
Pulsar kicks with modified Urca and electrons in Landau levels

Ernest M. Henley
Department of Physics, University of Washington, Seattle, Washington 98195, USA

Mikkel B. Johnson
Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

Leonard S. Kisslinger
Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA

(Received 12 June 2007; published 6 December 2007)

We derive the energy asymmetry given the protoneutron star during the time when the neutrino sphere
is near the surface of the protoneutron star, using the modified Urca process. The electrons produced with
the antineutrinos are in Landau levels due to the strong magnetic field, and this leads to asymmetry in the
neutrino momentum, and a pulsar kick. The magnetic field must be strong enough for a large fraction of
the electrons to be in the lowest Landau level; however, there is no direct dependence of our pulsar
velocity on the strength of the magnetic field. Our main prediction is that the large pulsar kicks start at
about 10 s and last for about 10 s, with the corresponding neutrinos correlated with the direction of the
magnetic field. We predict a pulsar velocity of 1:03� 10�4�T=1010 K�7 km=s, which reaches 1000 km=s
if T ’ 1011 K.

DOI: 10.1103/PhysRevD.76.125007 PACS numbers: 97.60.Bw, 97.60.Gb, 97.60.Jd

I. INTRODUCTION

The creation of neutron stars, often called pulsars,
through neutrino cooling starting less than a second after
the collapse of a massive star has long been of interest, with
a number of processes contributing to neutrino production
[1,2]. The strong interaction treatment of these processes
was refined by Friman and Maxwell using perturbative one
pion exchange and short-range interactions [3].

In recent years it has been observed that many pulsars
move with much greater velocities than other stars in our
galaxy. This is called the pulsar kick. See Ref. [4] for a
review. Pulsars with velocities of more than 1500 km=s
have been observed. There has been a great deal of theo-
retical effort in attempts to explain the pulsar kicks. For
many years a number of investigations of asymmetries in
the hydrodynamics of core collapse have been carried out,
and in recent years there have been a number of reviews
[5–8]. Although some simulations have found possible
pulsar velocities of 1000 km=s or more, there is no clear
proof that one can get the observed large pulsar velocities
by the initial core collapse. There have been several cal-
culations of possible asymmetry in the neutrinos produced
in strong magnetic fields using the Urca process [9] and
other processes [10,11] during the first few seconds when
the neutrinosphere has a radius of about 40 km. However,
the opacities and short mean- free paths of neutrinos in the
neutrino atmosphere reduce the emission, and these pro-
cesses cannot account for the large pulsar kicks [12,13].
There have also been calculations of pulsar kicks resulting
from oscillation to sterile neutrinos [14–17], which can
escape from the neutrino sphere during this early period.
The recent MiniBooNE experiment [18] with previous

LSND results are not consistent with a single sterile neu-
trino, but allow models with two or more sterile neutrinos.

It has long been recognized that during the later period,
when the neutrinosphere radius has been reduced to about
10 km, the radius of the protoneutron star, the modified
Urca process dominates the cooling of the protoneutron
star [1,3]. It is also known that protoneutron stars have very
large magnetic fields. In the presence of such fields, the
electrons produced in the modified Urca process will be in
Landau levels [19,20].

In the present work we derive the asymmetric neutrino
emissivity during the period when the neutrinosphere is
just within the protoneutron star surface, and show that due
to the electrons being in Landau levels pulsar velocities
consistent with observations are obtained. In the present
work the contribution from polarization of the nucleons is
not included. Our work shows that for about a 10 s period
starting at about 10 s, when the modified Urca process
dominates and the radius of the neutrinosphere is a fraction
of a km less than the neutron star radius, the main neutrino
emission is asymmetric, and during this period the high
velocity pulsar kicks are generated. One of us presented a
preliminary version of this work at the CosPA 2006
Symposium [21]. Also, the process of temperature equi-
librium for the electrons in a strong magnetic field is being
completed [22].

Our paper is organized as follows. In Sec. II we give the
basic quantities in terms of which we calculate the emis-
sivity. In Sec. III we explain the important differences
between our formulation with the electrons in the lowest
Landau level giving asymmetric momentum emissivity
and the previous ones with no kick. As explained in
Sec. III B, we incorporate the Landau wave function in
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the lepton trace and give the results of the calculation of the
traces, explaining that with the contributing electrons all
moving in the direction of the magnetic field the integra-
tion over the direction of the neutrino momentum is not
present. In Sec. III D we give our results for the asymmetric
emissivity that gives the pulsar kick. In Sec. we evaluate
the essential ingredients of protoneutron star structure that
is needed for obtaining our final numerical result, given in
Eq. (26) and Fig. 4. In Sec. IV we present our conclusions.
In the Appendix we give details of the calculation of the
matrix elements, the nucleon and lepton traces, and the
angular integrals.

