice (or subgroup) of �w�G_�, we can
define the quotient �w�G_�=�r�G_� by identifying points
�w�G_� which differ by an element of the co-root lattice
�r�G_�. In [9], it was shown that

 CG ’ �w�G
_�=�r�G

_�: (42)

On the other hand, as explained in detail in [29], the center
group CG is isomorphic to the symmetry group W0 of the
extended Dynkin diagram formed by the transformations �
where the node 0 is not fixed, but mapped to another node
j � ��0�. The elements of W0 may be labeled by those
nodes symmetrically related to the node 0, as shown in
Table I, and are represented by black nodes in the extended
Dynkin diagrams. As a consequence, the quotient (42) can
be represented by the cosets
 

�r�G
_�; �_��0� ��r�G

_�;

�_�2�0�
��r�G

_�; . . . ; �_�n�0� ��r�G
_�;

(43)

where the weights ��q�0� are associated with nodes related
to the node 0 by a symmetry transformation. Such weights
are called the minimal weights of g. A fundamental weight
�k is minimal if �_k   � 1, where  is the highest root
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(34). One can lift � to an automorphism of the Lie algebra
g and show that the center group elements (24), with !
belonging to a given coset in (43) are associated with the
same center element of CG [30]. In other words, the co-
weights in a coset are associated with the same center
element. The representations of G_ with these weights
are said to be in the same N-ality. When ! belongs to
�r�G

_�, the group element (24) is the identity since when it
acts on any weight state j�i of any representation of G,

 expf2	i! Hgj�i � expf2	i!  �gj�i � j�i;

using the fact that ! 2 �r�G_�, � 2 �w�G� and the or-
thonormality condition (15).

Since the topological sectors of the strings solutions are
given by

 �1�G=CG� � CG;

we can conclude that the ZN string solutions (41) are
separated in topological sectors according to the coset
(43) in which ! belongs [5]. When ! belongs to
�r�G_�, the group element (24) is the identity, and the
corresponding string solution is in the trivial topological
sector.

Let us analyze, for example, how the string solutions are
split in topological sectors for the groups E6, Spin�2n�, and
SU�n� which are the groups in which the center groups
have order greater than two, which are the most interesting.
All these groups are simply laced, i.e. �_i � �i, �_i � �i,
G_ � G and so the weight and the co-weight lattice are the
same. Table I lists the elements of W0, from which we
obtain how the weight lattice split in cosets.

For G � E6, the weight lattice split in the three cosets

 �r�E6�; �1 ��r�E6�; �5 ��r�E6�; (44)

and the group elements (24) with ! belonging to each of
these three cosets are associated with the three elements of
Z3, the center of E6. �1 and �5 are the highest weights of
the representations 27 and 27.

For G � Spin�2n�, the universal covering group of
SO�2n�, with n � 4, the weight lattice split in the four
cosets,

 �r�Spin�2n��; �1 ��r�Spin�2n��;

�n�1 ��r�Spin�2n��; �n ��r�Spin�2n��;
(45)

where �1 is the highest weight of the n-dimensional vector
representation and �2n�1 and �2n are the highest weights of
the spinor representations of Spin�2n�. Then, the group
elements (24) with ! belonging to each of these cosets
are associated with the four elements of the center group of
Spin�2n�, Z2 � Z2 when n is even or Z4 when n is odd.

For G � SU�n�, the weight lattice split in n cosets,

 �r�SU�n��; �1 ��r�SU�n��;

�2 ��r�SU�n��; . . . ; �n�1 ��r�SU�n��;
(46)

where �k is the fundamental weight associated with the
representation which is the antisymmetric tensor product
of k n-dimensional fundamental representations. The
group elements (24) with ! belonging to each of these n
cosets are associated with the n elements of Zn. One can
see this result explicitly by acting these group elements on
the n weight states

 j�1i;
���������1 �

Xk
i�1

�i

	
; k � 1; 2; . . . ; n� 1

of the n-dimensional representation of SU�n�, which re-
sults in

 expf2	i��m ��r�SU�n��	 Hg
���������1 �

Xk
i�1

�i

	

� expf2	i�m  �1g

���������1 �
Xk
i�1

�i

	

� exp
�
2	i

m
n

����������1 �
Xk
i�1

�i

	
:

The same result holds when acting on j�1i.
From the string asymptotic form (41) one can propose an

ansatz for all the fields in the whole space. However, for us
it is only important to consider the ansatz that �1�’;
� is
constant in the whole space and equal to its asymptotic
value, i.e.,

 �1�’;
� � v H: (47)

In particular for the BPS strings, one can deduce this
configuration from the BPS equation D��1 � 0 and
asymptotic form (41) [5].