II. MODIFIED URCA PROCESS IN A STRONG
MAGNETIC FIELD: LANDAU LEVELS

The modified Urca process,

 n� n! n� p� e� � ��e; (1)

for cooling of protoneutron stars has been treated in many
publications [1–3]. In a detailed calculation [3], the one
pion exchange (OPE) and a short-range interaction were
used for the nuclear interaction, illustrated in Fig. 1.

Diagrams (1), (2), and (3) are for neutral and charged
pion exchange, diagrams (4), (5), and (6) are the exchange
diagrams, and (7) is the short-range diagram. It can be
shown that for our calculation of the asymmetric neutrino
emissivity the short-range n-n interaction is negligible, so
we only consider the OPE diagrams here.

The OPE factor is given by the standard nonrelativistic
form, while the weak interaction used for the nucleons is
the nonrelativistic form of the standard model. As we shall
show, only the weak axial interaction, WA, needs to be
considered:

 VOPE � �
f2

m2
�
�1 � �2 ~�1 � ~k

1

k2 �m2
�
~�2 � ~k

WA � �
G���
2
p gA�

y
p ~l � ~��n

l� � ���qe����1� �5���q
��;

(2)

with �, � the Pauli spin and isospin operators (1) and (2)
refer to the two nucleons at pion vertices, G � 10�5

m2
n

, gA �

1:26, the � are the nucleon spinors, and the lepton wave
functions are ��qe�, ��q��, where qe and q� are the
electron and antineutrino momenta, respectively, with the
notation qe � ~qe, q� � ~q�. Another point that should be
mentioned is that the inverse modified Urca processes
which we neglect in the present work,

 n� p� e� ! n� n� �e n� e� ! n� �� � �e;

will also have the electrons in Landau levels and thereby
contribute to the overall pulsar kick, as we show below.

Landau levels and product matrix elements

The neutrino wave function is a Dirac spinor, while the
electrons in a very strong magnetic field are in Landau
levels, which are similar to that of a Dirac particle in a
plane wave state moving in the z or�z direction, where ẑ is
the direction of the magnetic field, and the motion in the
transverse direction is of the form of a tightly bound state.
For a discussion of Landau wave functions, see
Refs [19,20]. These states are labeled by a principal quan-
tum number, n, and spin and momentum.

An essential aspect of the present work is that a sizable
fraction of the electrons are in the lowest Landau level
(n � 0). One can estimate the fraction of electrons in this
n � 0 level from the energy gap between the n � 0 and
n � 1 levels, and T. The protoneutron stars that receive a
large velocity from the mechanism that we are considering
have a large magnetic field strength, about 1015 to 1016 G
at the star surface at a time of about 10 s, when the
neutrinosphere is near the surface of the protoneutron
star. From expressions given in Ref [20], the energy gap
between the n � 0 and n � 1 levels is about 6.0 MeV. Our
work, shown below, concludes that a temperature T with
kT about 8.59 MeV will yield a pulsar velocity of about
1000 km= sec. From this we can use basic thermodynamics
to estimate that the occupation probability of the n � 1
state is about 0.5, and that the overall probability of the
electron being in the n � 0 level is about 40%.

A crucial point is that the electron in the n � 0 level has
its spin in the �z direction, which we show below causes
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FIG. 1. Modified Urca diagrams with OPE and a short-range
n-n interaction.
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all of the emitted neutrinos to be correlated with the z
direction, while electrons in the higher n levels have both
helicities, and give no net pulsar kick. Since we assume
that all electrons produced via the modified Urca process
are in the n � 0 Landau level, this introduces an error of a
factor of approximately 2, but as we shall see this is a small
correction due to the very strong dependence of the result-
ing pulsar velocity on T, and the uncertainty in the magni-
tude of T. We include this 0.4 factor in our final result.

The lowest Landau level, with n � 0 has the form
 

��q�� � us;Dirac�q�� � us�q��X
s

us�q� �us�q� � q6 �m

��qe� �  Landau;n�0�qe?; q
e
z; ��

� i�
����
�
p
��1e��q

e
?
�2=�2��u��qe�; (3)

where u� is a negative helicity Dirac spinor, q6 � q���,
and � � 	m2

e; 	 � B=�2Bc� ’ B=8� 1013 Gauss ’ 12:5
to 125 for B � 1015 to 1016 Gauss. Using E�m ’ E,
the wave functions have the conventional normalizationR ��� � 1. The vector weak interaction is not included in
our calculation, as its contribution to the neutrino asym-
metric emissivity is much smaller than the axial vector.
The pulsar velocity is independent of the magnitude of B
except for the n � 0 occupation probability.

Although the z-component of the electron momentum
can be in the�z or�z direction, we shall show that there is
no neutrino emission for the electron moving in the �z
direction, due to the vanishing of the lepton trace.

For the calculation of the neutrino emissivity and the
pulsar momentum, one needs the traces of the product
matrix elements. The axial product matrix element,
jMAj

2, is obtained by taking the nucleon traces over the
product of the leptonic traces times the square of the weak-
strong product:
 

jMAj
2 � Tr�nucleon�jTr�lepton�	lyi lj


� 	WA�VOPE � exchange�
ijj2; (4)

with VOPE given in Eq. (2) and the (i, j) indices are the
spatial components of the lepton currents, defined in
Eq. (2). This is treated in detail in the following section
and in the Appendix.

We introduce the following notation:
 

k � p1 � p3; p � p2 � p1; ke � k� p;

�i�
y
i � �i � �1� � � P

i�=2;

A �
�
f
m�

�
2 G���

2
p gA

1

!
1

�k2 �m2
��
;

R�k� �
k2 �m2

�

�ke�2 �m2
�
: (5)

The factor R�k� is used in exchange matrix elements.

III. NEUTRINO ASYMMETRIC MOMENTUM
EMISSIVITY

With a strong magnetic field the electrons are in Landau
levels. That is, the motion of the electron transverse to the
magnetic field is compressed, and the electron is essen-
tially a one-dimensional plane wave Dirac particle moving
in the direction of the magnetic field with energies given as
Landau state energies. With a very strong magnetic field,
such as near the surface of the protoneutron star when the
modified Urca process dominates neutrino emission, the
electron will fall into the lowest Landau level, with the
wave function given in Eq. (3). The polarization of the
nucleons is a very small effect [1]. The electrons being in
Landau levels gives asymmetry to the neutrino emissivity.
As we shall now discuss, the standard formulation for
obtaining the energy emissivity from the modified Urca
processes leads to the momentum of the emitted neutrinos
correlated with the B-field direction, and thus directly to
the pulsar velocity.

A. Neutrino asymmetric emissivity

The neutrino emissivity is given in general form in many
papers, e.g., see Ref [3]:
 

e� � �4
i�1

Z d3pi

�2��3
d3q�

2!��2��3
Z d3qe

�2��3

� �2��4
X
si;s�

1

2!e
L
!�FMyAMA

� 	�Efinal � Einitial�	� ~pfinal � ~pinitial�

jMAj
2 � MD-D

A-A �M
E-E
A-A �M

D-E
A-A �M

E-D
A-A ; (6)

where F is the product of the initial and final Fermi-Dirac
functions corresponding to the temperature and density of
the medium. We use the terminology that MA is the axial
matrix element, which is given as the sum over the six
Feynman-like diagrams shown in Fig. 1, but keeping only
the axial weak interaction, shown in Eq. (2); MD

A stands for
the direct diagrams 1, 2, and 3 in Fig. 1,ME

A for diagrams 4,
5, and 6, MD-D

A-A is the product of �MD
A �
y and MD

A . ME-E
A-A and

MD-E
A-A , ME-D

A-A , are analogously defined. The sum runs over
the nucleon spins, si, and the neutrino spin. The electron is
in the lowest Landau level, with its wave function given in
Eq. (3).

As in Refs. [1–3] the nucleons and the electrons are in
thermal equilibrium. In this present work we assume that
the proton quickly reaches thermal equilibrium, while the
process of the electron state transforming to the n � 0
Landau state does not interfere with the proton reaching
its Fermi momentum. Therefore we can use the values for
the magnitudes of the nucleon and lepton momenta derived
in [1–3].

In the present paper we neglect the polarization of the
nucleons, so the �i � I=2 [see Eq. (5)]. Thus the entire
asymmetry of neutrino emission, which causes the pulsar

PULSAR KICKS WITH MODIFIED URCA AND ELECTRONS . . . PHYSICAL REVIEW D 76, 125007 (2007)

125007-3



kick in the present work, arises from the electrons being in
the lowest Landau level and the modified Urca process.