For the string associated with a vector ! given by
Eqs. (41) and (47), the string flux (9) is

 �st �
1

j�vac
1 j

Z
d2x�Re��1�aB3a	

� �
1

jvj

I
dlI Tr�v HWI	 �

2	
e
v !
jvj

: (48)

Similarly to the monopole flux (30), this is the string flux in
the U�1�v direction generated by v H.

In the Higgs phase, the monopoles magnetic lines cannot
spread radially over space. However, since any co-root �_

can be expanded as an integer linear combination of co-
weights, we can conclude that any monopole flux (30) can
be always as an integer linear combination of string fluxes
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(48). Note that this result holds for an arbitrary vacuum
(25) with nonvanishing vi, extending therefore our pre-
vious result. Then, the monopole magnetic lines form a set
of ZN strings and monopoles become confined as analyzed
in detail in [5]. Note that this flux matching happens not
only with respect to v H, which is the generator ofU�1�v,
but for any other Cartan generator Hi, i � 1; 2; . . . ; r. Then
a pair of monopole-antimonopole associated with a co-root
�_ would be confined by a string associated with ! � �_.

From the string flux (48) we can obtain that the lower
bound for the tension (8) for a string associated with ! �
�_k � �

_, with �_ 2 �r�G
_�, is

 T! � 	mjv !j � 	mjv  ��_k � �
_�j: (49)

The bound holds for the BPS strings. We shall only con-
sider here the BPS strings.

In QCD with gauge group SU�N�, it is believed that the
chromoelectric flux tubes carries charge in the center ZN of
the gauge group, but their tension in general could depend
on the representation of the sources [2]. However, it is
believed that for long enough strings it becomes energeti-
cally favorable for a pair of gluons to pop out to bind with
the quark and antiquark charges. For all representations
associated with the same center element [i.e. in the same
N-ality of SU�N�], the energetically most favorable repre-
sentation of the quark-gluon bound state will be the lowest-
dimensional representation. There are mainly two conjec-
tures for the ratios of these asymptotic tensions: the
Casimir scaling and the sine law scaling.

As we have seen, the ZN strings associated with the same
center element are those with ! in the same coset. In
general, they do not have the same tensions as can be
seen in Eq. (49). For a long enough string associated
with !, it could pop out a pair of monopole-antimonopole
confined by a string associated with a co-root �_ as de-
scribed above and the string associated with ! would
decay to a string associated with !� �_, which clearly
is in the same coset as ! and therefore associated with the
same center element. From the monopole mass (32) and
string tension bound (49) we obtain that the threshold
length lth for this decay to happen is

 lth �
2Mmon

�

T�_
�

8

em
:

The ZN strings can have different tensions for weights in a
same representation. Therefore, in order to compare with
results of QCD strings we shall associate with a represen-
tation the tension of its hightest weight. In order to deter-
mine the smallest tension in the same topological sector it
is convenient to write the vector v (21) in the simple root
basis:

 v � ui�i; ui �
2

�2
i

�K�1�ijvj;

where all the entries of K�1 are positive. A highest co-

weight can be written as ! � pi�
_
i where pi are integers

and pi � 0, and the tension (49) of the BPS string asso-
ciated with ! can be written as

 T! � 	muipi:

For the vacua and gauge groups we are considering below,
one can check that the highest weight associated with the
smallest tension for each topological sector, is the minimal
co-weight �_�q�0�. We shall call minimal strings the strings
associated with minimal co-weights. From Eq. (49) we see
that their tensions are

 T! � 	mjv  �_�q�0�j: (50)

For a theory with vacuum given by Eq. (23), the ratio of
BPS minimal string tensions satisfy the Casimir scaling,
for the gauge group G � SU�n� [5]. Let us verify that for
the vacuum given by Eq. (29), the ratios of tensions give
rise to the sine law scaling, when G � SU�n�. Let us also
analyze how these scalings generalize for other gauge
groups. Note that since the groups considered below are
simply laced, �_k � �k.

A. Sine law scaling

For the vacuum with v given by (31), the BPS string
tension (50) associated with ! � �_k is

 T�_k �
	ma

4sin2�	=2h�
x�1�k : (51)

Therefore, for this vacuum the tensions are proportional to
the components of the left Perron-Frobenius eigenvector
x�1�k . From Table II we obtain the following BPS minimal
string tensions.4

a. For G � SU�n�

For SU�n�, for each fundamental minimal weight �k,
k � 1; 2; . . . ; n� 1, we associate a coset and hence a non-
trivial string topological sector. The corresponding BPS
string tensions are

 T�k �
	ma

4sin2�	=2n�
sin
k	
n
; k � 1; 2; . . . ; n� 1:

Taking the ratios of all tension with the smallest string
tension we get the results

 

T�k
T�1

�
sin�k	=n�
sin�	=n�

; k � 1; 2; . . . ; n� 1;

which is exactly the sine law scaling.