B. Neutrino asymmetric momentum emissivity

As seen from Eq. (6), our calculation of the asymmetric
neutrino emissivity starts with the standard theory, except
that the electron is in the lowest Landau level, rather than in
the usual Dirac state. This turns out to be the crucial point.
With the electron in the lowest Landau level, the energy
emissivity is also the projection of the momentum emis-
sivity along the B̂ axis. That is, in the following sections of
the present paper we shall show that the emissivity given
by Eq. (6) is of the form

 e��q��z � angular and energy integrals� jMj2�q��z

� PAS�q��zc � �p�ns�c; (7)

where Tr�lepton�Tr�nucleon�jMAj
2 � jMj2�q��z, c �

speed of light, PAS�q��z is the projection of the momen-
tum emissivity (momentum=volume=time) along the z �
B direction, and p�ns� is the momentum=volume=time of
the protoneutron star. It should be noted that the form
equivalent to that of Eq. (7) has been used by a number
of authors studying pulsar kicks, such as Refs. [16,17]. An
essential ingredient in our framework is that electrons in
the lowest Landau level moving in the direction of the
magnetic field are emitted while those moving in the
opposite direction are not, which produces the asymmetric
momentum emissivity. This arises from the lepton traces
[see Eqs. (4), (A12), and (A13)], It is a straightforward
exercise in Dirac algebra to show that for an electron in the
lowest Landau level �I � �5�u��qe� �u��qe�
 vanishes for
q̂e � B̂ � �1, so that we can write
 Z
d2qe?Tr	lyi lj
 ’ 8�Ee	�q��j	i3 � �q��i	j3 � 	ij�q��3


� �q̂e � B̂ � ẑ�;

which is Eq. (A14), derived in the Appendix. Note �q��i is
the ith component of q�, and �q��3 � �q��z. This shows
that when deriving the momentum asymmetry we can
assume that the electrons in the lowest Landau levels are
moving in the direction of the magnetic field. We shall take
~qe in the z (B) direction in the remainder of this paper.

An important result of our work is that the pulsar veloc-
ity does not depend directly on the strength of the magnetic
field, as is indicated in Eq. (A14). This can be seen from the
fact that the integral over the transverse components of the
electron in the lowest Landau level,

R
dqe?q

3
?e
��qe

?
�2=2
 �

2
, gives a factor of 
which cancels the factor of 1=
 from
the square of the electron wave function [see Eq. (3)].
Therefore the only dependence of our pulsar velocity on
the magnetic field strength is the requirement that it is large
enough that a sizable fraction of the electrons are in the
n � 0 Landau level.

Therefore, with the electrons produced with the neutri-
nos in the modified Urca process undergoing a transition to
the lowest Landau level in the very strong magnetic field
near the protoneutron star, the standard theory for energy
emissivity also gives the emitted momentum of the neu-
trinos, and therefore the recoil velocity of the resulting
neutron star. However, there is a great deal to discuss,
including the calculation of the various traces and the
effective volume and time for the modified Urca process
to give a pulsar kick.

We start with the calculation of the traces of jMAj
2. As

an example, let us calculate the direct axial matrix element.
Writing the product of matrix elements needed for the
emissivity, as shown in Eq. (6), and using the notation
given in Eq. (5), with M1, M2, and M3 the (1), (2), and
(3) diagram in Fig. 1,
 

M1�M2 � A�y3� � k�1�
y
4 	� � k;� � l
��2

� 2Al � k�y3� � k�1�
y
4�2

M3 � �2A�y3� � k� � l�1�
y
4� � k�2

MD
A � M1�M2�M3

� 2Al � k�y3� � k�1�
y
4�2

� �y3� � k� � l�1�
y
4� � k�2: (8)

Further results and the calculation of the MD-D
A-A ,MD-D

A-A , and
MD-E
A-A traces of the product matrix elements are given in the

Appendix. It is important to note that the Landau wave
function is contained in the lepton current, li.

From the Appendix, Eqs. (A6), (A11), and (A14), and
defining MDE

AA � MD-D
A-A �M

E-D
A-A

 Z
d2qe?M

D-D
A-A �

Z
d2qe?Tr	lyi lj
A

2�k2kikj � k
4	ij� � 8�A2Eek

2���q��3k2 � 2�q��ikikz�

ME-E
A-A � R�k�2MD-D

A-A �k! ke�Z
d2qe?M

DE
AA � �

Z
d2qe?Tr	lyi lj
A

2R�k�
�
�

5

2
k � ke�kikej � k

e
i kj� � 2kei k

e
jk

2 � 2kikj�ke�2

� �k� ke�i�k� ke�j � �k � ke�2	ij

�

� �8�A2R�k�Ee	�5k � ke�kezk � q� � kzke � q�� � 2q � k� ke�k� ke�z � 4k � q�kz�ke�2 � 4ke � q�kez�k�2

� 3�q��z��k � ke�2 � k2�ke�2�
: (9)
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The next step in the calculation is to carry out the
nucleon angular integrals.

C. Angular integrals with k and ke angles independent

Following the prescriptions of Ref. [3] the magnitudes of
the momenta are given by the Fermi momenta, so one only
does integrals over the energies and angles of the momenta,
and the momentum transfer of the pion in the direct term,
~k � ~p1 � ~p3 is introduced as an independent vector by
inserting

 

Z
d3	� ~k� ~p1 � ~p3� � 1:

For the D-D (direct-direct) term, the only angular inte-
gral is over the direction of k. For the E-E and D-E terms,
however, one must deal with ~ke � ~k� ~p [see Eq. (5)].
Using the 	-functions, one can see that neither ~ke nor ~p
are completely independent of ~k, but with the proton
momentum being smaller than the neutron, following argu-
ments in Ref. [3], it is a good approximation to assume that
~ke and ~k are independent.

Using the results given in Eq. (9) for the traces of the
products of the matrix elements, the integrals given in
Eq. (A15), and the approximations k � ke and R�k� � 1,
with the notation

RR
� angular integrals over ~k, ~ke, and qe?

one finds

 

ZZ
MD-D
A-A �

ZZ
ME-E
A-A � �

128

3
�2A2k4�q��zqe

ZZ
MDE
AA �

32

9
�2A2k4�q��zqe:

(10)

Recognizing that the nucleons are in thermal equilib-
rium, the magnitudes of the nucleon momenta are given by
the Fermi momentum, pF, and therefore the integrals over
the magnitude of the four nucleon momenta are carried out
via delta functions. Dropping the E� terms, this gives the
final result for the traces and integrals over the axial
product matrix element:

 

ZZ
jMAj

2 � �0:81� 103A2qe�q��zp4
F

� �0:81� 103

�
f
m�

�
4 G2g2

A

2!2

�

�
p2
F

p2
F �m

2
�

�
2
qe�q��z: (11)

D. Neutrino asymmetric emissivity

From Eq. (6), based on the general ideas of Ref. [3], but
with our formalism for the phase space integrals, with the
angular integrations given by Eqs. (10) and (11) in
Sec. III C, we obtain the neutrino asymmetric emissivity:

 ��AS�� � 2
ZZ
jMAj

2
�m�n�3m�p
�2��9

pF�e�I: (12)

The energy integrals, I, are the same as those in Ref. [3];
and with qe � 85 MeV, and q� � 4:7 kT, we find

 I � 9:04� 102�kT�8: (13)

From Eqs. (11)–(13) we obtain

 �AS ’ 0:64� 1021

�
T

109 K

�
7

erg cm�3 s�1

� pnsc�volume�1 time�1�; (14)

where pns is the momentum given to the neutron star, the
volume is the active region for the modified Urca process,
and the time represents the time interval. pns has the
magnitude of �AS=c in the opposite direction of the net
neutrino momentum.

Because of the short mean-free path of neutrinos within
the neutrinosphere, the main asymmetric emission from
the process we have proposed will take place in the volume
between the neutrinosphere and the protoneutron star sur-
face during the period when the neutrinosphere is just
within the protoneutron star surface. At this time the
temperature is expected to be in the range 109 K< T <
1011 K for a period of 10 s starting at about 10 s. Taking the
neutrinosphere and protoneutron star to have radii R� and
Rns, respectively, in km units, we find for the momentum
given to the pulsar for this period of 10–20 s

 pns ’ 0:43� 1027

�
T

109 K

�
7
�R3

ns � �R��3� gm cm s�1;

(15)

where we use the effective volume for neutrino emission as
Vns � V�-sphere � f 4�

3 �R
3
ns � �R��3�, where f is the frac-

tion of neutrinos which escape without striking the neutri-
nosphere for various positions of emission. A rough guess
is 0.5, and by integrating q�z , where z is defined in the
direction of B, we find that f � 0:52.