4In these results we absorbed a possible normalization con-
stant of x�1�i redefining the constant a.
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b. For G � Spin�2n�, n � 4

For Spin�2n�, for each fundamental minimal weight �1,
�2n�1, �2n, we associate a coset and hence a nontrivial
string topological sector. The corresponding BPS string
tensions associated with these weights are
 

T�1
�
a	m sin�	=2�n� 1�	

2sin2�	=4�n� 1�	
;

T�2n�1
� T�2n

�
a	m

4sin2�	=4�n� 1�	
:

Note that for n � 4, T�1
� T�2n�1

� T�2n
, which is due to

the symmetry of the so�8� Dynkin diagram. Taking the
ratios of all tensions with the smallest string tension gives
the results

 

T�2n�1

T�1

�
T�2n

T�1

�
1

2 sin�	=2�n� 1�	
: (52)

For large n, this ratio gives

 

T�2n�1

T�1

�
T�2n

T�1

!
n
	
: (53)

c. For G � E6

For each fundamental minimal weight �1 and �5 ofG �
E6 are associated cosets. The BPS string tensions for these
weights are

 T�1
� T�5

�
	ma

4sin2�	=24�
sin
	
12
:

One can note that for a general gauge group, the string
tension (51) associated with �_k is proportional to x�1�k and
the topological sector is associated with the coset �_k �
�r�G

_�. Similarly, in ATFTs, a soliton species associated
with the kth node of the Dynkin diagram has mass propor-
tional to x�1�k , given by Eq. (36), and the topological charge
has the form 2	i��_k ��r�G_��=� [21,22,31]. Taking the
ratios of the tensions of the BPS strings associated with the
fundamental co-weights (51) (not only the minimal ones)
for any gauge group G we obtain

 

T�_i
T�_k
�
Msol
i

Msol
k

;

where Msol
i are the soliton masses (36) of the correspond-

ing affine Toda field theory. Therefore, there may exist
some relation between these topological solutions.
However, this possible connection between ZN strings
and solitons of ATFTs must yet be clarified. In [32] it
was also shown that in CP�N � 1� sigma models, the
tension between a k-kink and k-antikink also satisfies the
sine law scaling for the group SU�N�.

B. Casimir scaling

Let us now consider the vacuum (25) and (27) with

 v � a
Xr
i�1

�_i � a�;

where a is a real parameter. Then, from (50) we have that
the tension of a BPS string for ! � �_k is

 T�_k � a	m�_k  �: (54)

This expression can be written [5] in terms of the value of
the quadratic Casimir of a representation with fundamental
weight �_k of the dual Lie algebra g_

 C��_k � � �_k  ��
_
k � 2�� (55)

as

 T�_k �
a	m

2
�C��_k � � �

_
k  �

_
k �:

Alternatively, from the definition of the dual Weyl vector
�, we can write

 �_k  � �
2

�2
k

Xr
i�1

�K�1�ki;

where �K�1�ki is tabulated in any standard Lie algebra
book. From this relation one can check explicitly, case by
case, that for any fundamental co-weight �_k which is
minimal

 �_k  � �
h

2�h� 1�
C��_k �; (56)

where h is the Coxeter number of G (which is also the
Coxeter number of G_) given in Table II. Therefore, the
tension (54) for a BPS string for minimal �_k can be written
as

 T�_k � a	m
h

2�h� 1�
C��_k � (57)

and the ratio of BPS string tensions associated with any
minimal co-weights �_k and �_j can be written as

 

T�_k
T�_j
�
C��_k �
C��_j �

; (58)

which is a generalization of the Casimir scaling for any
group G. However, it is important to emphasize that (57)
and (58) hold only for minimal co-weights �_k , otherwise
one must use (54).

The relation (56) can be proved in general in the follow-
ing way: any minimal weight �k can be related to the node
0 of the extended Dynkin diagram by a symmetry trans-
formation �. For each of these transformations [30],

 ���� � � � �h�_��0�:

One can check this identity by taking scalar products with
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simple roots. Moreover,

 ����  �_��0� � ��  �
_
��0�:

Thus,

 �  �_��0� �
h
2
�_��0�  �

_
��0�:

Therefore, for representations with highest weight �_k
minimal, the quadratic Casimir (55) can be written as

 C��_k � � 2
�
h� 1

h

�
�_k  �:

Let us now analyze the string tensions (57) and (58) for
some gauge groups.

a. For G � SU�n�

For G � SU�n�, h � n and

 C��k� �
�n� 1�k�n� k�

n
:

Therefore, for the minimal fundamental weights �k, k �
1; 2; . . . ; n� 1, the BPS string tensions are

 T�k �
a	m

2
k�n� k�; for k � 1; 2; . . . ; n� 1;

which results in the Casimir scaling for the ZN BPS strings

 

T�k
T�1

�
k�n� k�
n� 1

; (59)

obtained in [5].

b. For G � Spin�2n�, n � 4

For Spin�2n�, h � 2n� 2 and,

 C��1� � 2n� 1; C��n�1� � C��n� �
n�2n� 1�

4
:

Therefore, for the minimal fundamental weights �1, �n�1,
and �n, the BPS string tensions are

 T�1
� a	m�n� 1�; T�n�1

� T�n � a	m
n�n� 1�

4
;

which results in the string ratios

 

T�k
T�1

�
C��k�
C��1�

�
n
4

for k � n; n� 1: (60)

Note that for the G � SU�n�, for fixed k and large n, the
ratio of the tensions coincide, for the Casimir and sine law
scalings with T�k � kT�1

for n! 1. In contrast, for G �
Spin�2n�, the Casimir and sine law scalings give different
results in the large n limit, as can be seen from Eqs. (53)
and (60).

c. For G � E6

For E6, h � 12 and

 C��1� � C��5� �
52
3 :

Then, the BPS string tensions associated with �1 and �5 are

 T�1
� T�5

� 8a	m

and

 

T�5

T�1

�
C��5�

C��1�
� 1: (61)

VII. CONCLUSIONS

In this work we analyzed the ZN string solutions in
Yang-Mills-Higgs theories with simple gauge groups G
spontaneously broken to their center CG. We studied two
different vacuum solutions responsible for the symmetry
breaking G! U�1�r ! CG, for anyG. We showed that for
one vacuum, in the Coulomb phase, the particles and
monopoles of the theory with group G have the same
masses as the particles and solitons of the corresponding
affine Toda field theory, if the couplings of the two theories
satisfy some suitable relations, which may indicate a rela-
tion between these theories. The same result holds for
N � 4 super Yang-Mills theories. Then, in the Higgs
phase, we reviewed the construction of the asymptotic
form of the ZN string solutions and showed the matching
of the fluxes of the ZN strings and monopoles for anyG and
arbitrary vacuum which produces the symmetry breaking
(1). We then showed that for each of the two vacua the
ratios of the tensions of the minimal BPS ZN strings
(associated with the representation with smallest tension
for each topological sector) satisfy the Casimir scaling and
the sine law scaling for G � SU�N�, and we extended
these scalings for any simple gauge group G, analyzing
in particular G � Spin�2n� and G � E6. For the sine law
scaling, the tensions are proportional to the components
x�1�i of the left Perron-Frobenius eigenvector of Kij and the
ratios of tensions are equal to the ratios of soliton masses of
the corresponding affine Toda field theory, for any group
gauge G. For the Casimir scaling, we obtained that the
ratios of tensions were equal to the ratios of the second
Casimir of the fundamental representations associated with
the different topological sectors (58). These results show
that for the ZN strings, these scalings are not ‘‘universal
laws,’’ but they depend on the vacuum which produces the
symmetry breaking. From the dual superconductor picture,
this result may indicate that tensions of the QCD strings
could be due to a non-Abelian monopole condensate in one
of these two vacua. It is important to emphasize that the
Casimir scaling (57) and (58) hold only for minimal co-
weights �_k , otherwise one must use (54).

The spectrum of QCD string tensions has been exten-
sively studied in recent years in lattice calculations [10,11].
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In particular in [11] it was observed that the QCD string
tensions lie between the Casimir and sine law scalings (a
little above the Casimir scaling). On the other hand, the
Casimir scaling (57) and the sine law scaling (51) are lower
bounds for the non-BPS ZN string tensions and they hold
exactly only for the BPS ZN strings, which exist only on
the boundary between a type I and a type II superconduc-
tor. Therefore, the deviation from the Casimir scaling
observed in [11] could be due to the fact that QCD strings
would not be BPS.

The properties analyzed so far for the ZN string solutions
indicate that they could be magnetic analogous to QCD
strings. We hope that our results may be useful for lattice
calculation for analyzing the QCD strings withG � SU�n�
and other gauge groups.
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