Radius of neutrinosphere during modified Urca emission

The final step in our derivation is to estimate the volume
in which the neutrino emission takes place with the modi-
fied Urca process in a strong magnetic field. Referring to
Eq. (23), we must find the radius of the neutrinosphere, R�,
assuming that the radius of the protoneutron star at this
time is 10 km.

To do this we use the spherical Eddington model, which
has been used by a number of authors to study the neutrino
atmosphere associated with the creation of a pulsar
[16,17,23,24]. We follow the recent method of Barkovich
et al. [17] to find the neutrinosphere radius, and estimate
the time and temperature during which our process is
taking place. See Ref. [25] for a review of the evolution
of the birth of a neutron star.
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Our starting point is the energy-momentum tensor, T��

for the neutrinos with a distribution function f�� ~x; ~k; t� for
each type of neutrino, giving an energy density U and
momentum density ~F:

 U � T00 �
Z d3k

�2��3
k0f� Fi � T0i �

Z d3k

�2��3
kif�:

(16)

Making use of the Boltzmann equation, and recognizing
that the neutrinos have a very short mean-free path, 
�, the
neutrino distribution can be written in terms of the equi-
librium distribution �feq��� ~x; ~k� as

 f� ’ �feq�� � 
�k̂ ���feq�� �feq�� �
1

1� e�k��
��=T

;

(17)

which form we have used to obtain the integrals in Eq. (16).
The mean-free path for each neutrino type in a medium

of nucleons with density � can be written as

 
� �
1

��k2�
; (18)

with the constant �� determined from the constants of the
standard weak interaction model and the cross sections for
each neutrino type. Assuming the spherical Eddington
model, one finds for the energy and momentum densities,
including the electron, muon, and tau neutrinos, for equi-
librium temperature T:

 U �
7�2

40
T4 ~F � �

1

36��
dT2

dr
r̂: (19)

The time dependence of T can be found from energy-
momentum conservation:

 @�T0� � 0 or @tU� � � ~F � 0: (20)

Using the equations of hydrostatic equilibrium,
Barkovich et al. showed that the T can be obtained from
the first order differential equation,

 

d �T
dx
� bc

�T2 � a�x��
�T2x2�1� a�x��

� 0; (21)

with �T � T=Tc, x � r=Rns, and a�x� depends on the con-
stant bc and two other constants, as well as �T. We use the
constants of Ref. [17], with Tc � 40 MeV, slightly altered
for our expected luminosity in the 10–30 s interval when
the modified Urca process dominates.

Our solutions are shown in Figs. 2 and 3.
In our solutions we find that a�x� � 1, a�x� � �T,

a�x� ’ �T�x�2�x  1�, and that the result for the mean-free
path is

 �
���1 ’ �T� �T2 � a� cm�1: (22)

With this solution the radius of the neutrinosphere can
be obtained in terms of Rns from the relation

 

Z 1
R�=Rns

�T� �T2 � a�dx ’
2

3

cm
Rns

: (23)

Using our solutions we find that for Rns � 10 km,

 R� ’ 9:96 km; (24)

when the temperature is in the range T ’ 1010 K, so that
from Eq. (23) the neutron star momentum is

 pns ’ 5:14� 1027 gm cm=s
�
T

109

�
7
� Mnsvns: (25)

For a neutron star with the mass of the sun � 2� 1033 gm,
including a factor of 0.4 for the n � 0 occupation proba-
bility,

 vns � 1:03� 10�4

�
T

1010

�
7

km s�1; (26)

giving a velocity of v ’ 1000 km=s for T ’ 1011 K, which
is in the expected range. Figure 4 illustrates the velocity of
the pulsar as a function of T.

Therefore we find that the modified Urca process can
produce the observed velocities of 1000 km=s or more
during this period if the temperature is sufficiently high
when the neutrinosphere is slightly within the protoneutron
star due to the electrons being in Landau levels. These
large pulsar kicks start about 10 s after the supernova
collapse.

0.960 1.021 1.061 1.1

0.01442

0.01446

0.0145

x=r/Rc

a(x)

FIG. 3. The function a�x� near the star surface.

1.05 1.1 1.15 1.2
r / Rc

0.11995

0.11996

0.11997

0.11998

0.11999

T / Tc

FIG. 2. Temperature vs radius near the star surface.
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IV. CONCLUSIONS

The basis of our present work is that for a magnetic field
strength strong enough for a sizable faction of electrons
produced in the modified Urca process to be in the lowest
Landau level, all of the neutrinos emitted will be correlated
with the direction of the magnetic field, giving a pulsar
kick. The resulting velocity depends strongly on the tem-
perature, and only indirectly on the magnetic field. Using
expected values of B (1015 to 1016 Gauss) and T (about
1011 K), we estimate that about 40% of the electrons are in
the n � 0 Landau level, and obtain pulsar velocities of
1000 km=s or larger.

The calculation of the asymmetric neutrino emissivity,
and the resulting pulsar velocity arising from electrons
being in Landau orbits in the strong magnetic field near
the protoneutron star, is straightforward with the modified
Urca process. Using the standard properties of protoneu-
tron stars in the 10–20 s time interval, we find that with the
electrons in Landau levels, the modified Urca process can
account for the measured pulsar kicks for T  1011 K,
with the neutrinosphere surface just inside the protoneu-
tron star surface. Studies [17] give T ’ 1011 K, or greater
near the protoneutron star surface. We predict a strong
correlation between the protoneutron star T and pulsar
velocity, as well as a strong correlation between the direc-
tion of the pulsar’s velocity and the direction of B. Since
the luminosity of the pulsar is related to properties of the
protoneutron star, such as strengths of B and T, one can
also expect our result to predict a correlation between v
and L of the pulsar for high L.

In Fig. 5 the correlation between large L and large v that
has been observed is shown. It is a subject for future study
for us to see if our model is consistent with that
observation.

Our unique prediction is that the main neutrino emission
during this period when the neutrinosphere is just inside
the neutron star is almost entirely asymmetric, when the

pulsar kicks should occur, with a strong correlation with
E�; e.g., E� ’ 30 MeV$ kT � 9:5 MeV and v ’
2000 km=s.

It is interesting to consider the neutrinos observed in the
Kamiokande-II [26] and IBM [27] detectors from super-
nova SN1987A. In the analysis of the neutrino data [28], in
which the Kamiokande-II and IBM data are plotted as a
function of time, there might be a gap in the data, with
additional neutrinos seen after 10 s (with the first neutrinos
seen at about 1 s). See Fig. 6 for KAM II and IBM results
[28].

Although our agreement with the time gap seen in Fig. 6
is not statistically significant, we predict asymmetric neu-
trinos start to appear at about 10 s, correlated with the B
direction. This should be observable in future measure-
ments of neutrinos from supernovae with today’s improved

FIG. 5. Pulsar velocity vs luminosity, Ref. [4].
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detectors, with neutrino energies determining the pulsar
velocities.
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APPENDIX

1. Axial-Axial (A-A) matrix elements

The axial OPE matrix element has a direct and an
exchange part,

 MA � MD
A �M

E
A; (A1)

corresponding the diagrams (1), (2), and (3) for the direct
and (4), (5), and (6) for the exchange in Fig. 1. Using the
notation �n for the spinor of the nucleon n (n � 1; 2 for the
initial neutrons, n � 3 for the final neutron, and n � 4 for
the produced proton), from Eqs. (2) and (6)
 

MD
A � 2A	~l � ~k�y3� � ~k�1�

y
4�2

� �y3� � ~k� � l�1�
y
4� � ~k�2
 (A2)

 ME
A � �R�k�M

D
A �k! ke; 1$ 2�: (A3)

Using �i�
y
i � �i, the D-D product matrix element is

 

MD-D
A-A � 4A2 Tr	l � kly � k�A1��A2� � �A3��A4�

� ly � k�A5��A6� � l � k�A7��A8�
; (A4)

where, assuming that �k � k� q ’ k, �n � I=2 and with
the notation ~k! k,

 �A1� � Tr	� � k�3� � k�1
 �
1
2k

2

�A2� � Tr	�2�4
 �
1
2

�A3� � Tr	� � ly� � k�3� � k� � l�1
 �
1
2l
y
i ljk

2	ij

�A4� ’ �1A� � 1
2k

2 �A6� � Tr	� � k�2�4
 � 0

�A8� � Tr	� � k�4�2
 � 0:

(A5)

From this we find

 MD-D
A-A � A2Tr	lyi lj
k

2�kikj � k
2	ij�

ME-E
A-A � A2R�k�2 Tr	lyi lj
�k

e�2�kei k
e
j � �k

e�2	ij�:
(A6)

Using �k ’ k, �ke ’ ke, the two direct-exchange product
matrix elements can be written as (note ME-D

A-A �
MD-E
A-A �k$ ke�)

 

MD-E
A-A � �4A2R�k�

X
spins

	ly � kl � keDE1�DE2

� ly � kDE3� l � keDE4
; (A7)

with (assuming �n � I=2 for all nucleons)

 DE1 �
1

16
Tr	� � k� � ke
 �

1

8
k � ke

DE2 �
1

16
Tr	� � ly� � k� � ke� � l� � k� � ke


�
1

8
lyi lj	�k � k

e�kii
e
j � k

e
i ij� � kikj�k

e�2 � kei k
e
j�k�

2 � �k� ke�i�k� k
e�j � 	ij�k� k

e�2


DE3 �
1

16
Tr	� � k� � ke� � l� � ke
 �

1

8
�2k � kel � ke � l � k�ke�2�

DE4 �
1

16
Tr	� � ly� � k� � ke� � k
 �

1

8
�2k � kely � ly � ke�k�2�:

(A8)

To obtain Eq. (A8) we use the trace relationships
 

Tr	� � A� � B� � C� �D
 � 2�A � BC �D

� A� B � C�D�; (A9)

 

Tr	� � A� � B� � C� �D� � E� � F


� 2E � F�A � BC �D� A� B � C�D�

� 2	A � BE� F � C�D� C �DE� F � A� B

� ��A� B� � �C�D�� � E� F
: (A10)

From this, defining MDE
AA � MD-E

A-A �M
D-E
A-A we obtain

 

MDE
AA � �A

2R�k�Tr	lyi lj
	�
5
2k � k

e�kik
e
j � k

e
i kj�

� 2kikj�ke�2 � 2kei k
e
j�k�

2 � �k � ke�2	ij

� �k� ke�i�k� ke�j
: (A11)

2. Lepton traces

The lepton trace, Tr	lyi lj
, from Eq. (2), with the neu-
trino in a standard Dirac state, us�q��, and the electron
in the lowest Landau level, ��qe� � i�

����
�
p
��1��

e��q
e
?
�2=�2��u��qe�, with the electron momentum along the

direction of the magnetic field, its spin in the opposite
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direction, is defined as

 Tr 	lyi lj
 �
2

�
e��q

e
?
�2=� Tr	�iq6

��j�I � �5�u
��qe� �u��qe�
:

(A12)

Usingme � Ee, and dropping terms in �q0��, which do not
give rise to momentum asymmetry,
 

�iq6
��jji�j � ��q

i���j � �q
j���i

�iq6
��i � q6 � � 2�qi���i

�I � �5�u��qe� �u��qe� �
Ee

2
	�o � �o�5 � �5�3 � �3


� �q̂e � B̂ � ẑ�Z
d2q?

1

�
e��q?�

2=� � 2�: (A13)

An essential part of our work is that �I �
�5�u

��qe� �u��qe� vanishes if the electron momentum is
opposite to the B-field, and that only electrons in the lowest
Landau level in the direction of theB-field contribute to the
emissivity. From Eqs. (A12) and (A13) we find for the
electron in the lowest Landau level

 Z
d2qe? Tr	lyi lj
 ’ 8�Ee	�q��j	i3 � �q

��i	j3 � 	ij�q
��3


� �q̂e � B̂ � ẑ�: (A14)

3. Angular integration

Using k � p1 � p3, ke � p2 � p1 as independent vari-
ables (see text for discussion), and defining

RR
�R

d�k
R d�ke

4� . We need the following angular integrals:

 ZZ
ki �

ZZ
kei � 0

ZZ
k � Ak � B �

4�k2

3
A � B

ZZ
k � Ak � Bk � Ck �D �

4�k4

15
�A � BC �D� A � CB �D� A �DB � C�

ZZ
k2 � 4�k2

ZZ
�kz�

2 �
4�
3
k2

ZZ
�k � ke�2 �

4�
3
k2�ke�2

ZZ
k � kekzk

e
z �

4�
9
k2�ke�2

ZZ
��k� ke�z�2 �

8�
9
k2�ke�2

ZZ
k � kekzke � q �

4�
9
k2�ke�2qz

ZZ
kezke � q �

4�
3
�ke�2qz

ZZ
k� ke � q�k� ke�z �

8�
9
k2�ke�2qz

ZZ
�k� ke�ik � ke � 0:

(A15)
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